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We investigate the trace form tr, x: L > K:x — trL/Kx2 of a finite Galois
extension L /K. In particular, we study 2-extensions of degree < 16. Using some
reduction theorems, these results yield a classification of nearly all trace forms of
Galois extensions of degree < 31. Finally, we study the trace form of a cyclotomic
extension and of its maximal real subfield. = © 1997 Academic Press

1. INTRODUCTION AND NOTATION

If L/K is a finite, separable field extension we can associate to it the
trace form trace, , «(x?). We want to investigate the trace form if L /K is
a Galois extension with given Galois group. We will consider Galois
extensions of degree < 31 of arbitrary fields of characteristic # 2. We
further compute the trace form of cyclotomic extensions and of their
maximal real subfields.
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Let us fix some notations which will be used throughout this paper. Let
K be a field of characteristic # 2. As usual, K* denotes the multiplicative
group of K and K*? denotes the set of all squares of K*. Then W(K)
denotes the Witt ring of K and I"(K), r = 1, is the rth power of the
fundamental ideal I(K) of W(K) (for a definition see [18)]. Let a,...,q,
e K*. Then {ay,...,a;)) = ®l.l:1<1, —a;) denotes the I-fold Pfister
form. For quadratic forms ¢, ¢’ we write ¢ = ' (y ~ ') if  and '
are isometric (Witt equivalent). For m € N let m X  be the m-fold
orthogonal sum of . Let L/K be a field extension. If ¢ is a quadratic
form over K, then ¢, denotes the lifting of . Let ¢ be a form over L.
Then tr; x4 denotes the Scharlau transfer of ¢ with respect to L /K. We
write (L) = tr; ,, (1) for the trace form. Let A € L*. Then tr, ,,(A) is
called scaled trace form. dis(L /K) is the discriminant of the trace form.
The Brauer group of K is denoted Br(K). Let a,b € K*. Then (a, b)
denotes the generalized quaternion algebra generated over K by i, j and
satisfying i2 = a, j2 = b, ij = —ji. The Hasse invariant w, ¢ is defined by

wop = |1 (a;,a;) € Br(K),

1<i<j<n

where ¢ = {ay,...,a,) is a diagonalization of .

Let L /K be a Galois extension then G(L /K) denotes its Galois group.
Let G — G(L /K) be a surjective group homomorphism. Then (L /K, G)
denotes the associated embedding problem.

2. PRELIMINARIES AND REDUCTION THEOREMS

First we briefly want to summarize some known results on computing
trace forms of Galois extensions.

PROPOSITION 1. Let L /K be a Galois extension of degree 2'm, m odd
and ! > 0.

1. Then (L) =[L: K] X 1), if the degree of L /K is odd.

2. Let [L:K] be even. Then G(L/K) contains a cyclic 2-Sylow
subgroup if and only if dis(L /K) & K*2. In this case G(L /K) has a normal
subgroup H of order m and for the fixed field F := L" of H we have
(LY =m X {F) and F /K is a cyclic extension of degree 2'. Further, there
exists a unique quadratic subextension K(Ja) c L and dis(L/K) =
amod K*2. If 2!m = 0 mod 4 then dis(L /K) is a sum of two squares.

3. IfL = K(‘/Z,...,\/Z) has degree 2' over K then (L) = (2') ®
K =ay,...,—ap).
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4. The signature values of the trace form of a Galois extension of degree
n are either 0 or n.

For a proof see [4, 1.3.4], or [10, Lemma 2].

DerFiNniTION 1. Let ¢ be a quadratic form over K and let G be a finite
group. Then ¢ is called G-realizable if and only if there is a Galois
extension L /K with Galois group G and trace form isometric to .

COROLLARY 1. Let i be a quadratic form over K.

1. If G is a group of odd order, then  is G-realizable if and only if
¥ = ord(G) X (1) and G is a Galois group over K.

2. Y is (Zz)l-realizable iff there exist elements a,, ...,a; € K*, linearly
independent mod K*? with y = ') ® (( —ay,..., —a,;)).

From now on we can assume that ¢ has even dimension > 4. Further,
the preceding proposition reduces our approach to the computation of
trace forms of cyclic extensions of degree 2! if the field extension has
nonsquare discriminant. Part (2) of Proposition 1 generalizes as follows.

PROPOSITION 2. Let G be a finite group of even order 2'm, m odd, and
let G, be a 2-Sylow subgroup of G. Suppose G contains a normal subgroup of
order m. Let i be a quadratic form of dimension 2'm over K. Then  is
G-realizable if and only if there exists a Galois extension F /K with

1. G(F/K)=G,,
2. yp=m X (F),
3. the embedding problem (F /K, G) has a solution.
This result applies for example for abelian groups, groups with cyclic
2-Sylow subgroups, groups of order 4p, p > 5 a prime, or if a 2-Sylow
subgroup of G is the modular group M(2'), I > 4. The last assertion is

Wong's theorem (see [13, Satz 1V.3.5]). Next we consider decomposable
groups.

ProposiTioN 3. Let G,, G, be finite groups. Then the form  is
G, X G,realizable over K iff there are Galois extensions L,/K, L,/K with
L,NnL,=K, G(L,/K)=G,,i=1,2,and & = {L;) ® {L,).

Proof. LinNL,=Kgives{L,L,) ={L;®L,)=<(L;)®<(L,>. 1
The next lemma and its application appeared in [3, 4.3.1, 4.4.1].

LEMMA 1. Let K be a field and  an n-dimensional form over K. Let
L /K be a field extension of odd degree:

1. Ifn=2"and ¢ is a I-fold Pfister form over L then  is a I-fold
Pfister form over K.
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2. If there exists some ¢ over L such that §; = m X ¢ for some odd
m, then there exists some ¢' over K such that y = m X ¢’.

COROLLARY 2. Let L/K be a Galois extension of degree 2'm, m odd.
Then {L) is divisible by m; that is, there exists some i over K of dimension
2! such that (L) = m X . Let F C L be a fixed field of a 2-Sylow subgroup
of G(L/K). If try ;1) is a Pfister form then so is . In particular, i is
similar to a Pfister form if a 2-Sylow subgroup is elementary abelian.

We can get some information on the invariants of the trace form from
the 2-rank of the Galois group.

DErFINITION 2. Let G be a finite group. Then the 2-rank rk,(G) is the
maximal number r such that G contains an abelian subgroup of exponent
2 and order 2"

We know, for example, rk,(G) = 0 iff G has odd order. Further,
rk,(G) = 1 iff the 2-Sylow subgroups of G are cyclic or generalized
guaternion groups.

PropPoSITION 4. Let L/K be a Galois extension with Galois group G.
Then (L) € I'(K), where r = rk,(G); in particular, dis(L /K) € K*?, if
rk,(G) > 2 and w,{L) = 0 € Br(K), if rk,(G) > 3.

