# On the Computation of the Trace Form of Some Galois Extensions

#### Christof Drees

Mathematisches Institut, Universität Münster, Einsteinstrasse 62, D-48149 Münster, metadata, citation and similar papers at core.ac.uk

Fb Mathematik, Universität-Gesamthochschule, D-33095 Paderborn, Germany

#### and

# Martin Krüskemper<sup>†</sup>

Mathematisches Institut, Universität Münster, Einsteinstrasse 62, D-48149 Münster, Germany

Communicated by Walter Feit

Received February 15, 1996

We investigate the trace form  ${\rm tr}_{L/K}\colon L\to K\colon x\mapsto {\rm tr}_{L/K}x^2$  of a finite Galois extension L/K. In particular, we study 2-extensions of degree  $\leq 16$ . Using some reduction theorems, these results yield a classification of nearly all trace forms of Galois extensions of degree  $\leq 31$ . Finally, we study the trace form of a cyclotomic extension and of its maximal real subfield. © 1997 Academic Press

#### 1. INTRODUCTION AND NOTATION

If L/K is a finite, separable field extension we can associate to it the trace form  $\operatorname{trace}_{L/K}(x^2)$ . We want to investigate the trace form if L/K is a Galois extension with given Galois group. We will consider Galois extensions of degree  $\leq 31$  of arbitrary fields of characteristic  $\neq 2$ . We further compute the trace form of cyclotomic extensions and of their maximal real subfields.

<sup>\*</sup> E-mail: martine@uni-paderborn.de.

<sup>&</sup>lt;sup>‡</sup>E-mail: kruskem@uni-muenster.de

Let us fix some notations which will be used throughout this paper. Let K be a field of characteristic  $\neq 2$ . As usual,  $K^*$  denotes the multiplicative group of K and  $K^{*2}$  denotes the set of all squares of  $K^*$ . Then W(K) denotes the Witt ring of K and  $I^r(K)$ ,  $r \geq 1$ , is the rth power of the fundamental ideal I(K) of W(K) (for a definition see [18]). Let  $a_1,\ldots,a_l \in K^*$ . Then  $\langle\langle a_1,\ldots,a_l\rangle\rangle=\otimes_{i=1}^l\langle 1,-a_i\rangle$  denotes the l-fold Pfister form. For quadratic forms  $\psi,\psi'$  we write  $\psi\simeq\psi'$  ( $\psi\sim\psi'$ ) if  $\psi$  and  $\psi'$  are isometric (Witt equivalent). For  $m\in\mathbb{N}$  let  $m\times\psi$  be the m-fold orthogonal sum of  $\psi$ . Let L/K be a field extension. If  $\psi$  is a quadratic form over K, then  $\psi_L$  denotes the lifting of  $\psi$ . Let  $\psi$  be a form over L. Then  $\mathrm{tr}_{L/K}\psi$  denotes the Scharlau transfer of  $\psi$  with respect to L/K. We write  $\langle L\rangle\simeq\mathrm{tr}_{L/K}\langle 1\rangle$  for the trace form. Let  $\lambda\in L^*$ . Then  $\mathrm{tr}_{L/K}\langle \lambda\rangle$  is called scaled trace form. dis(L/K) is the discriminant of the trace form. The Brauer group of K is denoted  $\mathrm{Br}(K)$ . Let  $a,b\in K^*$ . Then (a,b) denotes the generalized quaternion algebra generated over K by i, j and satisfying  $i^2=a$ ,  $j^2=b$ , ij=-ji. The Hasse invariant  $w_2\psi$  is defined by

$$w_2\psi := \prod_{1 \le i < j \le n} (a_i, a_j) \in \operatorname{Br}(K),$$

where  $\psi \simeq \langle a_1, \dots, a_n \rangle$  is a diagonalization of  $\psi$ .

Let L/K be a Galois extension then G(L/K) denotes its Galois group. Let  $G \to G(L/K)$  be a surjective group homomorphism. Then (L/K,G) denotes the associated embedding problem.

#### 2. PRELIMINARIES AND REDUCTION THEOREMS

First we briefly want to summarize some known results on computing trace forms of Galois extensions.

PROPOSITION 1. Let L/K be a Galois extension of degree  $2^{l}m$ , m odd and  $l \ge 0$ .

- 1. Then  $\langle L \rangle \simeq [L:K] \times \langle 1 \rangle$ , if the degree of L/K is odd.
- 2. Let [L:K] be even. Then G(L/K) contains a cyclic 2-Sylow subgroup if and only if  $\operatorname{dis}(L/K) \notin K^{*2}$ . In this case G(L/K) has a normal subgroup H of order m and for the fixed field  $F := L^H$  of H we have  $\langle L \rangle \simeq m \times \langle F \rangle$  and F/K is a cyclic extension of degree  $2^l$ . Further, there exists a unique quadratic subextension  $K(\sqrt{a}) \subset L$  and  $\operatorname{dis}(L/K) \equiv a \mod K^{*2}$ . If  $2^l m \equiv 0 \mod 4$  then  $\operatorname{dis}(L/K)$  is a sum of two squares.
- 3. If  $L = K(\sqrt{a_1}, \dots, \sqrt{a_l})$  has degree  $2^l$  over K then  $\langle L \rangle \simeq \langle 2^l \rangle \otimes \langle \langle -a_1, \dots, -a_l \rangle \rangle$ .

4. The signature values of the trace form of a Galois extension of degree n are either 0 or n.

For a proof see [4, I.3.4], or [10, Lemma 2].

DEFINITION 1. Let  $\psi$  be a quadratic form over K and let G be a finite group. Then  $\psi$  is called G-realizable if and only if there is a Galois extension L/K with Galois group G and trace form isometric to  $\psi$ .

COROLLARY 1. Let  $\psi$  be a quadratic form over K.

- 1. If G is a group of odd order, then  $\psi$  is G-realizable if and only if  $\psi \simeq \operatorname{ord}(G) \times \langle 1 \rangle$  and G is a Galois group over K.
- 2.  $\psi$  is  $(\mathbb{Z}_2)^l$ -realizable iff there exist elements  $a_1, \ldots, a_l \in K^*$ , linearly independent mod  $K^{*2}$  with  $\psi \simeq \langle 2^l \rangle \otimes \langle \langle -a_1, \ldots, -a_l \rangle \rangle$ .

From now on we can assume that  $\psi$  has even dimension  $\geq 4$ . Further, the preceding proposition reduces our approach to the computation of trace forms of cyclic extensions of degree  $2^l$  if the field extension has nonsquare discriminant. Part (2) of Proposition 1 generalizes as follows.

PROPOSITION 2. Let G be a finite group of even order  $2^lm$ , m odd, and let  $G_2$  be a 2-Sylow subgroup of G. Suppose G contains a normal subgroup of order m. Let  $\psi$  be a quadratic form of dimension  $2^lm$  over K. Then  $\psi$  is G-realizable if and only if there exists a Galois extension F/K with

- 1.  $G(F/K) \simeq G_2$ ,
- 2.  $\psi \simeq m \times \langle F \rangle$ ,
- 3. the embedding problem (F/K, G) has a solution.

This result applies for example for abelian groups, groups with cyclic 2-Sylow subgroups, groups of order 4p,  $p \geq 5$  a prime, or if a 2-Sylow subgroup of G is the modular group  $M(2^l)$ ,  $l \geq 4$ . The last assertion is Wong's theorem (see [13, Satz IV.3.5]). Next we consider decomposable groups.

PROPOSITION 3. Let  $G_1$ ,  $G_2$  be finite groups. Then the form  $\psi$  is  $G_1 \times G_2$ -realizable over K iff there are Galois extensions  $L_1/K$ ,  $L_2/K$  with  $L_1 \cap L_2 = K$ ,  $G(L_i/K) \simeq G_i$ , i = 1, 2, and  $\psi \simeq \langle L_1 \rangle \otimes \langle L_2 \rangle$ .

$$\textit{Proof.} \quad L_1 \cap L_2 = K \text{ gives } \langle L_1 L_2 \rangle \simeq \langle L_1 \otimes L_2 \rangle \simeq \langle L_1 \rangle \otimes \langle L_2 \rangle. \quad \blacksquare$$

The next lemma and its application appeared in [3, 4.3.1, 4.4.1].

- LEMMA 1. Let K be a field and  $\psi$  an n-dimensional form over K. Let L/K be a field extension of odd degree:
- 1. If  $n = 2^l$  and  $\psi$  is a l-fold Pfister form over L then  $\psi$  is a l-fold Pfister form over K.

2. If there exists some  $\varphi$  over L such that  $\psi_L \simeq m \times \varphi$  for some odd m, then there exists some  $\varphi'$  over K such that  $\psi \simeq m \times \varphi'$ .

COROLLARY 2. Let L/K be a Galois extension of degree  $2^lm$ , m odd. Then  $\langle L \rangle$  is divisible by m; that is, there exists some  $\psi$  over K of dimension  $2^l$  such that  $\langle L \rangle \simeq m \times \psi$ . Let  $F \subset L$  be a fixed field of a 2-Sylow subgroup of G(L/K). If  $\operatorname{tr}_{L/F}\langle 1 \rangle$  is a Pfister form then so is  $\psi$ . In particular,  $\psi$  is similar to a Pfister form if a 2-Sylow subgroup is elementary abelian.

We can get some information on the invariants of the trace form from the 2-rank of the Galois group.

DEFINITION 2. Let G be a finite group. Then the 2-rank  $\mathrm{rk}_2(G)$  is the maximal number r such that G contains an abelian subgroup of exponent 2 and order  $2^r$ .

We know, for example,  $\mathrm{rk}_2(G)=0$  iff G has odd order. Further,  $\mathrm{rk}_2(G)=1$  iff the 2-Sylow subgroups of G are cyclic or generalized quaternion groups.

PROPOSITION 4. Let L/K be a Galois extension with Galois group G. Then  $\langle L \rangle \in I^r(K)$ , where  $r = \operatorname{rk}_2(G)$ ; in particular,  $\operatorname{dis}(L/K) \in K^{*2}$ , if  $\operatorname{rk}_2(G) \geq 2$  and  $w_2 \langle L \rangle = 0 \in \operatorname{Br}(K)$ , if  $\operatorname{rk}_2(G) \geq 3$ .

*Proof* (Compare [15, 5.25]). Let F be the fixed field of a subgroup  $(\mathbb{Z}/2\mathbb{Z})^r \simeq H \subset G(L/K)$ . Then  $\varphi := \operatorname{tr}_{L/F} \langle 1 \rangle$  is in  $I^r(F)$ . By [2, Theorem 3.3]  $\langle L \rangle = \operatorname{tr}_{F/K} \varphi \in I^r(K)$ .

Let  $W_{\rm red}(K) = W(K)/W_{\rm tor}(K)$  be the reduced Witt ring, where  $W_{\rm tor}(K)$  denotes the torsion part of W(K). Recall that elements in  $W_{\rm red}(K)$  are uniquely determined by its signature values. In [19, Section 5, Theorem 2] Scheiderer showed:

PROPOSITION 5. Let L/K be a Galois extension with Galois group G. If  $\mathrm{rk}_2(G)=s$  then  $\langle L\rangle=(n/2^s)\times\psi$  in  $W_{\mathrm{red}}(K)$ , where  $\psi$  is an s-fold Pfister form. In particular, if K is Pythagorean (that is, any sum of squares in K is a square in K) then any trace form of a Galois extension is a multiple of some Pfister form, since W(K) is either  $\mathbb{Z}/2\mathbb{Z}$  or is torsion-free when K is Pythagorean.

Let us now consider abelian groups of 2-rank 2.

PROPOSITION 6. Let L/K be an abelian 2-extension with  $\operatorname{rk}_2(G(L/K))$  = 2. Then there are elements  $a, b \in K^*$  such that  $K(\sqrt{a}, \sqrt{b})/K$  is a biquadratic extension contained in L/K and such that  $(a, -1) = 0 \in \operatorname{Br}(K)$  if  $[L:K] \neq 4$ . We get

1. 
$$w_2\langle L \rangle = (a, b) + (ab, -1) \in Br(K)$$
 if  $[L:K] = 4$  and

2. 
$$w_2\langle L\rangle = (a,b) \in Br(K)$$
, if  $[L:K] \ge 8$ .