Proof (Compare [15, 5.25]). Let F be the fixed field of a subgroup
(Z/22) = H € G(L/K). Then ¢ = tr; (1) isin I"(F). By [2, Theorem
331 (LY = tr, xp € I'(K). |

Let W, 4(K) = W(K)/W,,(K) be the reduced Witt ring, where W, (K)
denotes the torsion part of W(K). Recall that elements in W, ,(K) are
uniquely determined by its signature values. In [19, Section 5, Theorem 2]
Scheiderer showed:

ProposiTiON 5. Let L /K be a Galois extension with Galois group G. If
rk,(G) = s then (L) = (n/2°) X i in W,o4(K), where i is an s-fold Pfister
form. In particular, if K is Pythagorean (that is, any sum of squares in K is a
square in K) then any trace form of a Galois extension is a multiple of some
Pfister form, since W(K) is either Z/2Z or is torsion-free when K is
Pythagorean.

Let us now consider abelian groups of 2-rank 2.

PROPOSITION 6. Let L /K be an abelian 2-extension with rk,(G(L /K))
= 2. Then there are elements a,b € K* such that K(Va , \/17)/1( is a bi-
quadratic extension contained in L /K and such that (a, —1) = 0 € Br(K) if
[L:K]+# 4 We get

1. w,X(L)=1(a,b) +(ab,-1) €Br(K)if [L:K]=4 and
2. wy(L)=1{(a,b) e Br(K), if [L:K]=>8.
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Proof. (2) There are cyclic subextensions K, /K, K,/K of L/K with
K,NK,=K, L=KK,and[K,:K]=> 4. Let d, = dis(K,/K), i = 1,2.
Then (d;, —1) =0 € Br(K). If (d,, —1) =0 we get wy(L) =
(dy, (-DK2:KV24)) = (dy, d,) € Br(K). Since K(Va ,vb) = K(y/d, , /d,),
the result follows from (1. If (d,, —1) = (d,d,, —1) # 0 € Br(K), then
K,/K is a quadratic extension. Then a = d, mod K*? and we can set

K, =KGb). 1

Remark 1. Proposition 1 and Corollary 2 allow us to determine the
trace form of any Galois extension of degree 2'm, m odd and [ < 2. If we
have a cyclic 2-Sylow subgroup apply Proposition 1, otherwise Corollary 2.

We further need the following fact on Galois extensions.

PROPOSITION 7. Let L /K be a Galois extension and let o € L* — L** be
an element of L /K such that L(/a) /K is a Galois extension and

1- G(L(Ya)/L) > G(L(Va)/K) - G(L/K) - 1

is a nonsplit extension. Then L(ta)/K is a Galois extension with Galois
group G(L(a)/K) = G(L(ta)/K) for any t € K*.

Proof. Assume ¢ & L*2. Since the group extension does not split L(Va,
Vt)/K is a Galois extension with Galois group isomorphic to
G(L(a)/K) x G(K(1)/K). Let o€ G(L(Ga)/L), € G(K(/t)/K)
be elements of order 2. Choose a common prolongation p €
G(L(Wa ,Vt)/K) of ¢ and 7. Then L(Vta) is the fix field of { p) and  p)
is a normal subgroup of G(L(Ya,Vt)/K) since p corresponds to (o, 7). 1

3. TRACE FORMS OF DEGREE 4

By Corollary 1 it remains to consider the cyclic group of order 4.

PROPOSITION 8. 1. Let D € K* — K*2. Then K(/D) /K is contained in
a cyclic field extension of degree 4 if and only if D is a sum of two squares in

K. Let D=a?+b%a,beK. Then KG/q(D +aVD)), q €K* is a
parametrization of all cyclic extensions of degree 4 with discriminant D. We get

(K(Ya(D +aVD)))= 1, D.q.9).

2. Let  be a quadratic form of dimension 4 over K with discriminant
D € K*. Then  is a cyclic trace form if and only if D = a® + b* & K** and
¢ =<(1,D,q,q) forsomea,b,q € K*.
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Proof. (1) Set F:=K(/D). Let F(Ya)/K, a € F* be a cyclic exten-
sion of degree 4. Then N, (D + aVD) = Db? = dis(F(Va)/K) =

Ng,x(a) = D mod K*2. Using Hilbert 90 we get a (D +aVD)x =
,Bcr(B) ! for some x € K* B e F* with (o) =G(F/K). Set g =

N, (B)-x. We easily obtain, that K(\/q D +a/D))/K is a cyclic
extension of degree 4.

) Let L = K(/q(D + aVD))with a,b,q € K*and D = a? + b2,

Since (D, D) = {1,1) weget{L) ={1,D,q,q). 1

4. TRACE FORMS OF DEGREE 8

Up to isomorphism there are three abelian and two nonabelian groups
of order 8. In some cases we apply a formula of Serre to determine the
Hasse invariant of the trace form. To do this we first have to compute
some group extensions.

LEMMA 2. Consider the restriction map
ress H(&,,Z,) - H*(G,Z,),

where G is a subgroup of the symmetric group © , of degreed = 2' > 4.
1. Let o be a cycle of length d and set G = (o).

(@) Then res(s,) is the unique nonzero element of H*(G,Z,).
Hence, res(s,) corresponds to the exact sequence

1-7,-74—->7,- 1.

(b) The restriction map is trivial for all d = 2' > 8.

2. Let G=KQ,) =7Z,XZ, be the commutator subgroup of the
alternating group 2 ,. Then res(s,) corresponds to the quaternion group
extension

1-72,->03~>2,X7Z,— 1.

3. If G = Qg is the quaternion group of order 8, then res(sg) = 0.

4. Let G =D,, be a dihedral group of order 2n = 2' > 8. Then
res(s,,) = 0.

Proof. Let 7 "@d—> ©, be the canonical projection. Let G be the

preimage of G in &, under 7. If g€ & ,, then g€ &, denotes an
arbitrary preimage of g.
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(1) We know o?/? =17, - 1, ,, with pairwise disjoint transposi-
tions 7, € ©,. Since 7,7, has order 4 for i # j, we get 7,7, = w77, This
gives (7, =+ 7, )% = wd/“ Now the assertion follows from ord(G4/%) =
ord(7, --- 7, ,,) (see [6, Lemma 3)]).

(2) Follows immediately from the definition (see also [20, Exemple]).

4 Let o=(,...,n)n+1,...,2n) and 7= (1,2n)2,2n —
1--(n,n+ 1). Then

D,, ={o,7)=(o,rlc" =7 =id, 7o ' =0 1).
As in (1) we get 7" =7%=1 Let &'1, &‘2 e D,, with 77(51) =
@....mmF,)=(0+1,. 2n) Set &= 010'2 Then 0,7 L= )\T, !
for some A € {1, w}. Hence 757 = = o, Fo,7 =0

The proof of (3) is left to the reader. |
Now we apply Serre’s cohomological trace formula [20].