*Proof.* (2) There are cyclic subextensions  $K_1/K$ ,  $K_2/K$  of L/K with  $K_1 \cap K_2 = K$ ,  $L = K_1K_2$  and  $[K_1 : K] \ge 4$ . Let  $d_i = \operatorname{dis}(K_i/K)$ , i = 1, 2. Then  $(d_1, -1) = 0 \in \operatorname{Br}(K)$ . If  $(d_2, -1) = 0$  we get  $w_2 \langle L \rangle = (d_1, (-1)^{[K_2 : K]/2} d_2) = (d_1, d_2) \in \operatorname{Br}(K)$ . Since  $K(\sqrt{a}, \sqrt{b}) = K(\sqrt{d_1}, \sqrt{d_2})$ , the result follows from (1). If  $(d_2, -1) = (d_1d_2, -1) \ne 0 \in \operatorname{Br}(K)$ , then  $K_2/K$  is a quadratic extension. Then  $a \equiv d_1 \mod K^{*2}$  and we can set  $K_2 = K(\sqrt{b})$ . ■

*Remark* 1. Proposition 1 and Corollary 2 allow us to determine the trace form of any Galois extension of degree  $2^l m$ , m odd and  $l \le 2$ . If we have a cyclic 2-Sylow subgroup apply Proposition 1, otherwise Corollary 2.

We further need the following fact on Galois extensions.

PROPOSITION 7. Let L/K be a Galois extension and let  $\alpha \in L^* - L^{*2}$  be an element of L/K such that  $L(\sqrt{\alpha})/K$  is a Galois extension and

$$1 \to G\left(L\left(\sqrt{\alpha}\right)/L\right) \to G\left(L\left(\sqrt{\alpha}\right)/K\right) \to G(L/K) \to 1$$

is a nonsplit extension. Then  $L(\sqrt{t\alpha})/K$  is a Galois extension with Galois group  $G(L(\sqrt{\alpha})/K) \simeq G(L(\sqrt{t\alpha})/K)$  for any  $t \in K^*$ .

*Proof.* Assume  $t \notin L^{*2}$ . Since the group extension does not split  $L(\sqrt{\alpha}, \sqrt{t})/K$  is a Galois extension with Galois group isomorphic to  $G(L(\sqrt{\alpha})/K) \times G(K(\sqrt{t})/K)$ . Let  $\sigma \in G(L(\sqrt{\alpha})/L)$ ,  $\tau \in G(K(\sqrt{t})/K)$  be elements of order 2. Choose a common prolongation  $\rho \in G(L(\sqrt{\alpha}, \sqrt{t})/K)$  of  $\sigma$  and  $\tau$ . Then  $L(\sqrt{t\alpha})$  is the fix field of  $\langle \rho \rangle$  and  $\langle \rho \rangle$  is a normal subgroup of  $G(L(\sqrt{\alpha}, \sqrt{t})/K)$  since  $\rho$  corresponds to  $(\sigma, \tau)$ .

#### 3. TRACE FORMS OF DEGREE 4

By Corollary 1 it remains to consider the cyclic group of order 4.

PROPOSITION 8. 1. Let  $D \in K^* - K^{*2}$ . Then  $K(\sqrt{D})/K$  is contained in a cyclic field extension of degree 4 if and only if D is a sum of two squares in K. Let  $D = a^2 + b^2$ ,  $a, b \in K$ . Then  $K(\sqrt{q(D + a\sqrt{D})})$ ,  $q \in K^*$  is a parametrization of all cyclic extensions of degree 4 with discriminant D. We get

$$\left\langle K\left(\sqrt{q\left(D+a\sqrt{D}\right)}\right)\right\rangle \simeq \langle 1,D,q,q\rangle.$$

2. Let  $\psi$  be a quadratic form of dimension 4 over K with discriminant  $D \in K^*$ . Then  $\psi$  is a cyclic trace form if and only if  $D = a^2 + b^2 \notin K^{*2}$  and  $\psi \simeq \langle 1, D, q, q \rangle$  for some  $a, b, q \in K^*$ .

- *Proof.* (1) Set  $F:=K(\sqrt{D})$ . Let  $F(\sqrt{\alpha})/K$ ,  $\alpha\in F^*$  be a cyclic extension of degree 4. Then  $N_{F/K}(D+a\sqrt{D})=Db^2\equiv \mathrm{dis}(F(\sqrt{\alpha})/K)\equiv N_{F/K}(\alpha)\equiv D \bmod K^{*2}$ . Using Hilbert 90 we get  $\alpha^{-1}(D+a\sqrt{D})x=\beta\sigma(\beta)^{-1}$  for some  $x\in K^*$ ,  $\beta\in F^*$  with  $\langle\sigma\rangle=G(F/K)$ . Set  $q=N_{F/K}(\beta)\cdot x$ . We easily obtain, that  $K(\sqrt{q(D+a\sqrt{D})})/K$  is a cyclic extension of degree 4.
- (2) Let  $L = K(\sqrt{q(D + a\sqrt{D})})$  with  $a, b, q \in K^*$  and  $D = a^2 + b^2$ . Since  $\langle D, D \rangle \simeq \langle 1, 1 \rangle$  we get  $\langle L \rangle \simeq \langle 1, D, q, q \rangle$ .

#### 4. TRACE FORMS OF DEGREE 8

Up to isomorphism there are three abelian and two nonabelian groups of order 8. In some cases we apply a formula of Serre to determine the Hasse invariant of the trace form. To do this we first have to compute some group extensions.

LEMMA 2. Consider the restriction map

res: 
$$H^2(\mathfrak{S}_d, \mathbb{Z}_2) \to H^2(G, \mathbb{Z}_2)$$
,

where G is a subgroup of the symmetric group  $\mathfrak{S}_d$  of degree  $d=2^l\geq 4$ .

- 1. Let  $\sigma$  be a cycle of length d and set  $G = \langle \sigma \rangle$ .
  - (a) Then  $\operatorname{res}(s_4)$  is the unique nonzero element of  $H^2(G, \mathbb{Z}_2)$ . Hence,  $\operatorname{res}(s_4)$  corresponds to the exact sequence

$$1 \to \mathbb{Z}_2 \to \mathbb{Z}_8 \to \mathbb{Z}_4 \to 1.$$

- (b) The restriction map is trivial for all  $d = 2^l \ge 8$ .
- 2. Let  $G=K(\mathfrak{A}_4)\simeq \mathbb{Z}_2\times \mathbb{Z}_2$  be the commutator subgroup of the alternating group  $\mathfrak{A}_4$ . Then  $\operatorname{res}(s_4)$  corresponds to the quaternion group extension

$$1 \to \mathbb{Z}_2 \to Q_8 \to \mathbb{Z}_2 \times \mathbb{Z}_2 \to 1.$$

- 3. If  $G \simeq Q_8$  is the quaternion group of order 8, then  $res(s_8) = 0$ .
- 4. Let  $G \simeq D_{2n}$  be a dihedral group of order  $2n = 2^l \ge 8$ . Then  $\operatorname{res}(s_{2n}) = 0$ .
- *Proof.* Let  $\pi: \widetilde{\mathfrak{S}}_d \to \mathfrak{S}_d$  be the canonical projection. Let  $\widetilde{G}$  be the preimage of G in  $\widetilde{\mathfrak{S}}_d$  under  $\pi$ . If  $g \in \mathfrak{S}_d$ , then  $\widetilde{g} \in \widetilde{\mathfrak{S}}_d$  denotes an arbitrary preimage of g.

- (1) We know  $\sigma^{d/2} = \tau_1 \cdots \tau_{d/2}$  with pairwise disjoint transpositions  $\tau_i \in \mathfrak{S}_d$ . Since  $\tilde{\tau}_i \tilde{\tau}_j$  has order 4 for  $i \neq j$ , we get  $\tilde{\tau}_i \tilde{\tau}_j = \omega \tilde{\tau}_j \tilde{\tau}_i$ . This gives  $(\tilde{\tau}_1 \cdots \tilde{\tau}_{d/2})^2 = \omega^{d/4}$ . Now the assertion follows from  $\operatorname{ord}(\tilde{\sigma}^{d/2}) = \operatorname{ord}(\tilde{\tau}_1 \cdots \tilde{\tau}_{d/2})$  (see [6, Lemma 3]).
  - (2) Follows immediately from the definition (see also [20, Exemple]).
- (4) Let  $\sigma = (1, ..., n)(n + 1, ..., 2n)$  and  $\tau = (1, 2n)(2, 2n 1) \cdots (n, n + 1)$ . Then

$$D_{2n} \simeq \langle \sigma, \tau \rangle \simeq \langle \sigma, \tau | \sigma^n = \tau^2 = \mathrm{id}, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle.$$

As in (1) we get  $\tilde{\sigma}^n = \tilde{\tau}^2 = 1$ . Let  $\tilde{\sigma}_1, \tilde{\sigma}_2 \in \widetilde{D_{2n}}$  with  $\pi(\tilde{\sigma}_1) = (1, \dots, n), \pi(\tilde{\sigma}_2) = (n+1, \dots, 2n)$ . Set  $\tilde{\sigma} = \tilde{\sigma}_1 \tilde{\sigma}_2$ . Then  $\tilde{\tau} \tilde{\sigma}_1 \tilde{\tau}^{-1} = \lambda \tilde{\sigma}_2^{-1}$  for some  $\lambda \in \{1, \omega\}$ . Hence  $\tilde{\tau} \tilde{\sigma} \tilde{\tau}^{-1} = \lambda \tilde{\sigma}_2^{-1} \tilde{\tau} \tilde{\sigma}_2 \tilde{\tau}^{-1} = \tilde{\sigma}^{-1}$ .

The proof of (3) is left to the reader.

Now we apply Serre's cohomological trace formula [20].

COROLLARY 3. Let L/K be a Galois extension with Galois group G and dis(L/K) = D.

1. If G is cyclic of order  $2^l \geq 8$ , then

$$w_2\langle L\rangle = (2, D) \in Br(K).$$

2. If  $G \simeq Q_8$ ,  $D_{2n}$ ,  $n = 2^l \ge 4$ , then

$$D \in K^{*2}$$
,  $w_2 \langle L \rangle = 0$ .

Hence,  $\langle L \rangle \in I^3(K)$ .

- 3. If a 2-Sylow subgroup of G(L/K) is a generalized quaternion group then  $\langle L \rangle \in I^3(K)$ .
- *Proof.* (1) and (2) follow immediately from Lemma 2 and Proposition 1 since  $Q_8$  and  $D_{2n}$  are not cyclic. Later on we give direct proofs of these results (see [6, Lemma 3]).
- (3) G(L/K) contains a subgroup  $H \simeq Q_8$ . Let F be the fixed field of H. Then  $\operatorname{tr}_{L/F}\langle 1 \rangle \in I^3(F)$  by (2). Now proceed as in the proof of Proposition 4.

Next we consider trace forms of cyclic extensions of degree 8.

PROPOSITION 9. Let L/K be a cyclic extension of degree 4 with  $\operatorname{dis}(L/K) = D$ . Set  $L = K(\sqrt{q(D + a\sqrt{D})})$  with  $a, b, q \in K^*$ ,  $D = a^2 + b^2$ . Then the following conditions are equivalent:

- 1. L/K is contained in a cyclic extension of degree 8.
- 2.  $w_2 \langle L \rangle = (2, D) \in Br(K)$ .

- 3.  $(2, D) + (q, -1) = 0 \in Br(K)$ .
- 4. -1 is a norm of L/K.
- 5.  $\langle L \rangle \simeq \langle 2, 2D, 1, 1 \rangle$ .

*Proof.* The equivalence of (2), (3), and (5) is a consequence of Proposition 8, since a trace form of dimension 4 represents 1. The equivalence of (1) and (4) is well known (see [1]). We give three different proofs of the equivalence of (1) and (3). We want to point out that this result can be proved with different methods. We give a proof which uses Serre's formula, one using the theory of central simple algebras and one by direct computation.

- 1. The first proof is based on Serre's cohomological trace formula. This gives  $e^*(s_4) = \inf(\operatorname{res}(s_4)) = (2, D) + w_2 \langle L \rangle$ . By Lemma 2(1)(a) this is the obstruction to the embedding problem  $(L/K, \mathbb{Z}_8)$ . Hence, (1) and (2) are equivalent.
- 2. (3)  $\Leftrightarrow$  (4) Let  $L = K(\sqrt{q(D+a\sqrt{D})})$ . Let L/K be a cyclic extension of degree 4. Set  $F = K(\sqrt{D})$  and  $\delta = D + a\sqrt{D}$ . Then  $N_{F/K}((a-\sqrt{D})b^{-1}) = -1$ . Let

$$\psi = \langle \langle (a - \sqrt{D})b^{-1}, q\delta \rangle \rangle.$$

Now we determine the Hasse invariant of  $\operatorname{tr}_{F/K}\psi$ . We get  $w_2(\operatorname{tr}_{F/K}\psi)=(2,D)+(q,-1)$  (note that  $(D,ab)=(D,2(a+b)^2-D)=(D,2)\in\operatorname{Br}(K)$ ). On the other hand, we know [2, Satz 4.18]

$$w_2 \operatorname{tr}_{F/K} \psi = \operatorname{cor}_{F/K} ((a - \sqrt{D})b^{-1}, q\delta))$$
  
=  $\operatorname{cor}_{F/K} [L, \bar{}, (a - \sqrt{D})b^{-1}] = [L, \bar{}, -1].$ 

Now (2, D) + (q, -1) = 0 if and only if the cyclic algebra  $[L, ^-, -1]$  splits if and only if -1 is a norm of L/K. (For notations see [18, 8.12.3, 8.12.6].)

3. Kiming [14] proved the equivalence of (1) and (3) by an explicit computation of the obstruction. We follow his ideas and give a direct proof of this result. Let L/K be a cyclic extension of degree 4 with discriminant D. Set

$$\delta := D + a\sqrt{D}$$
,  $F := K(\sqrt{D})$ .

Let  $\langle \sigma \rangle = G(L/K)$ , where  $\sigma$  is the automorphism given by  $\sigma(\sqrt{q\delta}) = qb\sqrt{D}\sqrt{q\delta}^{-1}$ .

(4)  $\Rightarrow$  (3) Let  $\alpha$ ,  $\beta \in F$  with  $q\delta = \alpha^2 + \beta^2$ . Then  $N_{F/K}((a - \sqrt{D})b^{-1}) = -1$ . By the assumption there is some  $\gamma \in F$  with

$$\left(\frac{a-\sqrt{D}}{b}\frac{\gamma}{\sigma(\gamma)},q\delta\right)=0\in\mathrm{Br}(F).$$

Hence, the Pfister form  $\psi = \langle \langle (a - \sqrt{D})b^{-1}\gamma\sigma(\gamma), q\delta \rangle \rangle$  splits. Thus  $\operatorname{tr}_{F/K}\psi \sim 0 \in W(K)$ , which gives  $w_2(\operatorname{tr}_{F/K}\psi) = (2, D) + (q, -1) = 0$ .

 $(3) \Rightarrow (4)$  Since

$$\delta = \left(\frac{a+b}{2} + \frac{1}{2}\sqrt{D}\right)^2 + \left(\frac{a-b}{2} + \frac{1}{2}\sqrt{D}\right)^2 \tag{1}$$

and  $(q, -1) = (q, -1) + (2, D) = 0 \in Br(F)$ , there are some  $\alpha, \beta \in F$  with

$$q\delta = \alpha^2 + \beta^2. \tag{2}$$

Now set

$$\Delta \coloneqq q\delta + \alpha\sqrt{q\delta} \in L, \qquad C \coloneqq \frac{\sigma^2(\Delta)}{\beta\sqrt{q\delta}} = \frac{\sigma^2(\Delta)}{\sqrt{N_{L/F}(\Delta)}} = -\frac{\alpha - \sqrt{q\delta}}{\beta},$$

$$A \coloneqq 1 + \frac{C}{\sigma(C)}.$$

Then  $C^2 = \sigma^2(\Delta)\Delta^{-1}$ ,  $C\sigma^2(C) = -1 = \sigma(C)\sigma^3(C)$ , and  $\Delta = -\beta\sqrt{q\delta} \cdot \sigma^2(C) = -\beta\sqrt{q\delta}C^{-1}$ .

Suppose  $C = -\sigma(C)$ . We get  $\sigma^2(C) = C$ , which contradicts  $C = -(\alpha - \sqrt{q\delta})\beta^{-1} \notin F$ . Thus  $A \neq 0$ . From

$$0 \neq \frac{A\sigma(A)}{C} = \left(\frac{1}{C} + \frac{1}{\sigma(C)}\right) \left(1 + \frac{\sigma(C)}{\sigma^2(C)}\right) = -\operatorname{tr}_{L/K}(C) \in K,$$

we conclude  $N_{L/K}(A) = -(\operatorname{tr}_{L/K}(C))^2$ .

Claim.  $(2, D) + (q, -1) = 0 \in Br(K)$  implies

$$\operatorname{tr}_{L/K}(C) = -2\left(\frac{\alpha}{\beta} + \frac{\sigma(\alpha)}{\sigma(\beta)}\right) \in N_{F/K}(F^*).$$

*Proof.* From (1) and (2) we compute elements  $x, y \in K$  with  $q = (1 + x^2)(y^2 + Dz^2)$ . We get

$$\begin{aligned} \left(\operatorname{tr}_{L/K}(C), D\right) &= (2, D) + \left(\operatorname{tr}_{F/K}(\alpha\sigma(\beta)), D\right) \\ &= (q, -1) + \left(\operatorname{tr}_{F/K}(\alpha\sigma(\beta)), D\right) \\ &= \left(y^2 + Dz^2, -1\right) + \left(\operatorname{tr}_{F/K}(\alpha\sigma(\beta)), D\right) \\ &= \left(\left(y^2 + Dz^2\right) \cdot \operatorname{tr}_{F/K}(\alpha\sigma(\beta)), D\right). \end{aligned}$$

An easy computation gives

$$\operatorname{tr}_{F/K}(\alpha\sigma(\beta)) = -((cb-a)^2 - D)(y^2 + Dz^2).$$

Now let  $\gamma \in F$  be an element with  $N_{F/K}(\gamma) = \operatorname{tr}_{L/K}(C)$ . Then  $-1 = N_{L/K}(A\gamma^{-1})$ .

PROPOSITION 10. Let  $\psi$  be a quadratic form of dimension 8 over K with discriminant  $D \in K^*$ . Then  $\psi$  is a trace form of a cyclic extension if and only if

- 1.  $D = a^2 + b^2 \notin K^{*2}$  for some  $a, b \in K^*$ ,
- 2.  $(D, 2) = (q, -1) \in Br(K)$  for some  $q \in K^*$  and
- 3.  $\psi \simeq \langle 1, 1, 1, D \rangle \perp \langle t \rangle \otimes \langle \langle -2, -D \rangle \rangle$  for some  $t \in K^*$ .

*Proof.* Let L/K be a cyclic field extension of degree 8. Set  $F = K(\sqrt{D})$  and let  $F_1$  be the unique subfield of L/K with  $[F_1:K]=4$ . L/K is a solution of the embedding problem  $(F_1/K,\mathbb{Z}_8)$ . From Proposition 9 we get  $\langle F_1 \rangle \simeq \langle 2,2D,1,1 \rangle$  and (2,D)=(q,-1) for some  $q \in K^*$ . Set  $L=F_1(\sqrt{\Delta})$ . Then

$$\langle L \rangle \simeq \langle 2 \rangle \otimes \langle F_1 \rangle \perp \operatorname{tr}_{F_1/K} \langle 2\Delta \rangle \simeq \langle 1, 1, 1, D \rangle \perp \langle t \rangle \otimes \varphi,$$

where  $\varphi$  is a two-fold Pfister form with  $w_2 \varphi = w_2(\langle t \rangle \otimes \varphi) = w_2 \langle L \rangle = (2, D)$  by Corollary 3.

Now let  $\psi$  be a quadratic form for which the assumption of the proposition holds. By Proposition 9  $K(\sqrt{q(D+a\sqrt{D})})/K$  is a cyclic extension of degree 4 which is contained in a cyclic extension L/K of degree 8. Set  $F_1=K(\sqrt{q(D+a\sqrt{D})})$  and  $L=F_1(\sqrt{\Delta})$ . Then  $\langle F_1\rangle\simeq\langle 2,2D,1,1\rangle$  and

$$\langle L \rangle \simeq \langle 1, 1, 1, D \rangle \perp \langle t' \rangle \otimes \langle \langle 2, D \rangle \rangle$$

for some  $t' \in K^*$ . By Proposition 7  $F_1(\sqrt{tt'\Delta})/K$  has the desired Galois group. We already proved  $\langle F_1(\sqrt{tt'\Delta}) \rangle \simeq \psi$ .

Now we prove  $w_2\langle L\rangle=(2,D)$  without Serre's trace formula (see [5, 14]). There is a tower of quadratic extensions  $K\subset F=K(\sqrt{D})\subset F_1=K(\sqrt{q\delta})\subset L=K(\sqrt{\tau\Delta})$  with  $D=a^2+b^2$ ,  $\delta=D+a\sqrt{D}$ ,  $q=(1+x^2)(y^2+z^2D)=(-xy+x\sqrt{D})^2+(y+xz\sqrt{D})^2$ ,  $q\delta=\alpha^2+\beta^2$ ,  $\Delta=q\delta+\alpha\sqrt{q\delta}$ ,  $a,b,q,x,y,z\in K$ ,  $\alpha,\beta,\tau\in F^*$ . Here we calculate  $\alpha$  and  $\beta$  from the given representation of q as a sum of two squares in F and from

$$\delta = \left(\frac{a+b}{2} + \frac{1}{2}\sqrt{D}\right)^2 + \left(\frac{a-b}{2} + \frac{1}{2}\sqrt{D}\right)^2.$$

As above we get  $\langle L \rangle \simeq \langle 1, 1, 1, D \rangle \perp \operatorname{tr}_{F_1/K} \langle 2\tau\Delta \rangle$  and

$$\begin{split} \operatorname{tr}_{F_1/K} \langle 2\tau\Delta \rangle &\simeq \operatorname{tr}_{F/K} \langle 2\tau q\delta, 2\tau q\delta \rangle \simeq \langle 1, 1 \rangle \otimes \operatorname{tr}_{F/K} \langle \tau \rangle \\ &\simeq \langle 1, 1 \rangle \otimes \langle \operatorname{tr}_{F/K} (\tau) \rangle \otimes \langle 1, N_{F/K} (\tau) \rangle, \end{split}$$

if  $\operatorname{tr}_{F/K}(\tau) \neq 0$ . Otherwise  $\operatorname{tr}_{F_1/K} \langle 2\tau\Delta \rangle \simeq \langle 1,1 \rangle \otimes \langle 1,-1 \rangle$  and  $N_{F/K}(\tau) \equiv -D \mod K^{*2}$ . Hence in both cases we get  $\operatorname{tr}_{F_1/K} \langle 2\tau\Delta \rangle \simeq \langle t \rangle \otimes \langle \langle -1,-N_{F/K}(\tau) \rangle \rangle$  for some  $t \in K^*$ . Thus  $w_2 \langle L \rangle = (N_{F/K}(\tau),-1) \in \operatorname{Br}(K)$ .