CoRoOLLARY 3. Let L /K be a Galois extension with Galois group G and
dis(L /K) =
1. If G is cyclic of order 2' > 8, then

w,(L) = (2, D) € Br(K).
2. IfG=Qq D,,, n=2">4,then
D eK*,  wyL)=0.

Hence, {L) € I*(K).
3. If a 2-Sylow subgroup of G(L /K) is a generalized quaternion group
then (L) € I*(K).

Proof. (1) and (2) follow immediately from Lemma 2 and Proposition 1
since Qg and D,, are not cyclic. Later on we give direct proofs of these
results (see [6, Lemma 3)).

(3) G(L/K) contains a subgroup H = Q,. Let F be the fixed field
of H. Then tr, (1) € I*(F) by (2). Now proceed as in the proof of
Proposition 4. ||

Next we consider trace forms of cyclic extensions of degree 8.

PRoPOSITION 9. Let L /K be a cyclic extension of degree 4 with dis(L /K)
= D. Set L =K(/q(D + aVD)) with a,b,q € K*, D = a* + b2. Then
the following conditions are equivalent:

1. L /K s contained in a cyclic extension of degree 8.
2. wyXL)=(2,D) € Br(K).
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3. (2,D) +(gq,—1) =0 € Br(K).
4. —1isanormof L/K.
5 (L) =<2,2D,1,1).

Proof. The equivalence of (2), (3), and (5) is a consequence of Proposi-
tion 8, since a trace form of dimension 4 represents 1. The equivalence of
(1) and (4) is well known (see [1]). We give three different proofs of the
equivalence of (1) and (3). We want to point out that this result can be
proved with different methods. We give a proof which uses Serre’s for-
mula, one using the theory of central simple algebras and one by direct
computation.

1. The first proof is based on Serre’s cohomological trace formula.
This gives e*(s,) = inf(res(s,)) = (2, D) + w,{L). By Lemma 2(1)(a) this
is the obstruction to the embedding problem (L /K, Z,). Hence, (1) and (2)
are equivalent.

2. 3= (4 Let L=K(G4/q(D+aVD)). Let L/K be a cyclic
extension of degree 4. Set F = K(YD) and 6 = D + aVD . Then N; ((a
—VD)b™) = —1. Let

p=<{(a—VD)b q8)).
Now we determine the Hasse invariant of tr. . 4. We get w,(trp ) =

(2,D) + (g, —1) (note that (D,ab) = (D,2(a + b)*> — D) =(D,2) €
Br(K)). On the other hand, we know [2, Satz 4.18]

Wy trp b = cory i ((a —VD)b™*, q8))

= corp x|L, ", (a = VD )b~ =[L, ", —-1].
Now (2, D) + (g, —1) = 0 if and only if the cyclic algebra [L, ~, —1] splits
if and only if —1 is a norm of L /K. (For notations see [18, 8.12.3, 8.12.6].)

3. Kiming [14] proved the equivalence of (1) and (3) by an explicit
computation of the obstruction. We follow his ideas and give a direct proof
of this result. Let L /K be a cyclic extension of degree 4 with discriminant
D. Set

§=D+a/D, F:=K(D).

Let (o) = G(L/K), where o is the automorphism given by o (1/g6) =
qb\/ﬁ\/q_ﬁil.

(4= @) Let a,BeF with g6=a’+ B° Then N, ((a
—VD)b~1) = —1. By the assumption there is some y € F with

a- VD _v_ g5 | =0eBr(F)
b o(y)’ '
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Hence, the Pfister form ¢ = {{(a — VD )b *yo(y),q8)) splits. Thus
trp ¥ ~ 0 € W(K), which gives wy(tr ,(¢) = (2, D) + (¢, =1 = 0.

(3) = (4) Since

a+b 1 2 (a-b 1 2
8= + VD | + + =D 1
R I b 1Cl B
and (¢, —1) = (g, —1D + (2, D) = 0 € Br(F), there are some «,B € F
with

g8 =a?+ B2 (2)
Now set
o2(8)  o?(A) o — /g8
A=qgd+ 6 €L, C = = = — )
ad+ aed BYas  No,s(d) B
A=1+ O'(C) .

Then C2 = ¢2(A)A™Y, Ca¥(C) = —1 = ¢(C)a¥(C), and A = — Byg5 -
a2(C) = —BygdC ™.

Suppose C = — o (C). We get o2(C) = C, which contradicts C = —(«a
— Vg8)B~' & F. Thus A # 0. From

¢AU(A)=(1+ 1 )(1 o (C)

C c ot vo

) = —tr, x(C) €K,
we conclude N, ,(A) = —(tr, ,((C)).
Claim. (2,D) + (¢, —1) = 0 € Br(K) implies

a o(a)
B (B

Proof. From (1) and (2) we compute elements x, y € K with g = (1 +
x2)(y? + Dz?). We get

(5. (€0.D) = (2.5) + ({51 D)
= (q.-1) + (trs )k (ac(B)),D)
= (y*+Dz*, -1) + (trF/K(aU( B))'D)

= ((yZ +D22) .trF/K(ao'( B)),D)

tr, x(C) = —2( ) € Nk (F*).
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An easy computation gives

try, (@ (B)) = —((cb —a)* = D)(y? + Dz?).

Now let y € F be an element with N ,(y) =tr, ,(C). Then —1 =
N (Ay™. 1

ProposITION 10. Let i be a quadratic form of dimension 8 over K with
discriminant D € K*. Then  is a trace form of a cyclic extension if and only

if
1. D =a’+ b* & K*? for some a,b € K*,
2. (D,2) =(q,—1) € Br(K) for some q € K* and
3. ¢y=A(1,1,1,D) Lt) ®<L —2,—D)) for somet € K*.

Proof. Let L /K be a cyclic field extension of degree 8. Set F = K(YD)
and let F, be the unique subfield of L/K with [F,: K]=4. L/K is a
solution of the embedding problem (F, /K, Z;). From Proposition 9 we get
(F;) =(2,2D,1,1) and (2, D) = (g, —1) for some g € K*. Set L =
F,(VA). Then

(L) =<2) ® (F}) Ltrp ,2A) =<1,1,1,D) 1 {t) ® ¢,

where ¢ is a two-fold Pfister form with w, ¢ = w,({¢) ® ¢) = w,{(L) =
(2, D) by Corollary 3.