- 1. Case  $-1 \in K^{*2}$ . Then  $w_2 \langle L \rangle = 0$ . Let  $\zeta_4^2 = -1$ . Then  $(2, D) = (\zeta_4, D) = 0$  by Proposition 9.
- 2. Case  $-1 \in L^{*2} K^{*2}$ . Then  $D \equiv -1 \mod K^{*2}$  which gives  $w_2 \langle L \rangle = 0 = (D, 2)$ .
- 3. Case  $-1 \not\in L^{*2}$ . Set  $\xi := \sigma(\tau)\tau^{-1}$ . From  $\xi \equiv N_{F/K}(\tau) \bmod F^{*2}$  we get

$$\begin{split} \left\langle \operatorname{tr}_{F/K}(\,\xi\,)\right\rangle \,\otimes\, \left\langle 2,2\,D\right\rangle &\simeq\, \left\langle 2\right\rangle \otimes\, \operatorname{tr}_{F/K}\langle\,\xi\,\rangle \\ \\ &\simeq\, \left\langle 2\right\rangle \otimes\, \operatorname{tr}_{F/K}\!\left\langle\,N_{F/K}(\,\tau\,)\right\rangle \\ \\ &\simeq\, \left\langle\,N_{F/K}(\,\tau\,)\right\rangle \,\otimes\, \left\langle 1,\,D\right\rangle, \end{split}$$

since  $\operatorname{tr}_{F/K}(\xi) = \sigma(\tau)\tau^{-1} + \tau\sigma(\tau)^{-1} \neq 0$ . It follows  $(2 \cdot \operatorname{tr}_{F/K}(\xi), -D) = w_2 \langle L \rangle$ . Now we compute  $\xi$  modulo squares of  $F^*$ . Let  $\langle \sigma \rangle = G(L/K)$ , where  $\sigma$  is the automorphism given by  $\sigma(\sqrt{q\delta}) = qb\sqrt{D}\sqrt{q\delta}^{-1}$ . Set

$$C\coloneqq\frac{\sigma^2(\Delta)}{\beta\sqrt{q\delta}}=\frac{\sigma^2(\Delta)}{\sqrt{N_{L/F}(\Delta)}}=-\frac{\alpha-\sqrt{q\delta}}{\beta},\qquad A\coloneqq1+\frac{C}{\sigma(C)}.$$

Then  $C^2 = \sigma^2(\Delta)\Delta^{-1}$ ,  $C\sigma^2(C) = -1 = \sigma(C)\sigma^3(C)$ , and  $\Delta = -\beta\sqrt{q\delta} \cdot \sigma^2(C) = -\beta\sqrt{q\delta}C^{-1}$ .

Suppose  $C = -\sigma(C)$ . We get  $\sigma^2(C) = C$ , which contradicts  $C = -(\alpha - \sqrt{q\delta})\beta^{-1} \notin F$ . Thus  $A \neq 0$ . Since

$$\phi \coloneqq \frac{\sigma(\tau)\sigma(\Delta)}{\tau\Delta A^2} \in F_1$$

is invariant under  $\sigma^2$ , it is an element of F. From  $L=K(\sqrt{\tau\Delta})=K(\sqrt{\sigma(\tau\Delta)})$  we get  $\phi\in F_1^{*2}$ . Suppose  $\phi\notin F^{*2}$ . Then  $\phi q\delta\in F^{*2}$ ; hence,  $N_{F/K}(\phi)\equiv D\notin K^{*2}$ , which contradicts

$$N_{F/K}(\phi) = \frac{\sigma^2(\Delta)}{\Delta(A\sigma(A))^2} = \left(\frac{C}{A\sigma(A)}\right)^2 = \left(\operatorname{tr}_{F/K}(C)\right)^{-4}.$$

Hence,  $\xi = \sigma(\tau)\tau^{-1} \equiv \Delta A^2 \sigma(\Delta)^{-1} \mod F^{*2}$  and

$$\begin{split} \xi &\equiv \frac{\Delta A^2}{\sigma(\Delta)} = \frac{\beta \sqrt{q\delta} \, \sigma(C) \, A^2}{\sigma(\beta) \, \sigma(\sqrt{q\delta}) C} \\ &= \frac{\beta}{\sigma(\beta)} \, \frac{\delta}{b \sqrt{D}} \left( 1 + \frac{C}{\sigma(C)} \right) \left( 1 + \frac{\sigma(C)}{C} \right) \\ &= \frac{\beta}{\sigma(\beta)} \, \frac{a + \sqrt{D}}{b} \cdot \operatorname{tr}_{F_1/F}(A) \\ &= \frac{\beta}{\sigma(\beta)} \, \frac{a + \sqrt{D}}{b} \, \frac{2}{\beta \sigma(\beta)} \left( \beta \sigma(\beta) - \alpha \sigma(\alpha) + qb\sqrt{D} \right) \\ &\equiv 2 \frac{a + \sqrt{D}}{b} \left( \beta \sigma(\beta) - \alpha \sigma(\alpha) + qb\sqrt{D} \right) \operatorname{mod} F^{*2}. \end{split}$$

We easily compute  $\beta\sigma(\beta) - \alpha\sigma(\alpha) = (y^2 + z^2D)(ab(x^2 - 1) - 2xb^2)$ . Hence

$$\xi \equiv 2(y^2 + z^2 D) \frac{a + \sqrt{D}}{b} (ab(x^2 - 1) - 2xb^2 + (x^2 + 1)b\sqrt{D})$$
$$= 2(y^2 + z^2 D) ((ax - b) + x\sqrt{D})^2 \equiv 2(y^2 + z^2 D) \bmod F^{*2}.$$

This gives

$$\begin{aligned} \operatorname{tr}_{F/K} \langle \, \xi \, \rangle &\simeq \operatorname{tr}_{F/K} \langle \, 2 \big( \, y^2 \, + z^2 D \big) \rangle \, \simeq \left\langle \operatorname{tr}_{F/K} ( \, \xi \, ), \, D \cdot \operatorname{tr}_{F/K} ( \, \xi \, ) \right\rangle \\ &\simeq \left\langle \, 2 \big( \, y^2 \, + z^2 D \big) \right\rangle \, \otimes \, \langle \, 2, \, 2 \, D \, \rangle \, \simeq \, \langle \, 1, \, D \, \rangle, \end{aligned}$$

since  $\langle 1, D \rangle$  represents  $y^2 + z^2D \neq 0$ .

We finally conclude  $w_2\langle L\rangle=(2\cdot \operatorname{tr}_{F/K}(\xi),-D)=(2,-D)=(2,D)\in\operatorname{Br}(K).$ 

PROPOSITION 11. Let  $\psi$  be a quadratic form of dimension 8 over K. Then  $\psi$  is  $\mathbb{Z}_2 \times \mathbb{Z}_4$ -realizable iff there are elements a, D,  $q \in K^*$  such that

- 1.  $a, D, aD \notin K^{*2}$  and D is a sum of two squares in K,
- 2.  $\psi \simeq \langle 2 \rangle \otimes \langle \langle -D, -a \rangle \rangle \perp \langle q \rangle \otimes \langle \langle -1, -a \rangle \rangle$ .

If  $\psi$  satisfies (1)–(3), then  $\psi$  is not similar to a Pfister form iff  $w_2\psi = (a, D) \neq 0$ .

The trace forms of Galois extensions with Galois group  $D_8$  and  $Q_8$  have been determined in [3, Section 6, Exemple]. Since there is no proof given we consider these trace forms now.

**PROPOSITION 12.** Let  $\psi$  be a quadratic form of dimension 8 over K.

- 1. Then  $\psi$  is  $D_8$ -realizable if and only if there exists an element  $q \in K^* K^{*2}$  with  $\psi \simeq \langle \langle -1, -q, -t \rangle \rangle$  for some  $t \in K^*$  and  $\langle 1, q \rangle$  represents more than two square classes.
- 2.  $\psi$  is  $Q_8$ -realizable if and only if  $\psi \simeq \langle \langle -1, -1, t \rangle \rangle$  for some  $t \in K^{*2}$  and  $Q_8$  is a Galois group over K.

 $Q_8$  appears as Galois group over K iff there exist some  $a, b \in K^*$  with  $a, b, ab \notin K^{*2}$  and  $(a, b) + (ab, -1) = 0 \in Br(K)$ .

*Proof.* Let L/K be a Galois extension with Galois group  $D_8$  or  $Q_8$ . Then L/K contains a biquadratic extension field  $F = K(\sqrt{a}, \sqrt{b})$ . Let  $\alpha \in F$  with  $L = F(\sqrt{\alpha})$ . We can assume that  $L/K(\sqrt{ab})$  is cyclic of degree 4. From Corollary 3(2) we get  $\mathrm{dis}(L/K) \in K^{*2}$  and  $w_2 \langle L \rangle = 0$ . Since

$$\langle L \rangle \simeq \langle 2 \rangle \otimes (\langle F \rangle \perp \operatorname{tr}_{F/K} \langle \alpha \rangle),$$

the quadratic forms  $\langle F \rangle$  and  $\operatorname{tr}_{F/K} \langle \alpha \rangle$  have the same discriminant and Hasse invariant. By [18, 2.14.1] there is some  $t \in K^*$  with  $\operatorname{tr}_{F/K} \langle \alpha \rangle \simeq \langle t \rangle \otimes \langle F \rangle$ , which gives  $\langle L \rangle \simeq \langle 2 \rangle \otimes \langle 1, t \rangle \otimes \langle F \rangle \simeq \langle 2 \rangle \otimes \langle \langle -t, -a, -b \rangle \rangle$ . Further L/K is a solution of the embedding problem (F/K, G(L/K)).

Let  $G(L/K) \simeq D_8$ . It is Galois-theoretic folklore (see [12, Theorem 3.10]) that  $(F/K, D_8)$  has a solution L/K such that  $L/K(\sqrt{ab})$  is cyclic if and only if  $\langle a,b\rangle \simeq \langle 1,ab\rangle$  if and only if  $\langle F\rangle \simeq \langle \langle -1,-ab\rangle \rangle$ . Set q=ab.

Now consider  $G(L/K) = Q_8$ . A result of Witt [22] implies, that the solvability of  $(F/K, Q_8)$  is equivalent to  $(a, b) + (ab, -1) = 0 \in Br(K)$ , which is equivalent to  $\langle 1, a, b, ab \rangle \simeq 4 \times \langle 1 \rangle$ . This result can also be obtained by trace form considerations (see [20; 9; 7.7]; use Lemma 2(3)). This gives the necessary condition in both cases.

Now consider  $D_8$  again. We compute the trace form of an explicit polynomial. We will apply this method in the next section. A Galois extension L/K with Galois group  $D_8$  is a splitting field of an irreducible polynomial  $f(X) = X^4 + tX^2 + b$  such that  $a := t^2 - 4b \not\equiv \mathrm{dis}(f) \equiv b \not\equiv 1 \mod K^{*2}$ . We get  $a, b, ab \in L^{*2} - K^{*2}$  and  $(a, b) = 0 \in \mathrm{Br}(K)$ . Hence,  $\langle 1, ab \rangle \simeq \langle a, b \rangle$ . Further,  $L/K(\sqrt{ab})$  is a cyclic extension with discriminant  $b \equiv a \mod K(\sqrt{ab})^{*2}$ .

Let t = 0. Then  $\operatorname{tr}_{L/K(\sqrt{ab})}\langle 1 \rangle \simeq \langle 1, b, 1, 1 \rangle$  and  $ab \equiv -1 \mod K^{*2}$ , which gives

$$\langle L \rangle \simeq \langle 1, -1 \rangle \otimes \langle 1, 1, 1, b \rangle \simeq \langle \langle 1, 1, 1 \rangle \rangle.$$

Now consider  $t \neq 0$ . From [7, Theorem 1] we get

$$\langle K[X]/(f)\rangle \simeq \langle 1, a\rangle \perp \langle -2t\rangle \otimes \langle a, b\rangle$$
  
  $\simeq \langle 1, a\rangle \perp \langle -2t\rangle \otimes \langle 1, ab\rangle$ 

which gives

$$\langle L \rangle \simeq \operatorname{tr}_{K(\sqrt{ab})/K} \langle 1, a, -t, -t \rangle \simeq \langle 2, 2ab \rangle \otimes \langle 1, a, -t, -t \rangle$$
  
  $\simeq \langle \langle -1, -ab, t \rangle \rangle.$ 

We now prove the sufficient condition. Let  $\psi \simeq \langle \langle -1, -q, -t \rangle \rangle$ . By assumption there is some  $a \in K^*$  which is represented by  $\langle 1, q \rangle$  such that q, a,  $aq \notin K^{*2}$ . Set b = aq. Then (a,b) = 0. Choose u,  $v \in K$  with  $a = u^2 - 4bv^2$ . Let  $u \neq 0$ . Set  $X^4 + tX^2 + bv^2t^2u^{-2}$  and let L be a splitting field of f. We easily obtain  $\langle L \rangle \simeq \psi$  and  $G(L/K) \simeq D_8$ . If u = 0, then  $ab \equiv -1 \mod K^{*2}$  and  $\psi \sim 0 \in W(K)$ . Then consider the splitting field of  $X^4 + b$ .