Now let  be a quadratic form for which the assumption of the
proposition holds. By Proposition 9 K(\/q(D + a\/B) )/K is a cyclic
extension of degree 4 which is contained in a cyclic extension L /K of
degree 8. Set F, = K(y/g(D + aVD)) and L = F(JA). Then (F,) =
(2,2D,1,1) and

(L) =<1,1,1,D) L {t") ® {(2,D))

for some 1’ € K*. By Proposition 7 F(Vit’A)/K has the desired Galois
group. We already proved {F,(y#t'A)) = ¢. |

Now we prove w,{L) = (2, D) without Serre’s trace formula (see [5,
14]). There is a tower of quadratic extensions K c F = K(YD) C F, =
K(/g8) c L = KG/7A) with D =a®> +b% 6=D +aVD, q=(1 +
x2)(y2 4+ 22D) = (—xy + x¥D)? + (y + x2/D )?, q8 = a?+ B2, A =qb
+ ay/qé, a,b,q,x,y,z€ K, a, B, 7€ F*. Here we calculate « and B
from the given representation of g as a sum of two squares in F and from

a

=(aJ2rb +%\/5)2+( ;b +%\/5)2.
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As above we get (L) =<1,1,1, D) L tr; ,,(27A) and
tl’Fl/K<27A> = trF/K(27q6,27q6> ={(1,1)® trF/K<T>
=(1,1) ® (trp (7)) ® {1, Np (7)),

if trF/K(q-) # 0. Otherwise trp ,(27A) = (1,1) ® (1, —1) and N (1)
= —D mod K*2. Hence in both cases we get trp ,(27A) = (1) ®
<< 1, =N (7))) for some 1 € K*. Thus wy(L) = (N; (), —=1) €
Br(K).

1. Case —1 € K**, Then w,{(L) = 0. Let {? = —1. Then (2, D) =
(¢,, D) = 0 by Proposition 9.

2. Case —1€L*®—K*>. Then D= —1mod K**> which gives
w,(L) =0=(D,2).

3. Case —1¢& L**. Set ¢=o(r)r . From £= N, (r)mod F*?
we get

(trp x(&)) ®(2,2D) = (2) ® try ,x (&)
= (2) ® try ) ( Np k(7))
=( Ny k(7)) ® (1, D),

since tr (&) = o(r)r* + 70(r)"" # 0. It follows (2 - try. , (&), —D) =
w,{L). Now we compute ¢ modulo squares of F*. Let (o) = G(L/K)
where ¢ is the automorphism given by o(;/g8) = gbVD /g5 . Set

oA ) e C

B\/— \/NL/F(A) B a(C)

Then C2 = ¢2(A)A™Y, Co?(C) = —1 = a(C)a¥(C), and A = —By/g5 -
a2(C) = —ByqdC ™.

Suppose C = — o (C). We get o2(C) = C, which contradicts C = —(«a
— Vg8)B~' & F. Thus A # 0. Since

o(7)o(A)
p=———73€F
TAA

is invariant under &2, it is an element of F. From L = K(/7A) =
K(G/o(7A)) we get ¢ € F;2. Suppose ¢ & F*2. Then ¢qd € F*2; hence,
Ny ,(¢) = D & K*?, which contradicts

_ a?(A) _ ’ . -4
NF/K(d)) - A(AO'(A))Z - (AO'(A)) - (trF/K(C))
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Hence, £ = o(r)r ! = AA%(A) ! mod F*? and

A2 BYgsa(C) A
a(8)  o(B)o(vad)C

il %)

e
I

o(B) VD o(C) C
B a+ VD
= 7(B) 0y “trp p(A)
a+ VD 2
=U(BB) +b BU(B)(BU(B)—aa(a)+qb\/5)
a+ VD

=2

5 (Bo(B) — ao(a) + gbVD ) mod F*2,

We easily compute Bo(B) — ao(a) = (y? + z?DXab(x? — 1) — 2xb?).
Hence

a+ VD

£=2(y*+2z°D) b

(ab(x* — 1) — 2xb® + (x* + 1)bVD))
= 2(y? +22D)((ax — b) + xVD )" = 2(y? + 22D) mod F*?,
This gives

trp k(€)= trp 1 (2(y? + 22D)) =(trp x (&), D trp 1 (£))

~(2(y? +2?D)) ® (2,2D) = (1, D),

since (1, D) represents y2 + z?D = 0.
We finally conclude w,(L) = (2-tr; (&), -D) = (2, -D) = (2,D) €
Br(K).

ProposITION 11.  Let ¢ be a quadratic form of dimension 8 over K. Then
W is Z, X Z realizable iff there are elements a, D, q € K* such that

1. a, D, aD & K*? and D is a sum of two squares in K,
2. y=C2)0 (=D, —ay) L{qg) ® -1, —a)).

If & satisfies (1)—(3), then ¢ is not similar to a Pfister form iff w, =
(a,D) # 0.
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The trace forms of Galois extensions with Galois group Dy and Q4 have
been determined in [3, Section 6, Exemple]. Since there is no proof given
we consider these trace forms now.

PrRoOPOSITION 12.  Let ¢ be a quadratic form of dimension 8 over K.

1. Then  is Dgrealizable if and only if there exists an element
g € K* — K** with  ={{—1,—q, —t)) for some t € K* and {1,q)
represents more than two square classes.

2. is Qg-realizable if and only if ¢ ={{—1,=1,t)) for some
t € K*? and Qg is a Galois group over K.

Qg appears as Galois group over K iff there exist some a, b € K* with a, b,
ab & K*? and (a, b) + (ab, —1) = 0 € Br(K).

Proof. Let L/K be a Galois extension with Galois group Dg or Q.
Then L/K contains a biquadratic extension field F = K(Va,Vb). Let
a € F with L = F(/a). We can assume that L /K(yab ) is cyclic of degree
4. From Corollary 3(2) we get dis(L /K) € K*? and w,{(L) = 0. Since

(LY = () ® ((F) Ltry{a)),

the quadratic forms (F) and tr. ,{a) have the same discriminant and
Hasse invariant. By [18, 2.14.1] there is some ¢ € K* with trF/K<a> = {t)
® (F), which gives (L) = (2) ® {1,t) ® {(F) = {2) ® ({ — t,
—a, —b)). Further L/K is a solution of the embedding problem
(F/K,G(L/K)).

Let G(L/K) = D,. It is Galois-theoretic folklore (see [12, Theorem
3.10)) that (F /K, D) has a solution L /K such that L /K(Yab ) is cyclic if
and only if {a,b) = {1,ab) if and only if {(F) =<{{ -1, —ab)). Set
q = ab.

Now consider G(L/K) = Q4. A result of Witt [22] implies, that the
solvability of (F/K, Q) is equivalent to (a,b) + (ab, —1) = 0 € Br(K),
which is equivalent to <1, a,b,ab) =4 X (1). This result can also be
obtained by trace form considerations (see [20; 9; 7.7]; use Lemma 2(3)).
This gives the necessary condition in both cases.

Now consider Dy again. We compute the trace form of an explicit
polynomial. We will apply this method in the next section. A Galois
extension L /K with Galois group Dy is a splitting field of an irreducible
polynomial f(X) = X"+ X2 + b such that a :=t?> — 4b # dis(f) = b #
1 mod K*2. We get a, b, ab € L*?> — K*? and (a, b) = 0 € Br(K). Hence,
(1,ab) = {a,b). Further, L /K(Yab) is a cyclic extension with discrimi-
nant b = a mod K(Vab )*2.

Let £=0. Then tr, ,x <1 =<1,b,1,1) and ab = —1 mod K*?,
which gives

(L) =41,-1) ® {1,1,1,b) = {{1,1,1)).
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Now consider ¢ # 0. From [7, Theorem 1] we get

(K[X]1/(f)) =<l,a) L{—-2t)®a,b)
={1l,ay L {—2t) ® {1,ab)

which gives
(L) = trgap)xla, —t, —t) =(2,2ab) ® (1,a, —t, —t)
= =1, —ab,t)).

We now prove the sufficient condition. Let ¢ = ({ — 1, —¢q, —t)). By
assumption there is some a € K* which is represented by {1, g such that
q, a, aqg & K**. Set b =aq. Then (a,b) = 0. Choose u, v € K with
a=u®—4bv? Let u+0. Set X*+ X%+ bv?t>u? and let L be a
splitting field of f. We easily obtain (L) = ¢ and G(L/K) = Dg. If
u=0,then ab= —1 mod K*? and  ~ 0 € W(K). Then consider the
splitting field of X* + b.

Let L /K be a Galois extension with Galois group Qg and let F/K be
the biquadratic subextension of L /K. Then L = F(Ya) for some « € F*
— F*? and tr; (a) =(q) ® (( = 1,—1)). The Galois group of
F(\/tq‘la )/K is isomorphic to Qg and its trace formis < — 1, —=1,7)). |

Let us denote some observation which we will use later.

Remark 2. Let L/K be a Galois extension of degree 8 with G(L /K)
€ {Zg, Dg, Qg) and let F be an intermediate field of L /K such that F/K
is a normal extension of degree 4. Let L = F(/a). Then the parameter
t € K* in Propositions 10 and 12 can be any element which is represented
by try. ,xCa). If trp () # 0, we can choose ¢ = tr; ,(a). Otherwise we
can take t = 1.

Proof. trp,x{a) is similar to a Pfister form. |

5. TRACE FORMS OF DEGREE 16

There are 14 different groups of order 16, five of which are abelian. (In
[12] we find a list of all these groups. See also [21].) We are not able to
compute the trace form of a cyclic extension of degree 16 and of an
extension with Galois group Q. If G is a noncyclic abelian group we can
use the results of Sections 3 and 4 to classify the G-realizable forms. We
omit stating these results here.

First we determine trace forms of Galois extensions L /K with Galois
group D4, the quasidihedral group QD, and the modular group M(16),
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each of order 16. We know

Dy=<(o,7|o8=1?=id, 7 o1 =0"1),

OD; ={o,7|c®=71*=id,7 o1 =0%),
M(16) = (o, 7|0t =7>=id, 7 o1 = 0°).
Each of these groups contains an element of order 8 (see [13, 1.14.9]). Let

L/K be a Galois extension with Galois group G = G(L/K) €
{Ds, ODg, M(16)}. We have a tower of quadratic subextensions,

KcK,=KWa)=L"""cL"" =K,c L& =K, cL.

Set K(Vb) := L{">. Then K(Vb) N K, = K. Further L/K(/b) is a cyclic
extension of degree 8 with discriminant a = ab mod K(Vb)*?. Let a € K,
be any element with K, = K,(a ). Then L = K,(yb )/« ). From Proposi-
tion 10 and Remark 2 we know

tr, k(D = (L, 1,1,ab) L (1) ® ({ = 2, —ab))
~{1,1,1,a) 1L (1) ® (-2, —a))

with # = 1ort = tre i) k(o (@) = trg, ,x(a) € K. Suppose G # M(16).
Then {&*) is a normal subgroup of G with G/{o*) = D,. From K,(yb)
= LY we get G(K,(yb)/K) = Dg. Hence, K,(Vb)/K is a solution of
the embedding problem (K(Va ,Vb)/K, Dg), where F/K(/b) is cyclic of
order 4. From Proposition 3.10 in [12] we get {a,ab) = {1,b). Now
Frobenius reciprocity (see [18, 2.5.6]) gives

(L) =<2,2b) ® ({1,1,1,ab) L {t) ® {{ =2, —ab)))
={{—-1,-1,-b, —1)).

PrRopPoOSITION 13.  Let i be a quadratic form of dimension 16 over K. Let
G € {Dy, OD;}. Then ¢ is G-realizable if and only if there exist b, t € K*,
b # —1 with

1L ¢y={{=1-1-b —1)),
2. b,b+1,b(b+1) ¢&K*? and
3. there is an element q € K* with

(b+1,2) + (q,—b) =0 € Br(K), ifG =Dy
[resp. (b +1,-2) + (g, —b) =0 € Br(K), if G = QD]



224 DREES, EPKENHANS, AND KRUSKEMPER

There exists some q € K* with (b + 1,2) + (¢, —b) = 0 € Br(K) iff
X2 —(b+1)X2—2X2—2(b+1)bX2=0

has a solution x,, x,, x5, x, € Kwith (x;, x,) # (0,0).

Proof.  For the last assertion see [14, Theorem 6]. L /K is a solution of
the embedding problem (F/K,G) with L/K(/b) is cyclic. If G = Dy,
apply [14, Theorem 6]. If —1 € K*? we can also use [9, 7.11]. Hence,
(a,ab) = 0 = (a, —b) and (a,2) + (g, —b) = 0. We get a = x> + by? with
x,y € K*. Replace b by by?x? and a by ax~% Now let G = QDg. Then
G(L/K(a)) = {r, 0?) = Dg. Apply [14, Theorem 7]. 1

PrRopPosITION 14. Let iy be a quadratic form of dimension 16 over K.
Then  is M(16) realizable if and only if there exist a, b, q, t € K* with
1. a, b, ab & K*? (a, —1) = 0 € Br(K),
2. (a,2b) + (g, —1) = 0 € Br(K),
3. ¢ =(2,2b) ® (1,1,1,a) L {t) ® {{ = 2, —a))).
Proof. Since (o*, 1) is a normal subgroup of M(16) with cyclic quo-

tient we get (a, —1) = 0. Use the same calculation as above and apply [12,
Theorem 4.8.1]. 1

Let us now consider the two pullbacks
Dg ANZ, =<0’,7,p|0'4 =72 =p2 = 1,[0’,7] = [p,T] = 1,0'p=p0'37'>
and

O N2, =<0’,T|0’4 =rt=11rr=0"Y.

ProposITION 15. The quadratic form  over K is Dg A Z j-realizable if
and only if there are elements a, t, g € K*, a & K*? such that

1. y={—-1,—a, —t, —q)) and
2. {1, —a) represents some b € K* with b, ab & K** and (b, —1) = 0
€ Br(K).

Proof. Set G == DgAZ,. Then {r)<G with G/{7) = Dg. Further
H = {[o, pl, o %) is a normal subgroup of G with cyclic quotient of order
4, Let N/K be a Galois extension with Galois group G. Set L = N¢"> and
F = N*¥. Then there are elements a, b € K* such that K(Va ,vb)/K is a
biquadratic extension contained in L and K(¥b) = L N F. Hence, b = x?