Let L/K be a Galois extension with Galois group  $Q_8$  and let F/K be the biquadratic subextension of L/K. Then  $L = F(\sqrt{\alpha})$  for some  $\alpha \in F^* - F^{*2}$  and  $\operatorname{tr}_{F/K} \langle \alpha \rangle \simeq \langle q \rangle \otimes \langle \langle -1, -1 \rangle \rangle$ . The Galois group of  $F(\sqrt{tq^{-1}\alpha})/K$  is isomorphic to  $Q_8$  and its trace form is  $\langle \langle -1, -1, t \rangle \rangle$ .

Let us denote some observation which we will use later.

Remark 2. Let L/K be a Galois extension of degree 8 with  $G(L/K) \in \{\mathbb{Z}_8, D_8, Q_8\}$  and let F be an intermediate field of L/K such that F/K is a normal extension of degree 4. Let  $L = F(\sqrt{\alpha})$ . Then the parameter  $t \in K^*$  in Propositions 10 and 12 can be any element which is represented by  $\operatorname{tr}_{F/K}\langle \alpha \rangle$ . If  $\operatorname{tr}_{F/K}(\alpha) \neq 0$ , we can choose  $t = \operatorname{tr}_{F/K}(\alpha)$ . Otherwise we can take t = 1.

*Proof.*  $\operatorname{tr}_{F/K}\langle \alpha \rangle$  is similar to a Pfister form.

#### 5. TRACE FORMS OF DEGREE 16

There are 14 different groups of order 16, five of which are abelian. (In [12] we find a list of all these groups. See also [21].) We are not able to compute the trace form of a cyclic extension of degree 16 and of an extension with Galois group  $Q_{16}$ . If G is a noncyclic abelian group we can use the results of Sections 3 and 4 to classify the G-realizable forms. We omit stating these results here.

First we determine trace forms of Galois extensions L/K with Galois group  $D_{16}$ , the quasidihedral group  $QD_8$  and the modular group M(16),

each of order 16. We know

$$\begin{split} D_{16} &= \langle\,\sigma\,,\tau\,|\,\sigma^{\,8} = \tau^{\,2} = \mathrm{id},\,\tau^{-1}\!\sigma\tau = \sigma^{-1}\,\rangle,\\ QD_{\,8} &= \langle\,\sigma\,,\tau\,|\,\sigma^{\,8} = \tau^{\,2} = \mathrm{id},\,\tau^{-1}\!\sigma\tau = \sigma^{\,3}\,\rangle,\\ M(16) &= \langle\,\sigma\,,\tau\,|\,\sigma^{\,8} = \tau^{\,2} = \mathrm{id},\,\tau^{-1}\!\sigma\tau = \sigma^{\,5}\,\rangle. \end{split}$$

Each of these groups contains an element of order 8 (see [13, I.14.9]). Let L/K be a Galois extension with Galois group  $G=G(L/K)\in\{D_{16},QD_{8},M(16)\}$ . We have a tower of quadratic subextensions,

$$K \subset K_1 := K(\sqrt{a}) := L^{\langle \tau, \sigma^2 \rangle} \subset L^{\langle \tau, \sigma^4 \rangle} =: K_2 \subset L^{\langle \tau \rangle} =: K_3 \subset L.$$

Set  $K(\sqrt{b}) := L^{\langle \sigma \rangle}$ . Then  $K(\sqrt{b}) \cap K_3 = K$ . Further  $L/K(\sqrt{b})$  is a cyclic extension of degree 8 with discriminant  $a \equiv ab \mod K(\sqrt{b})^{*2}$ . Let  $\alpha \in K_2$  be any element with  $K_3 = K_2(\sqrt{\alpha})$ . Then  $L = K_2(\sqrt{b})(\sqrt{\alpha})$ . From Proposition 10 and Remark 2 we know

$$\begin{aligned} \operatorname{tr}_{L/K(\sqrt{b})} \langle 1 \rangle &\simeq \langle 1, 1, 1, ab \rangle \perp \langle t \rangle \otimes \langle \langle -2, -ab \rangle \rangle \\ &\simeq \langle 1, 1, 1, a \rangle \perp \langle t \rangle \otimes \langle \langle -2, -a \rangle \rangle \end{aligned}$$

with t=1 or  $t=\operatorname{tr}_{K_2(\sqrt{b})/K(\sqrt{b})}(\alpha)=\operatorname{tr}_{K_2/K}(\alpha)\in K$ . Suppose  $G\neq M(16)$ . Then  $\langle \sigma^4\rangle$  is a normal subgroup of G with  $G/\langle \sigma^4\rangle\simeq D_8$ . From  $K_2(\sqrt{b})=L^{\langle \sigma^4\rangle}$  we get  $G(K_2(\sqrt{b})/K)\simeq D_8$ . Hence,  $K_2(\sqrt{b})/K$  is a solution of the embedding problem  $(K(\sqrt{a},\sqrt{b})/K,D_8)$ , where  $F/K(\sqrt{b})$  is cyclic of order 4. From Proposition 3.10 in [12] we get  $\langle a,ab\rangle\simeq\langle 1,b\rangle$ . Now Frobenius reciprocity (see [18, 2.5.6]) gives

$$\langle L \rangle \simeq \langle 2, 2b \rangle \otimes (\langle 1, 1, 1, ab \rangle \perp \langle t \rangle \otimes \langle \langle -2, -ab \rangle \rangle)$$
  
  $\simeq \langle \langle -1, -1, -b, -t \rangle \rangle.$ 

PROPOSITION 13. Let  $\psi$  be a quadratic form of dimension 16 over K. Let  $G \in \{D_{16}, QD_8\}$ . Then  $\psi$  is G-realizable if and only if there exist  $b, t \in K^*$ ,  $b \neq -1$  with

- 1.  $\psi \simeq \langle \langle -1, -1, -b, -t \rangle \rangle$ ,
- 2.  $b, b + 1, b(b + 1) \notin K^{*2}$ , and
- 3. there is an element  $q \in K^*$  with

$$(b+1,2)+(q,-b)=0 \in \operatorname{Br}(K), \quad \text{if } G=D_{16}$$
   
  $[\operatorname{resp.}(b+1,-2)+(q,-b)=0 \in \operatorname{Br}(K), \text{ if } G=QD_8.]$ 

There exists some  $q \in K^*$  with  $(b + 1, 2) + (q, -b) = 0 \in Br(K)$  iff

$$X_1^2 - (b+1)X_2^2 - 2X_3^2 - 2(b+1)bX_4^2 = 0$$

has a solution  $x_1, x_2, x_3, x_4 \in K$  with  $(x_1, x_2) \neq (0, 0)$ .

*Proof.* For the last assertion see [14, Theorem 6]. L/K is a solution of the embedding problem (F/K,G) with  $L/K(\sqrt{b})$  is cyclic. If  $G=D_{16}$ , apply [14, Theorem 6]. If  $-1 \in K^{*2}$  we can also use [9, 7.11]. Hence, (a,ab)=0=(a,-b) and (a,2)+(q,-b)=0. We get  $a=x^2+by^2$  with  $x,y\in K^*$ . Replace b by  $by^2x^{-2}$  and a by  $ax^{-2}$ . Now let  $G=QD_8$ . Then  $G(L/K(\sqrt{a}))\simeq \langle \tau,\sigma^2\rangle\simeq D_8$ . Apply [14, Theorem 7].

PROPOSITION 14. Let  $\psi$  be a quadratic form of dimension 16 over K. Then  $\psi$  is M(16) realizable if and only if there exist  $a, b, q, t \in K^*$  with

- 1.  $a, b, ab \notin K^{*2}, (a, -1) = 0 \in Br(K),$
- 2.  $(a, 2b) + (q, -1) = 0 \in Br(K)$ ,
- 3.  $\psi \simeq \langle 2, 2b \rangle \otimes (\langle 1, 1, 1, a \rangle \perp \langle t \rangle \otimes \langle \langle -2, -a \rangle \rangle)$ .

*Proof.* Since  $\langle \sigma^4, \tau \rangle$  is a normal subgroup of M(16) with cyclic quotient we get (a, -1) = 0. Use the same calculation as above and apply [12, Theorem 4.8.1].

Let us now consider the two pullbacks

$$D_{8} \wedge \mathbb{Z}_{4} = \left\langle \left. \sigma \right., \tau, \rho \right| \sigma^{4} = \tau^{2} = \rho^{2} = 1, \left[ \left. \sigma \right., \tau \right. \right] = \left[ \left. \rho, \tau \right. \right] = 1, \sigma \rho = \rho \sigma^{3} \! \gamma \! \right\rangle$$

and

$$Q_8 \wedge \mathbb{Z}_4 = \langle \sigma, \tau | \sigma^4 = \tau^4 = 1, \tau^{-1} \sigma \tau = \sigma^{-1} \rangle.$$

PROPOSITION 15. The quadratic form  $\psi$  over K is  $D_8 \wedge \mathbb{Z}_4$ -realizable if and only if there are elements a, t,  $q \in K^*$ ,  $a \notin K^{*2}$  such that

- 1.  $\psi \simeq \langle \langle -1, -a, -t, -q \rangle \rangle$  and
- 2.  $\langle 1, -a \rangle$  represents some  $b \in K^*$  with  $b, ab \notin K^{*2}$  and  $(b, -1) = 0 \in Br(K)$ .

*Proof.* Set  $G := D_8 \wedge \mathbb{Z}_4$ . Then  $\langle \tau \rangle \triangleleft G$  with  $G/\langle \tau \rangle \simeq D_8$ . Further  $H := \langle [\sigma, \rho], \sigma^2 \rho \rangle$  is a normal subgroup of G with cyclic quotient of order 4. Let N/K be a Galois extension with Galois group G. Set  $L := N^{\langle \tau \rangle}$  and  $F := N^H$ . Then there are elements  $a, b \in K^*$  such that  $K(\sqrt{a}, \sqrt{b})/K$  is a biquadratic extension contained in L and  $K(\sqrt{b}) = L \cap F$ . Hence,  $b = x^2 + y^2$  with  $x, y \in K^*$  and  $F = K(\sqrt{q(b + x\sqrt{b})})$  for some  $q \in K^*$  (see Proposition 8). Since  $\langle H, \tau \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$  the extension  $L/K(\sqrt{b})$  is

not cyclic and we can assume that  $L/K(\sqrt{ab})$  is cyclic. Hence, (a,b)=0 by Proposition 3.10 in [12]. L is a splitting field of an irreducible polynomial  $f=X^4-tX^2+b\in K[X]$  with  $a\equiv t^2-4b\not\equiv \mathrm{dis}(f)\equiv b\not\equiv 1$  mod  $K^{*2}$ . Now f is irreducible in F[X]. If  $t\neq 0$  we get  $\mathrm{tr}_{N/F}\langle 1\rangle\simeq\langle\langle -a,-2t\rangle\rangle$ , which implies

$$\langle N \rangle \simeq \langle \langle -a, -2t \rangle \rangle \otimes \langle F \rangle \simeq \langle \langle -1, -a, -t, -q \rangle \rangle.$$

If t = 0, then  $\langle N \rangle \sim 0 \in W(K)$ .

PROPOSITION 16. The quadratic form  $\psi$  over K is  $Q_8 \wedge \mathbb{Z}_4$ -realizable if and only if there are elements  $a, t, q \in K^*$ ,  $a \notin K^{*2}$  with

- 1.  $\psi \simeq \langle \langle -1 \rangle \rangle \otimes (\langle \langle -1, -t \rangle \rangle \perp \langle q \rangle \otimes \langle 1, a, t, t \rangle)$  and
- 2.  $\langle 1, -a \rangle$  represents some element  $b \in K^*$  with b,  $ab \notin K^{*2}$  and  $(ab, -1) = 0 \in Br(K)$ .