+y? with x,y € K* and F = K(1/q(b + xVb)) for some g € K* (see

Proposition 8). Since (H,t) = Z, X Z, X Z, the extension L/K(/b) is
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not cyclic and we can assume that L /K(Yab ) is cyclic. Hence, (a, b) = 0
by Proposition 3.10 in [12]. L is a splitting field of an irreducible polyno-
mial f=X*—tX?>+ b € K[X] with a =*> — 4b # dis(f) =b # 1 mod
K*?. Now f is irreducible in F[X]. If ¢+ 0 we get try, (1) =<{{ —a,
—2ty), which implies

(N) = —a,=2t)) @ (F) = —1,—a,—t,—q)).

If t=0,then (N) ~0e W(K). 1

ProposITION 16. The quadratic form  over K is Qg AZ ,-realizable if
and only if there are elements a, t, ¢ € K*, a & K** with

L = =1 —=1-1)) L{g)® <l a,tt)) and
2. {1, —a) represents some element b € K* with b, ab & K** and
(ab, —1) = 0 € Br(K).

Proof. 1If N/K is a Galois extension with Galois group Qg AZ,, then
N contains subfields L, F such that L /K and F/K are Galois extensions
with G(L/K) = Dy and G(F/K) = Z,. Further, L/L N F is cyclic of
degree 4. Now proceed as in the proof of Proposition 15. |

Let
DC=<O',p,T|O'4=p2= 2=1[o,p]l=[o,7]=1,]p,7] =a'2>.

ProposITION 17. The quadratic form  is DC-realizable over K if and
only if there are elements a, b, ¢, t € K* with

1. ¢y=—-1,-1,—abc, —t)) and
2. a,b,c & K* and (a,b) = (¢, c) € Br(K).

Proof. We use the notation of [17, Theorem 2.A], where an explicit
construction of a DC-extension is given. Let L /K be a Galois extension
with Galois group DC and let K(Va,vVb,Vc)/K be an extension of
degree 8 contained in L. Then H = (g2 a.° 0, 0.°0,) = Qg and DC
= (H, g,).Set K; :== L7 and K, = L{» 7~ Then K(Vabc) = L*, L =
K,(Yabc), and K; N K(Jabc) = K. Choose a € K, with K; = K,(Va).
Since L = K,(abc )(Ya ), Proposition 12 and Remark 2 give

tr,  kave (D = =1, =1, 1))

with r € K*. |

By Propositions 3 and 12 the trace form of a Dg X Z, (resp. Qg X Z,)
extension is a Pfister form.
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6. SOME CONSEQUENCES

COROLLARY 4. Let L /K be a cyclic field extension of degree 2' > 4 with
discriminant D.

1. If L /K is contained in a cyclic field extension of degree 2'**, then
(LY ={2,2D) L (2" = 2) x(1).
2. Ifl>3and —1€ L*? then (L) = (D) L (2' — 1) x {1).

Proof. (1) If I =2, see Proposition 9. Now consider / > 3. Let F be
the unique subfield of L /K with [L: F] = 4. Since L /F is contained in a
cyclic extension of degree 8 we get tr, (1) = <2,2A) 1 <1,1). Now
induction gives

(L) =trp,x€2,2A) Ltry 1,1y =(F(YA)) L (1,1) ® (F)
=(2,2D) L (2""* = 2) x (1) L (1,1)
®({2,2D) L (2'72 = 2) x (1))
=(2,2D) L (2' = 2) x (1).

(2) Let F be as above. Then —1 € F*? and tr, (1) = (1,A,1,1).
Hence, (L) =<(2) ® (F(YA)) L <1,1) ® (F) =<1, D) L (2! —2) X
(1) by part (1). 1§

CoROLLARY 5. Let L/K be a Galois extension with Galois group G.
Suppose the Hasse invariant of { L) is nontrivial. Then either rk,(G) = 2 or
the 2-Sylow subgroups are cyclic.

Proof. If rk,(G) = 3 then (L) € I*(K) by Proposition 4. It is well
known that if rk,(G) = 1 and G is a 2-group then G is either cyclic or a
generalized quaternion group (see [11, 5.4.10]). We know from Corollary 3
that (L) € I3(K) if L/K is a Galois extension with generalized quater-
nion group as its Galois group. I

We determined the Hasse invariant of the trace form of a cyclic
extension of degree 8 without Serre’s formula. Using induction we are able
to extend this method to all cyclic field extensions of degree 2’ > 8. Let
L /K be a cyclic field extension of degree 2'*! > 16 with discriminant D.
Set F = K(\/D). Let 6 € F* be the discriminant of L /F and set ¢ ==
(2,28) L 6 X {1) € W(F). Then by the induction hypothesis trL/F<1> =
@ mod I%(F). From [2, Satz 3.3] we get (L) = tr; , @ mod I°(K). Now
trp xo =1ty x<2,26) L 6 X (2,2D) =2, 2D) 1 14 X (1), since
trp , x€2,28) is the trace form of the cyclic extension F(/8)/K of de-
gree 4 and by Proposition 9.
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COROLLARY 6. Let K be a field with —1 € K*? and let L /K be a Galois
extension.

1. If G(L /K) contains a nonabelian group of order 8, then
(L) ~ 0 € W(K).

2. Let L /K be a nonabelian extension of degree 16. Then
(L) ~0 € W(K)

if G(L/K) = M(16). If G(L /K) = M(16), then {L) ~ {{2, a)).

Proof. Let H < G(L/K) be a nonabelian subgroup of order 8. Since
H = Dg, Qg we get tr, ,,u{(1) ~0 € W(L") from Proposition 12. M(16),
Qg AZ,, Dg AZ, are the only nonabelian groups of order 16 with abelian
subgroups of order 8 only. Apply Propositions 15, 16 in these cases. |

7. ON TRACE FORMS OF DEGREE < 31

We apply our results to the classification of quadratic forms of dimen-
sion < 31 which are trace forms of Galois extensions with prescribed
Galois group. In [21] we find a list of all groups of order < 31. We are not
able to handle all cases. By Corollary 1 we can assume that G has even
order. We do not discuss decomposable groups of order < 31 here. We
deduce from Proposition 2:

PrRopPOSITION 18. Let iy be a quadratic form of dimension 2m, m odd
over K with discriminant D. Let G be a group of order 2m. Then  is
G-realizable if and only if

1. y=m X <{2,2D) with D & K** and
2. the embedding problem (K(VD) /K, G) has a solution.