*Proof.* If N/K is a Galois extension with Galois group  $\mathcal{Q}_8 \wedge \mathbb{Z}_4$ , then N contains subfields L, F such that L/K and F/K are Galois extensions with  $G(L/K) \simeq D_8$  and  $G(F/K) \simeq \mathbb{Z}_4$ . Further,  $L/L \cap F$  is cyclic of degree 4. Now proceed as in the proof of Proposition 15.

Let

$$DC = \left\langle \left. \sigma \right., \rho, \tau \right| \sigma^4 = \rho^2 = \tau^2 = 1, \left[ \left. \sigma \right., \rho \right] = \left[ \left. \sigma \right., \tau \right] = 1, \left[ \left. \rho, \tau \right] = \sigma^2 \right\rangle.$$

PROPOSITION 17. The quadratic form  $\psi$  is DC-realizable over K if and only if there are elements  $a, b, c, t \in K^*$  with

- 1.  $\psi \simeq \langle \langle -1, -1, -abc, -t \rangle \rangle$  and
- 2.  $a, b, c \notin K^{*2}$  and  $(a, b) = (c, c) \in Br(K)$ .

*Proof.* We use the notation of [17, Theorem 2.A], where an explicit construction of a DC-extension is given. Let L/K be a Galois extension with Galois group DC and let  $K(\sqrt{a}, \sqrt{b}, \sqrt{c})/K$  be an extension of degree 8 contained in L. Then  $H:=\langle \sigma_c^2, \sigma_c \circ \sigma_a, \sigma_c \circ \sigma_b \rangle \cong Q_8$  and  $DC=\langle H, \sigma_b \rangle$ . Set  $K_3:=L^{\langle \sigma_b \rangle}$  and  $K_2=L^{\langle \sigma_b, \sigma_c \rangle}$ . Then  $K(\sqrt{abc})=L^H$ ,  $L=K_3(\sqrt{abc})$ , and  $K_3\cap K(\sqrt{abc})=K$ . Choose  $\alpha\in K_2$  with  $K_3=K_2(\sqrt{\alpha})$ . Since  $L=K_2(\sqrt{abc})(\sqrt{\alpha})$ , Proposition 12 and Remark 2 give

$$\operatorname{tr}_{L/K(\sqrt{abc})}\langle 1\rangle \simeq \langle \langle -1, -1, -t \rangle \rangle$$

with  $t \in K^*$ .

By Propositions 3 and 12 the trace form of a  $D_8 \times \mathbb{Z}_2$  (resp.  $Q_8 \times \mathbb{Z}_2$ ) extension is a Pfister form.

### 6. SOME CONSEQUENCES

COROLLARY 4. Let L/K be a cyclic field extension of degree  $2^l \ge 4$  with discriminant D.

- 1. If L/K is contained in a cyclic field extension of degree  $2^{l+1}$ , then  $\langle L \rangle \simeq \langle 2, 2D \rangle \perp (2^l 2) \times \langle 1 \rangle$ .
- 2. If  $l \geq 3$  and  $-1 \in L^{*2}$ , then  $\langle L \rangle \simeq \langle D \rangle \perp (2^l 1) \times \langle 1 \rangle$ .

*Proof.* (1) If l=2, see Proposition 9. Now consider  $l\geq 3$ . Let F be the unique subfield of L/K with [L:F]=4. Since L/F is contained in a cyclic extension of degree 8 we get  $\mathrm{tr}_{L/K}\langle 1 \rangle \simeq \langle 2, 2\Delta \rangle \perp \langle 1, 1 \rangle$ . Now induction gives

$$egin{aligned} \langle L 
angle &\simeq \operatorname{tr}_{F/K} \langle 2, 2\Delta 
angle \perp \operatorname{tr}_{F/K} \langle 1, 1 
angle \simeq \left\langle F\left(\sqrt{\Delta}\right) 
ight
angle \perp \langle 1, 1 
angle \otimes \left\langle F 
ight
angle \\ &\simeq \langle 2, 2D 
angle \perp \left(2^{l-1}-2\right) \times \langle 1 
angle \perp \langle 1, 1 
angle \\ &\otimes \left(\langle 2, 2D 
angle \perp \left(2^{l-2}-2\right) \times \langle 1 
angle \right) \\ &\simeq \langle 2, 2D 
angle \perp \left(2^{l}-2\right) \times \langle 1 
angle . \end{aligned}$$

(2) Let F be as above. Then  $-1 \in F^{*2}$  and  $\operatorname{tr}_{L/F}\langle 1 \rangle \simeq \langle 1, \Delta, 1, 1 \rangle$ . Hence,  $\langle L \rangle \simeq \langle 2 \rangle \otimes \langle F(\sqrt{\Delta}) \rangle \perp \langle 1, 1 \rangle \otimes \langle F \rangle \simeq \langle 1, D \rangle \perp (2^l - 2) \times \langle 1 \rangle$  by part (1).

COROLLARY 5. Let L/K be a Galois extension with Galois group G. Suppose the Hasse invariant of  $\langle L \rangle$  is nontrivial. Then either  $\operatorname{rk}_2(G) = 2$  or the 2-Sylow subgroups are cyclic.

*Proof.* If  $\operatorname{rk}_2(G) \geq 3$  then  $\langle L \rangle \in I^3(K)$  by Proposition 4. It is well known that if  $\operatorname{rk}_2(G) = 1$  and G is a 2-group then G is either cyclic or a generalized quaternion group (see [11, 5.4.10]). We know from Corollary 3 that  $\langle L \rangle \in I^3(K)$  if L/K is a Galois extension with generalized quaternion group as its Galois group. ■

We determined the Hasse invariant of the trace form of a cyclic extension of degree 8 without Serre's formula. Using induction we are able to extend this method to all cyclic field extensions of degree  $2^l \geq 8$ . Let L/K be a cyclic field extension of degree  $2^{l+1} \geq 16$  with discriminant D. Set  $F := K(\sqrt{D})$ . Let  $\delta \in F^*$  be the discriminant of L/F and set  $\varphi := \langle 2, 2\delta \rangle \perp 6 \times \langle 1 \rangle \in W(F)$ . Then by the induction hypothesis  $\operatorname{tr}_{L/F} \langle 1 \rangle \equiv \varphi \mod I^3(F)$ . From [2, Satz 3.3] we get  $\langle L \rangle \equiv \operatorname{tr}_{F/K} \varphi \mod I^3(K)$ . Now  $\operatorname{tr}_{F/K} \varphi \simeq \operatorname{tr}_{F/K} \langle 2, 2\delta \rangle \perp 6 \times \langle 2, 2D \rangle \simeq \langle 2, 2D \rangle \perp 14 \times \langle 1 \rangle$ , since  $\operatorname{tr}_{F/K} \langle 2, 2\delta \rangle$  is the trace form of the cyclic extension  $F(\sqrt{\delta})/K$  of degree 4 and by Proposition 9.

COROLLARY 6. Let K be a field with  $-1 \in K^{*2}$  and let L/K be a Galois extension.

1. If G(L/K) contains a nonabelian group of order 8, then

$$\langle L \rangle \sim 0 \in W(K)$$
.

2. Let L/K be a nonabelian extension of degree 16. Then

$$\langle L \rangle \sim 0 \in W(K)$$

if  $G(L/K) \neq M(16)$ . If  $G(L/K) \approx M(16)$ , then  $\langle L \rangle \sim \langle \langle 2, a \rangle \rangle$ .

*Proof.* Let H < G(L/K) be a nonabelian subgroup of order 8. Since  $H \simeq D_8$ ,  $Q_8$  we get  $\operatorname{tr}_{L/L^H} \langle 1 \rangle \sim 0 \in W(L^H)$  from Proposition 12. M(16),  $Q_8 \wedge \mathbb{Z}_4$ ,  $D_8 \wedge \mathbb{Z}_4$  are the only nonabelian groups of order 16 with abelian subgroups of order 8 only. Apply Propositions 15, 16 in these cases.

#### 7. ON TRACE FORMS OF DEGREE $\leq 31$

We apply our results to the classification of quadratic forms of dimension  $\leq 31$  which are trace forms of Galois extensions with prescribed Galois group. In [21] we find a list of all groups of order  $\leq 31$ . We are not able to handle all cases. By Corollary 1 we can assume that G has even order. We do not discuss decomposable groups of order  $\leq 31$  here. We deduce from Proposition 2:

PROPOSITION 18. Let  $\psi$  be a quadratic form of dimension 2m, m odd over K with discriminant D. Let G be a group of order 2m. Then  $\psi$  is G-realizable if and only if

- 1.  $\psi \simeq m \times \langle 2, 2D \rangle$  with  $D \notin K^{*2}$  and
- 2. the embedding problem  $(K(\sqrt{D})/K, G)$  has a solution.

This covers forms of dimensions 6, 10, 14, 18, 22, 26, 30. Let us discuss  $G\simeq \mathfrak{S}_3$  in more detail. Suppose  $\operatorname{char}(K)\neq 3$  and let L/K be a Galois extension with  $G(L/K)\simeq \mathfrak{S}_3$ . Then L is the splitting field of some irreducible trinomial  $f(X)=X^3+aX+b\in K[X]$  with discriminant  $D=-27b^2-4a^3\in L^{*2}-K^{*2}$ . Suppose  $-3D\notin K^{*2}$ . Then  $ab\neq 0$ . Set

$$F(X,T) := X^3 - 3(3DT^2 + 1)X - 2(3DT^2 + 1) \in K(T)[X].$$

Then F(X,T) is irreducible and has discriminant  $D \mod K(T)^{*2}$ . We get  $f(X) = (3b)^3(2a)^{-3} \cdot F(2a(3b)^{-1}X, (3^2b)^{-1})$ . Hence, f is a specialization of F(X,T). We conclude:

COROLLARY 7. Let K be a Hilbertian field with  $\operatorname{char}(K) \neq 3$ ,  $\psi$  a quadratic form of dimension 6 over K with discriminant D. Then  $\psi$  is  $\mathfrak{S}_3$ -realizable if  $D \notin K^{*2}$  and  $\psi \simeq 3 \times \langle 2, 2D \rangle$ .

Hence, the solvability of the embedding problem  $(K(\sqrt{D})/K, \mathfrak{S}_3)$  does not provide any further restriction on  $\psi$ .

Let us consider another example. Let K be a local field such that the residue class field has characteristic  $\neq 3$ . Then any nonnormal extension of degree 3 is tamely ramified. Hence  $\mathfrak{S}_3$  is a Galois group over K iff K does not contain the third roots of unity, i.e., iff  $-3 \notin K^{*2}$ . We conclude that  $\psi$  is  $\mathfrak{S}_3$ -realizable iff  $\psi \simeq 3 \times \langle 2, -6 \rangle$  and  $-3 \notin K^{*2}$ .

Let us now consider forms of dimension 12. There are five different groups of order 12, two of which have a cyclic 2-Sylow subgroup, further,  $\mathbb{Z}_2 \times \mathbb{Z}_6$ ,  $\mathbb{Z}_2 \times \mathfrak{S}_3$ , and  $\mathfrak{A}_4$ . We only consider  $\mathfrak{A}_4$ .

PROPOSITION 19. A quadratic form of dimension 12 over K is  $\mathfrak{A}_4$ -realizable if and only if there is an irreducible polynomial  $f \in K[X]$  of degree 4 with Galois group  $\mathfrak{A}_4$  and  $\psi \simeq 3 \times \langle K[X]/(f) \rangle$ . In particular,  $\psi \simeq 3 \times \langle \langle -a, -b \rangle \rangle$  for some  $a, b \in K^*$ .

Let K be a Hilbertian field with  $\operatorname{char}(K) = 0$ . Then  $\psi$  is  $\mathfrak{A}_4$ -realizable iff  $\psi \simeq 3 \times \langle \langle -a, -b \rangle \rangle$  for some  $a, b \in K^*$ .