This covers forms of dimensions 6, 10, 14, 18, 22, 26, 30. Let us discuss
G = &, in more detail. Suppose char(K) # 3 and let L /K be a Galois
extension with G(L/K) = ©,. Then L is the splitting field of some
irreducible trinomial f(X) = X3 + aX + b € K[ X] with discriminant D
= —27b% — 4a® € L** — K*?, Suppose —3D ¢ K*?. Then ab # 0. Set

F(X,T) =X?-3(3DT? +1)X — 2(3DT? + 1) e K(T)[ X].
Then F(X,T) is irreducible and has discriminant D mod K(T)*?. We get

f(X) =(B3b)*Qa) 3 -F(a(3h) *X,(3%b)"!). Hence, f is a specialization
of F(X,T). We conclude:
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COROLLARY 7. Let K be a Hilbertian field with char(K) # 3, ¢ a
quadratic form of dimension 6 over K with discriminant D. Then  is
© ;realizable if D & K*? and 4 = 3 X (2,2D).

Hence, the solvability of the embedding problem (K(/D)/K, ) does
not provide any further restriction on .

Let us consider another example. Let K be a local field such that the
residue class field has characteristic # 3. Then any nonnormal extension
of degree 3 is tamely ramified. Hence &; is a Galois group over K iff K
does not contain the third roots of unity, i.e., iff —3 ¢ K*?. We conclude
that ¢ is & ,-realizable iff ¢y = 3 X (2, —6) and —3 & K*2

Let us now consider forms of dimension 12. There are five different
groups of order 12, two of which have a cyclic 2-Sylow subgroup, further,
Z, X Zg, Z, X S5, and 2A,. We only consider 2 ,.

PropPosITION 19. A quadratic form of dimension 12 over K is U ;-realiz-
able if and only if there is an irreducible polynomial f € K[ X] of degree 4
with Galois group U, and ¢ = 3 X (K[ X]/(f)). In particular, y = 3 X
({ —a,—b)) forsomea,b € K*.

Let K be a Hilbertian field with char(K) = 0. Then  is U ,-realizable iff
=3 X —a,—b)) forsomea,bec K*

Proof. Let L/K be a Galois extension with Galois group ?,. Let
F = K(a) be an intermediate field of L /K with [F: K]= 4. Then L is a
splitting field of the minimal polynomial of « over K. Further, (L) = 3 X
(F).FromLemmalweget (L) =3 X {{—a,—b))forsomea, b e K*
If K is Hilbertian apply [8, Theorem 1, and Theorem 3]. |

Let n = 20, 28. Then n = 4p for some prime p > 3. From Sylow theory
we get

LEMMA 3. Let G be a group of order 4p, p > 3 a prime. Then G has a
unique p-Sylow subgroup G,. Further, G is the semidirect product G, X, G,
of G, with a 2-Sylow subgroup G,, where a : G, — Aut(G,) is a homomor-
phism.

If p = 1 mod 4, then there are five types of groups, if p = 3 mod 4 then
there are four types of groups of order 4p. In both cases the dihedral group D,,
is the unique nonabelian group of order 4p with noncyclic 2-Sylow subgroup.

PROPOSITION 20.  Let p > 3 be a prime. The quadratic form i is D, ,-real-
izable iff there are elements a, b € K*, linearly independent mod K*? with

1. y=pXxX<{—a,—b)) and
2. (K(a, \/E)/K, D4p) has a solution.

There are 15 groups of order 24 (see [21]), three of which are abelian.
Further, six nonabelian groups are decomposable. There are the two
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semidirect products Z, X Z, and Z, X Dy, both having a unique 3-Sylow
subgroup. The dihedral group and the dicyclic group of order 24 both have
a unique 3-Sylow subgroup. Apply Proposition 2 in these cases. It remains
to consider SL,(F;) and &,.

PropPoSITION 21. Let q be a prime power with ¢ = +3 mod 8. Then the
quadratic form i is SL(F )-realizable iff ¢ = (q(q® — 1)/8) x ({ - 1,
—1, —t)) for somet € K* and SLz([Fq) is a Galois group over K.

Proof.  The 2-Sylow subgroup of SL,(F,) is a quaternion group of order
8 (see [11, Chap. 2, Theorem 8.3]). Let L /K be a Galois extension with
Galois group SL,(F,) and let F be the fix field of a 2-Sylow subgroup G,.
Then tr, (1) = =1, -1,¢)) for some t' € F* and (L) =
([L:K1/8) X ¢ for some Pfister form ¢ over K with ¢, = {({ — 1,
—1,¢')) (apply Proposition 12 and Corollary 2). By [3, 4.5.2] there is some
te K*with ¢y = {{ — 1, —-1,£)).

Since

15 <( _(1) _2)> - SL,(F,) = PSL,(F,) - 1

is a nonsplit extension we can apply Proposition 7. Then proceed as in the
proof of Proposition 12. i

Now let L /K be a Galois extension with Galois group &,. Since &,
has a dihedral group of order 8 as a 2-Sylow subgroup we get (L) = 3 X
=1, —a, —b)) for some a, b € K* (use Proposition 12, Lemma 1, and
[3, 4.5.2).

Consider a Galois extension L /K. Let G, be a 2-Sylow subgroup of its
Galois group. Suppose that L /L is noncyclic and its trace form is not
similar to a Pfister form. In general we do not get much information on
the trace form of L /K. If [L: K] = 8 mod 16 then G, must be Z, X Z,.
If G has order 24, then the classification of all these groups implies that G
has a normal subgroup of order 3 in this situation. Hence no problem arise
for n < 31. If G, has order 16, then G, = Qg AZ,, G, = Oy, OF G, =
M(16). In the latter case G, has a normal complement in G (see [13,
Wong'’s theorem])).

8. THE TRACE FORM OF A CYCLOTOMIC EXTENSION
AND ITS MAXIMAL REAL SUBFIELD

Next we apply our results to determine the trace form of a cyclotomic
extension K, /Q and the trace form of its maximal real subfield K. The
trace form of a cyclotomic extension has been computed in [4, pp. 47-49].
We are able to give a shorter proof.
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PrRoPOSITION 22. Letn € N,n # 2mod 4. Let {, be a primitive nth root
of unity. Set K, == Q(¢,) and let ®,(X) be the minimal polynomial of {,
over Q. We get

1. (K,> ~0,ifn=0mod 4 and if n has at least three distinct prime
divisors,

2. (K,)~<{p,-1)e<{q, -1, ifn=p'q¢°=1mod2 withr,s > 1,
3. (K) ~{(=D"Ye(p -1, ifn=p =1mod2 r=1

Proof. Case 1.n =2'> 4. Then ¢(n) = 2""Yand & (X) = X% "+ 1.
Hence, (K,) ~ 0 by [4, 111,4.1].
Case 2.n =p’, p #2,r > 1. Then K,/Q is a subextension of K, /Q
with [K, : K,] = p’~* = 1 mod 2. Hence by Proposition 1 (K,) =p" ! X
<K >. Now XP — 1 =(X - l)<I> (X) gives

(p) ~(Q[X]/(X7 — 1) =(Q[X]/(X 1)) L (K,) = (1) L(K,).

Thus (Kp> ~{p, —l>.