*Proof.* Let L/K be a Galois extension with Galois group  $\mathfrak{A}_4$ . Let  $F=K(\alpha)$  be an intermediate field of L/K with [F:K]=4. Then L is a splitting field of the minimal polynomial of  $\alpha$  over K. Further,  $\langle L \rangle \simeq 3 \times \langle F \rangle$ . From Lemma 1 we get  $\langle L \rangle \simeq 3 \times \langle \langle -a,-b \rangle \rangle$  for some  $a,b \in K^*$ . If K is Hilbertian apply [8, Theorem 1, and Theorem 3].

Let n = 20, 28. Then n = 4p for some prime p > 3. From Sylow theory we get

LEMMA 3. Let G be a group of order 4p, p > 3 a prime. Then G has a unique p-Sylow subgroup  $G_p$ . Further, G is the semidirect product  $G_p \rtimes_{\alpha} G_2$  of  $G_p$  with a 2-Sylow subgroup  $G_2$ , where  $\alpha: G_2 \to \operatorname{Aut}(G_p)$  is a homomorphism.

If  $p \equiv 1 \mod 4$ , then there are five types of groups, if  $p \equiv 3 \mod 4$  then there are four types of groups of order 4p. In both cases the dihedral group  $D_{4p}$  is the unique nonabelian group of order 4p with noncyclic 2-Sylow subgroup.

PROPOSITION 20. Let p > 3 be a prime. The quadratic form  $\psi$  is  $D_{4p}$ -realizable iff there are elements  $a, b \in K^*$ , linearly independent mod  $K^{*2}$  with

- 1.  $\psi \simeq p \times \langle \langle -a, -b \rangle \rangle$  and
- 2.  $(K(\sqrt{a}, \sqrt{b})/K, D_{4p})$  has a solution.

There are 15 groups of order 24 (see [21]), three of which are abelian. Further, six nonabelian groups are decomposable. There are the two

semidirect products  $\mathbb{Z}_3 \rtimes \mathbb{Z}_8$  and  $\mathbb{Z}_3 \rtimes D_8$ , both having a unique 3-Sylow subgroup. The dihedral group and the dicyclic group of order 24 both have a unique 3-Sylow subgroup. Apply Proposition 2 in these cases. It remains to consider  $\mathrm{SL}_2(\mathbb{F}_3)$  and  $\mathfrak{S}_4$ .

PROPOSITION 21. Let q be a prime power with  $q \equiv \pm 3 \mod 8$ . Then the quadratic form  $\psi$  is  $\mathrm{SL}_2(\mathbb{F}_q)$ -realizable iff  $\psi \simeq (q(q^2-1)/8) \times \langle \langle -1, -1, -t \rangle \rangle$  for some  $t \in K^*$  and  $\mathrm{SL}_2(\mathbb{F}_q)$  is a Galois group over K.

*Proof.* The 2-Sylow subgroup of  $\mathrm{SL}_2(\mathbb{F}_q)$  is a quaternion group of order 8 (see [11, Chap. 2, Theorem 8.3]). Let L/K be a Galois extension with Galois group  $\mathrm{SL}_2(\mathbb{F}_q)$  and let F be the fix field of a 2-Sylow subgroup  $G_2$ . Then  $\mathrm{tr}_{L/F}\langle 1 \rangle \simeq \langle \langle -1, -1, t' \rangle \rangle$  for some  $t' \in F^*$  and  $\langle L \rangle \simeq \langle (L:K]/8) \times \psi$  for some Pfister form  $\psi$  over K with  $\psi_F \simeq \langle \langle -1, -1, t' \rangle \rangle$  (apply Proposition 12 and Corollary 2). By [3, 4.5.2] there is some  $t \in K^*$  with  $\psi \simeq \langle \langle -1, -1, t \rangle \rangle$ .

Since

$$1 \to \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle \to \mathrm{SL}_2(\mathbb{F}_q) \to \mathrm{PSL}_2(\mathbb{F}_q) \to 1$$

is a nonsplit extension we can apply Proposition 7. Then proceed as in the proof of Proposition 12. ■

Now let L/K be a Galois extension with Galois group  $\mathfrak{S}_4$ . Since  $\mathfrak{S}_4$  has a dihedral group of order 8 as a 2-Sylow subgroup we get  $\langle L \rangle \simeq 3 \times \langle \langle -1, -a, -b \rangle \rangle$  for some  $a, b \in K^*$  (use Proposition 12, Lemma 1, and [3, 4.5.2]).

Consider a Galois extension L/K. Let  $G_2$  be a 2-Sylow subgroup of its Galois group. Suppose that  $L/L^{G_2}$  is noncyclic and its trace form is not similar to a Pfister form. In general we do not get much information on the trace form of L/K. If  $[L:K] \equiv 8 \mod 16$  then  $G_2$  must be  $\mathbb{Z}_2 \times \mathbb{Z}_4$ . If G has order 24, then the classification of all these groups implies that G has a normal subgroup of order 3 in this situation. Hence no problem arise for  $n \leq 31$ . If  $G_2$  has order 16, then  $G_2 \simeq Q_8 \wedge \mathbb{Z}_4$ ,  $G_2 \simeq Q_{16}$ , or  $G_2 \simeq M(16)$ . In the latter case  $G_2$  has a normal complement in G (see [13, Wong's theorem]).

## 8. THE TRACE FORM OF A CYCLOTOMIC EXTENSION AND ITS MAXIMAL REAL SUBFIELD

Next we apply our results to determine the trace form of a cyclotomic extension  $K_n/\mathbb{Q}$  and the trace form of its maximal real subfield  $K_n^+$ . The trace form of a cyclotomic extension has been computed in [4, pp. 47–49]. We are able to give a shorter proof.

PROPOSITION 22. Let  $n \in \mathbb{N}$ ,  $n \not\equiv 2 \mod 4$ . Let  $\zeta_n$  be a primitive nth root of unity. Set  $K_n := \mathbb{Q}(\zeta_n)$  and let  $\Phi_n(X)$  be the minimal polynomial of  $\zeta_n$ over Q. We get

1.  $\langle K_n \rangle \sim 0$ , if  $n \equiv 0 \mod 4$  and if n has at least three distinct prime divisors,

2. 
$$\langle K_n \rangle \sim \langle p, -1 \rangle \otimes \langle q, -1 \rangle$$
, if  $n = p^r q^s \equiv 1 \mod 2$  with  $r, s \geq 1$ ,

3. 
$$\langle K_n \rangle \sim \langle (-1)^{r-1} \rangle \otimes \langle p, -1 \rangle$$
, if  $n = p^r \equiv 1 \mod 2$ ,  $r \ge 1$ .

*Proof.* Case 1.  $n = 2^{l} \ge 4$ . Then  $\varphi(n) = 2^{l-1}$  and  $\Phi_{n}(X) = X^{2^{l-1}} + 1$ . Hence,  $\langle K_n \rangle \sim 0$  by [4, III,4.1].

Case 2.  $n = p^r$ ,  $p \neq 2$ ,  $r \geq 1$ . Then  $K_p/\mathbb{Q}$  is a subextension of  $K_n/\mathbb{Q}$ with  $[K_n:K_p]=p^{r-1}\equiv 1 \mod 2$ . Hence by Proposition  $1\langle K_n\rangle\simeq p^{r-1}\times \langle K_p\rangle$ . Now  $X^p-1=(X-1)\Phi_p(X)$  gives

$$\langle p \rangle \sim \langle \mathbb{Q}[X]/(X^p-1) \rangle \simeq \langle \mathbb{Q}[X]/(X-1) \rangle \perp \langle K_p \rangle \simeq \langle 1 \rangle \perp \langle K_p \rangle.$$

Thus  $\langle K_p \rangle \sim \langle p, -1 \rangle$ .

Case 3.  $n = p_1^{e_1} \cdots p_t^{e_t}, e_1, \dots, e_t \ge 1$ . Then  $K_n = K_{p_1^{e_1}} \cdots K_{p_t^{e_t}}$  and  $K_{p_i^{e_i}} \cap \prod_{i \neq j} K_{p_i^{e_i}} = \mathbb{Q}$  gives  $\langle K_n \rangle \simeq \bigotimes_{i=1}^t \langle K_{p_i^{e_i}} \rangle$ . If n is even, then  $\langle K_n \rangle \sim 0$  by case (1). If  $t \geq 3$ , then  $\langle K_n \rangle \in I^t(\mathbb{Q})$  by Proposition 4. We further know sign  $\langle K_n \rangle = 0$ .

Next we consider the trace form of  $K_n^+/\mathbb{Q}$ .

PROPOSITION 23. Set  $m := \varphi(n)/2 =: 2^e m_0$  with  $m_0$  odd. Let t be the number of odd prime divisors of n. Then the trace form of the maximal real subfield  $K_n^+$  inside  $K_n$  over  $\mathbb{Q}$  is given as follows:

1. 
$$\langle K_2^+ \rangle \simeq \langle K_4^+ \rangle \simeq \langle 1 \rangle$$
 and  $\langle K_n^+ \rangle \simeq \langle 2, 10 \rangle \perp (2^{l-1} - 2) \times \langle 1 \rangle$ , if  $n = 2^l \ge 8$ .

2. Let 
$$n = 4p^r$$
,  $p \neq 2$ ,  $r \geq 1$ . Then 
$$\langle K_n^+ \rangle \simeq m \times \langle 2, 2p \rangle, \qquad \text{if } p = 0$$

$$\langle K_n^+ \rangle \simeq m \times \langle 2, 2p \rangle,$$
 if  $p \equiv 3 \mod 4.$   
 $\langle K_n^+ \rangle \simeq \langle p \rangle \perp (m-1) \times \langle 1 \rangle,$  if  $p \equiv 1 \mod 4.$ 

$$\langle K_n^+ \rangle \simeq \langle p \rangle \perp (m-1) \times \langle 1 \rangle, \quad \text{if } p \equiv 1 \mod 4.$$

3. Let 
$$n = 2^{l}p^{r}$$
,  $p \neq 2$ ,  $l \geq 3$ ,  $r \geq 1$ . Then

$$\langle K_n^+ \rangle \simeq \langle 1, 5, p, p, p, 5p \rangle \perp (m-6) \times \langle 1 \rangle, \quad if p \equiv 3 \mod 4 \text{ and } l > 3.$$
  
$$\langle K_n^+ \rangle \simeq \langle 1, 5, p, 5p \rangle \perp (m-4) \times \langle 1 \rangle, \quad else.$$

4. Let  $n = 4p^rq^s$  with  $p \neq q$  odd and  $r, s \geq 1$ . Then

$$\langle K_n^+ \rangle \simeq \langle 1, p, p, p, q, pq \rangle \perp (m-6) \times \langle 1 \rangle, \quad \text{if } q \not\equiv p \equiv 3 \mod 4.$$
  
$$\langle K_n^+ \rangle \simeq \langle 1, p, q, pq \rangle \perp (m-4) \times \langle 1 \rangle, \quad \text{else.}$$

5. Let  $n \equiv 0 \mod 8$ ,  $t \ge 2$ ; or  $n \equiv 4 \mod 8$ ,  $t \ge 3$ ; or  $n \equiv 1 \mod 2$ ,  $t \ge 4$ ; or  $n \equiv 1 \mod 2$ , t = 3 and  $p \equiv 1 \mod 4$  for all  $p \mid n$ . Then

$$\langle K_n^+ \rangle \simeq m \times \langle 1 \rangle$$
.

6. Let 
$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3}$$
 odd and  $p_3 \equiv 3 \mod 4$ . Then

$$\begin{split} \langle K_n^+ \rangle &\simeq \langle 1, p_1 p_2, p_2 p_3, p_1 p_3 \rangle \perp (m-4) \times \langle 1 \rangle, \\ &\qquad \qquad if \, p_1 \equiv p_2 \equiv p_3 \equiv 3 \bmod 4. \\ \langle K_n^+ \rangle &\simeq \langle 1, p_1, p_2, p_1 p_2 \rangle \perp (m-4) \times \langle 1 \rangle, \\ &\qquad \qquad if \, p_1 \equiv p_2 \not\equiv p_3 \equiv 3 \bmod 4. \\ \langle K_n^+ \rangle &\simeq \langle 1, 1, 1, p_1 \rangle \otimes \langle p_2, p_3 \rangle \perp (m-8) \times \langle 1 \rangle, \\ &\qquad \qquad if \, p_1 \not\equiv p_2 \equiv p_3 \equiv 3 \bmod 4. \end{split}$$

7. Let  $n = p^r q^s, r, s \ge 1, p \ne q$  odd. Then

$$\langle K_n^+ \rangle \simeq \langle 1, p, q, pq \rangle \perp (m-4) \times \langle 1 \rangle, \qquad \text{if } p \equiv q \equiv 1 \bmod 4.$$

$$\langle K_n^+ \rangle \simeq m_0 \times \langle 2, 2pq \rangle, \qquad \text{if } p \equiv q \equiv 3 \bmod 4.$$

$$\langle K_n^+ \rangle \simeq \langle 2, 2q \rangle \perp (m-2) \times \langle 1 \rangle, \qquad \text{if } p \not\equiv q \equiv 1 \bmod 4,$$

$$q \equiv 1 \bmod 8.$$

$$\langle K_n^+ \rangle \simeq \langle 1, q, p, p \rangle \perp (m-4) \times \langle 1 \rangle, \qquad \text{if } p \not\equiv q \equiv 1 \bmod 4,$$

$$q \equiv 5 \bmod 8.$$

8. Let  $n = p^r$ ,  $r \ge 1$  odd. Then

$$\langle K_n^+ \rangle \simeq m \times \langle 1 \rangle,$$
 if  $p \equiv 3 \mod 4$ .  
 $\langle K_n^+ \rangle \simeq \langle 2, 2p \rangle \perp (m-2) \times \langle 1 \rangle,$  if  $p \equiv 1 \mod 4$ .

*Proof.* Let  $G_n:=G(K_n/\mathbb{Q})$  and  $G_n^+=G(K_n^+/\mathbb{Q})$ . We know  $\dim \langle K_n^+\rangle=[K_n^+:\mathbb{Q}]=\operatorname{sign}\langle K_n^+\rangle=\varphi(n)/2$ . Let  $n=2^lp_1^{e_1}\dots p_t^{e_t},e_1,\dots,e_t\geq 1,l\geq 0$  be the prime decomposition of n. By Proposition 4 we have to study the 2-rank of  $G_n^+$  to get more information on  $\langle K_n^+\rangle$ . We use the following facts from basic algebra and from number theory.

Fact I.

$$\operatorname{rk}_2(G_n) = \begin{cases} t, & \text{if } n \text{ is odd;} \\ t+1, & \text{if } n \equiv 4 \bmod 8; \\ t+2, & \text{if } n \equiv 0 \bmod 8. \end{cases}$$

Fact II.  $\operatorname{rk}_2(G_n) - 1 \le \operatorname{rk}_2(G_n^+) \le \operatorname{rk}_2(G_n)$  and  $\operatorname{rk}_2(G_n^+) = \operatorname{rk}_2(G_n) - 1$  if and only if  $G_n \simeq \mathbb{Z}/2\mathbb{Z} \times H$  for some abelian group H if and only if n is even or n has a prime divisor  $p \equiv 3 \mod 4$ ;  $(\operatorname{rk}_2(G))$  is the minimal number of a set of generators of the 2-Sylowgroup of G).

Fact III. Let p be a prime divisor of n. Then  $\sqrt{(-1)^{(p-1)/2}p} \in K_n$ . If n is even, then  $\sqrt{p} \in K_n^+$ . If  $8 \mid n$ , then  $\sqrt{5} \in K_n^+$ .

Fact IV. We further use Proposition 8. Let  $K/\mathbb{Q}$  be a cyclic extension of degree 4. Then the local Hasse-invariant  $H_p\langle K\rangle$  is trivial for primes  $p\equiv 1 \mod 4$  and for odd primes p that are unramified in  $K/\mathbb{Q}$ .

Let  $K_n^+(2)$  be the maximal 2-extension inside  $K_n^+$ . Let  $m := \varphi(n)/2 = 2^e m_0$  with  $m_0$  odd.

Case 1.  $n=2^l\geq 2$ . Then  $\langle K_2^+\rangle\simeq \langle K_4^+\rangle\simeq \langle 1\rangle$ . Let  $l\geq 3$ . Then  $G_n^+$  has a cyclic 2-Sylowgroup. Since  $K_n^+(2)$  is contained in the cyclic extension  $K_{2n}^+(2)$  and  $[K_{2n}^+(2):K_n^+(2)]=2$ , we can apply Corollary 4. By Fact III we get

$$\langle K_n^+ \rangle \simeq \langle 2, 10 \rangle \perp (m-2) \times \langle 1 \rangle.$$

Case 2.  $n=4p^r, r\geq 1, \ p\neq 2$ . Then  $\mathrm{rk}_2(G_n^+)=1$  and  $\mathrm{dis}(K_n^+/\mathbb{Q})=p$  by Fact III. If  $p\equiv 3 \mod 4$ , then  $[K_n^+:\mathbb{Q}]\equiv 2 \mod 4$ . Now apply Proposition 18. If  $p\equiv 1 \mod 8$  apply Corollary 3. Now consider  $p\equiv 5 \mod 8$ . Only the primes 2 and p are ramified in  $K_n$  (see [16, IV, Section 1, Theorem 1]). By Fact IV all local Hasse-invariants at odd primes are trivial. Now Hilbert reciprocity gives

$$\langle K_n^+ \rangle \simeq \langle p \rangle \perp (m-1) \times \langle 1 \rangle.$$

Case 3 and 4.  $n = 2^l p^r$ ,  $l \ge 3$ ,  $p \ne 2$ , or  $n = 4p^r q^s$  with p, q odd and  $r, s \ge 1$ . Then  $\mathrm{rk}_2(G_n^+) = 2$ . Hence,  $\mathrm{dis}(K_n^+/\mathbb{Q}) = 1$ . Now (III) gives  $\sqrt{5}$ ,  $\sqrt{p} \in K_n^+$  (resp.  $\sqrt{p}$ ,  $\sqrt{q} \in K_n^+$ ). Now apply Proposition 6.

Case 5. Then Facts I, II and Proposition 4 give

$$\langle K_n^+ \rangle \simeq m \times \langle 1 \rangle.$$

Case 6. Then  $\operatorname{dis}(K_n^+/\mathbb{Q})=1$ , since  $\operatorname{rk}_2(G_n^+)=2$ . Let  $p_1\not\equiv p_2\equiv 3$  mod 4. We get  $\sqrt{p_1}$ ,  $\sqrt{p_2\,p_3}\in K_n^+$  by (III). Proposition 6 gives  $w_2\langle K_n^+\rangle=$ 

 $(p_1, p_2 p_3) \in \operatorname{Br}(\mathbb{Q})$ . Extending this approach we get

$$\begin{split} w_2 \langle K_n^+ \rangle &= \frac{p_1 - 1}{2} (p_2, p_3) + \frac{p_2 - 1}{2} (p_1, p_3) + \frac{p_3 - 1}{2} (p_1, p_2) \\ &+ \frac{p_1 - 1}{2} \frac{p_2 - 1}{2} \frac{p_3 - 1}{2} (p_1 p_2 p_3, -1) \in \operatorname{Br}(\mathbb{Q}). \end{split}$$

Case 7. If  $p\equiv q\equiv 1 \mod 4$ , then  $\mathrm{rk}_2(G_n^+)=2$  and  $\sqrt{p}$ ,  $\sqrt{q}\in K_n^+$  by Facts I–III. We get  $w_2\langle K_n^+\rangle=(p,q)$  by Proposition 6. Let  $p\equiv q\equiv 3 \mod 4$ . Then  $\sqrt{pq}\in K_n^+$  and  $\mathrm{ord}(G_n^+)\equiv 2 \mod 4$ . Now apply Proposition 18. Next consider  $p\not\equiv q\equiv 1 \mod 4$ . Then  $\mathrm{rk}_2(G_n^+)=1$  and  $\sqrt{q}\in K_n^+$ . If  $q\equiv 1 \mod 8$ , then

$$\langle K_n^+ \rangle \simeq \langle 2, 2q \rangle \perp (m-2) \times \langle 1 \rangle$$

by Corollary 4. Let  $q\equiv 5 \mod 8$ .  $K_n^+(2)/\mathbb{Q}$  is a cyclic extension of degree 4 and  $\mathbb{Q}(\sqrt{q})$  is its unique nontrivial subfield. Then p and q are the only ramified primes in  $K_n^+(2)/\mathbb{Q}$ . We get  $H_l\langle K_n^+\rangle=1$  if  $l\neq 2$ , p by (IV). Since  $q\equiv 5 \mod 8$ , the prime 2 does not split in the quadratic extension  $K_n^+(2)/\mathbb{Q}$ . Further, 2 is unramified. Thus Proposition 4(2)(c) of [6] gives  $H_2\langle K_n^+\rangle=-1=H_p\langle K_n^+\rangle$  by Hilbert reciprocity.

Case 8. If  $p \equiv 3 \mod 4$  then m is odd. If  $p \equiv 1 \mod 4$  then  $K_n^+/\mathbb{Q}$  is contained in the cyclic extension  $K_n/\mathbb{Q}$  of degree  $2[K_n^+:\mathbb{Q}]$ . Now use Corollary 4.

#### REFERENCES

- 1. A. A. Albert, "Modern Higher Algebra," University Press, Chicago, 1937.
- J. Kr. Arason, Cohomologische Invarianten quadratischer Formen, J. Algebra 36 (1975), 448–491.
- E. Bayer-Fluckiger and J. P. Serre, Torsions quadratiques et bases normales autoduales, Amer. J. Math. 116 (1994), 1–64.
- P. E. Conner and R. Perlis, A Survey of Trace Forms of Algebraic Number Fields, World Scientific, Singapore, 1984.
- C. Drees, Spurformen von Körpererweiterungen kleinen Grades, Diplomarbeit, Westfälische Wilhelms-Universität Münster, 1994.
- M. Epkenhans, Trace forms of normal extensions of algebraic number fields, *Linear and Multilinear Algebra* 25 (1989), 309–320.
- 7. M. Epkenhans, Trace forms of trinomials, J. Algebra 155 (1993), 211-220.
- 8. M. Epkenhans and M. Krüskemper, On Trace Forms of étale Algebras and Field Extensions, *Math. Z.* **217** (1994), 421–434.
- 9. A. Fröhlich, Orthogonal representation of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, *J. Reine Angew. Math.* **360** (1984), 84-123.
- 10. V. P. Gallagher, Local Trace Forms, Lin. Multilin. Alg. 7 (1979), 167-174.

- 11. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- 12. H. G. Grundman, T. L. Smith, and J. R. Swallow, Groups of Order 16 as Galois Groups, *Exposition. Math.* 13 (1995), 289–319.
- 13. B. Huppert, "Endliche Gruppen I," Grundlagen Math. Wiss. Springer-Verlag, Berlin/Heidelberg/New York, 1967.
- 14. I. Kiming, Explicit classifications of some 2-extensions of a field of characteristic different from 2, *Canad. J. Math.* **42** (1990), 825–855.
- M. Krüskemper, The quadratic form transfer, Schriftenr. Math. Inst. Univ. Münster, 15, 1995.
   Serie.
- 16. S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, MA, 1970.
- 17. J. Mináč and T. Smith, A characterization of *C*-fields via Galois groups, *J. Algebra* **137** (1991), 1–11.
- 18. W. Scharlau, "Quadratic and Hermitian Forms," Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- 19. C. Scheiderer, Spaces of orderings of fields under finite extensions, *Manuscripta Math.* **72** (1991), 27–47.
- 20. J. P. Serre, L'invariant de Witt de la forme  $Tr(x^2)$ , Comment. Math. Helv. **59** (1984), 651–676.
- 21. A. D. Thomas and G. V. Wood, Group Tables, Shiva Publishing Limited, 1980.
- 22. E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p<br/> zu vorgegebener Gruppe der Ordnung  $p^f$ . J. Reine Angew. Math. 174 (1936), 237–245.