Case 3. n=pi - pi,e,...,e, =21 Then K, KL1 ---Kpf, and

K, N1l K,y = Q gives (K, > = ®_ KK e, If n is even, then
(K,)> ~ 0 by case (1). If t > 3, then <Kn> € I'(Q) by Proposition 4. We
further know sign (K,> = 0. 1

Next we consider the trace form of K /Q.

PROPOSITION 23. Set m == ¢(n)/2 = 2°m, with m, odd. Let t be the
number of odd prime divisors of n. Then the trace form of the maximal real
subfield K| inside K, over Q is given as follows:

1. (K;) =(K;)=(1) and
(K/) =(2,10) L (2""* =2) x (1), ifn=2'>8.
2. Letn=4p", p#2,r = 1. Then
(K'Y =m X (2,2p), ifp = 3mod 4.
(K> ={p) L (m—1) x(1), ifp=1mod4.
3. Letn=2p",p+21>3,r>1 Then

(K;>=<1,5p,p,p,5p) L (m—6)x<(1), ifp=3mod4andl > 3.
(Ky> =<1,5,p,5p) L (m —4) x 1), else.
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4. Letn =4p'q® withp + qodd and r,s > 1. Then

(K}Y={1,p,p,p,q,pq> L (m—6) x{1), ifq#p=3mod4.
(K> ={1,p,q,pqg) L (m—4) x (1), else.

5. Letn=0mod8,t>2;, orn=4mod8, t>3; orn=1mod 2,
t>4,orn=1mod 2, t=3andp =1mod4 forall p|n. Then

(K!) =m x (1).
6. Letn = pitp52ps? odd and p; = 3 mod 4. Then
<K:> = (1, p1Ps, P2P3, P1P3) L (m —4) X (1),
if py =p, =p; =3 mod4.
(K> =(1,p1,pp, PPy L (m —4) X (1),
ifpy =p, #p; =3 mod 4.
(K> =<1,1,1,p;) ® {p,,ps) L (m — 8) X (1),
if py # p, =p; =3 mod 4.
7. Letn=p'q’r,s>1 p+qodd. Then

(Ky>={1,p,q,pg) L (m—4) x (1), ifp =qg=1mod4.

(KI) =my x<{2,2pq, ifp=q=3mod4.

(Ki) =(2,2q) L (m —2) x{1), ifp #q = 1mod4,
g = 1 mod 8.

(K;)={1,q,p,p) L (m—4) x<1), ifp #q=1mod4,
g = 5mod 8.

8. Letn=p', r>1o0dd. Then

(K> =m x (1), if p = 3mod 4.
(Kf)=42,2p) L (m—2) x<(1), ifp=1mod4.

Proof. Let G, = G(K,/Q) and G, = G(K;/Q). We know dim({K )
=[K} :Q] =sign{K}') = ¢(n)/2. Let n=2psr.. . pt e, ....,e,>1,1
> 0 be the prime decomposition of n. By Proposition 4 we have to study
the 2-rank of G,© to get more information on (K ). We use the following
facts from basic algebra and from number theory.
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Fact 1,
t, if nis odd;
k,(G,) = {1+ 1, if n =4 mod 8;
t+ 2, if n = 0mod 8.

Fact 1. rk(G,) — 1 < 1k,(G,) < rk,(G,) and rk,(G,") = rk,(G,) —
lifandonly if G, = Z /27 X H for some abelian group H if and only if n
is even or n has a prime divisor p = 3 mod 4; (rk,(G) is the minimal
number of a set of generators of the 2-Sylowgroup of G).

Fact 1. Let p be a prime divisor of . Then \/(-1)""""?p e K,

If n is even, then y/p € K. If 8| n, then V5 € K.

Fact 1V. We further use Proposition 8. Let K/Q be a cyclic extension
of degree 4. Then the local Hasse-invariant HP<K> is trivial for primes
p = 1 mod 4 and for odd primes p that are unramified in K/Q.

Let K/ (2) be the maximal 2-extension inside K. Let m = ¢(n)/2 =
2°m, with m, odd.

Case 1. n =2'> 2. Then (K; ) = (K;» = (1). Let [ > 3. Then G
has a cyclic 2-Sylowgroup. Since K (2) is contained in the cyclic extension
K; (2) and [K;,(2): K (2)] = 2, we can apply Corollary 4. By Fact 111 we
get

(K =(2,10) L (m — 2) x (1).

Case 2.n =4p", r> 1, p # 2. Then rk,(G,) = 1 and dis(K} /Q) = p
by Fact IIl. If p=3 mod 4, then [K} :Q] =2 mod 4. Now apply
Proposition 18. If p = 1 mod 8 apply Corollary 3. Now consider p =5
mod 8. Only the primes 2 and p are ramified in K, (see [16, IV, Section 1,
Theorem 1]). By Fact IV all local Hasse-invariants at odd primes are
trivial. Now Hilbert reciprocity gives

(K =<p> L (m—1) x{1).

Case 3 and 4. n =2'p", 1 >3, p +2,0r n = 4p’q® with p, g odd and
r,s > 1. Then rk,(G}) = 2. Hence, dis(K;} /@) = 1. Now (I11) gives V5,
Vp € K (resp. y/p, Vg € K). Now apply Proposition 6.

Case 5. Then Facts I, 1l and Proposition 4 give

(K'Y =m x (1),

Case 6. Then dis(K}/Q) = 1, since rk,(G") =2. Let p, #p,=3
mod 4. We get /p; , y/p,ps € K, by (111). Proposition 6 gives w,( K ) =
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(p1, P, p3) € Br(Q). Extending this approach we get

p—1 p,—1 ps—1
2 (P2 p3) + 2 (p1p3) + 2

p1—1p,—1ps—
2 2 2

wy (K'Y =

(p1,P2)

1
(p1p2p3, —1) € Br(Q).

Case 7. 1f p = g = 1 mod 4, then rk,(G") = 2 and \/p, /g € K} by
Facts I-111. We get w,{K}) = (p,q) by Proposition 6. Let p=qg =
3 mod 4. Then y/pg € K; and ord(G;") = 2 mod 4. Now apply Proposition
18. Next consider p # g = 1 mod 4. Then rk,(G/) = 1 and /g € K} If
g = 1 mod 8, then

(Kp) = (2,2q) L (m —2) x (1)

by Corollary 4. Let ¢ = 5 mod 8. K;1(2)/Q is a cyclic extension of degree 4
and Q(y/q) is its unique nontrivial subfield. Then p and ¢ are the only
ramified primes in K/ (2)/Q. We get H{K,) =1 if [ #2, p by (IV).
Since ¢ = 5 mod 8, the prime 2 does not split in the quadratic extension
K (2)/Q. Further, 2 is unramified. Thus Proposition 4(2)(c) of [6] gives
Hy K, ) = —1=HXK,) by Hilbert reciprocity.

Case 8. If p = 3 mod 4 then m is odd. If p = 1 mod 4 then K, /Q is
contained in the cyclic extension K,/Q of degree 2[K, :Q]. Now use
Corollary 4. |1
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