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Abstract

In our prior study, we have examined in depth the notion of an asymptotic period of the power sequence of an n x n fuzzy
matrix with max-Archimedean-z-norms, and established a characterization for the power sequence of an n x n fuzzy matrix with
an asymptotic period using analytical-decomposition methods. In this paper, by using graph-theoretical tools, we further give an
alternative proof for this characterization. With the notion of an asymptotic period using graph-theoretical tools, we additionally
show a new characterization for the limit behaviour, and then derive some results for the power sequence of an n x n fuzzy matrix
with an asymptotic period.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The limit behaviour of consecutive powers of a fuzzy matrix has been widely discussed in the literature. In the
study of the powers of a fuzzy matrix, the involvement of different algebraic operations may yield different results.
In general, most papers on consecutive powers of a fuzzy matrix are under the max—min operations [1-10], the
max-product operations [11-13], max-zero-z-norms [14], and max-Archimedean-t-norms [15]. As in the work of
Thomason [10], he proved that the sequence of consecutive powers of a fuzzy matrix with max—min composition
either converges to an idempotent matrix or oscillates in finitely many steps. Over a distributive lattice using graph-
theoretical tools, Cechlarova [16] studied the powers of a fuzzy matrix. In later years, Han and Li [17] studied the
power sequence of incline matrices, to which the boolean matrices, the fuzzy matrices and lattices matrices belong.
Moreover, Gavalec [6,7] explored the periodicity and orbits of matrices with max—min compositions. Hashimoto
then [8] assumed the transitivity for the fuzzy matrix to ensure convergence. With a clearer view, Fan and Liu [4]
defined the concept of maximum principle for the fuzzy matrix to have convergence, and Kolodziejczyk [18] defined
the notion of “s-transitive” to have convergence or to oscillate with a period 2. Fan and Liu [5] also explored the
oscillating property for the sequence of the powers of a fuzzy matrix. Guu et al. [19], in the year of 2001, extended the
study of convergence of powers of a fuzzy matrix to the products of a finite number of fuzzy matrices. In their papers,
concepts of compactness and transitivity were extended to show the convergence of products of a finite number of
fuzzy matrices. Guu et al. [20] further characterized the convergence of products of a finite number of fuzzy matrices
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in terms of boolean matrices. Possible applications to the products of many finite fuzzy matrices were suggested as
well. In particular, Lur et al. [21,22] proposed the notion of simultaneous nilpotent for a finite set of fuzzy matrices.

We [15] characterized the limit behaviour for the sequence of consecutive powers of a fuzzy matrix with the notion
of an asymptotic period under max-Archimedean-z-norms by using analytic-decomposition methods. In this paper, by
using graph-theoretical tools, we focus on giving an alternative proof for this characterization. Additionally, we shall
show a new characterization for the limit behaviour with the notion of an asymptotic period, and concluded with some
results for the power sequence of an n x n fuzzy matrix with an asymptotic.

2. Preliminaries and results

Let F denote the unit interval, i.e. F = [0, 1]. By a fuzzy matrix, A we mean A = [g;;] with g;; € F. Let F*"*"
denote the set of all the n x n fuzzy matrices. We may denote a;; by [A];;. The symbol 0 denotes the zero fuzzy matrix
and / denotes the identity fuzzy matrix in F"**"*. For A = [a;;], B = [b;;] € F"*",

[AV Bl;j :==ai; V bjj,

where a;; Vv b;j = m_ax{a,-j, bij}. Wesay A < Bifa;; < b;jforalll <i,j <n.Let $4 denote the set of all nonzero
entries of A, and let A denote the largest element in @4. Fora A € @4, A, denotes a boolean matrix [A;];;, where

1 ifa = A,
[Ak]tj — {0 otherwise.

Let A=2A7, A= \;cq, G+ if @4 #Pand A = A = 0if &4 = (. Then we have

A= \/ xszA\/A.

re SPA

Definition 1 (/23]). Let T'(x, y) be a real-valued function on [0, 1] x [0, 1] with 0 < T(x,y) < 1. T is called a
t-norm if T satisfies the following conditions:

@ T(T(x,y),z) =Tx,T(y,z)) forall x, y, z € [0, 1].

b) T(x,y)=T(y,x)forall x, y € [0, 1].

© Tx,y) <T(x1,yp forall0<x <x;<land0<y <y <1.
(d) T(x,1) =xforall x € [0, 1].

Definition 2. Let 7 be a 7-norm. Let us denote for k > 2: T(x) = T(T*'(x), x). T is called Archimedean if
limy—, 00 TX(x) = 0 for all x € (0, 1).

Each Archimedean-¢-norm satisfies 7'(x, x) < x for all x € (0, 1), but the converse implication holds only with
an additional assumption that is upper semicontinuous (see [24, pp. 27-29]. For two fuzzy matrices A = [qa;;], B =
[b;;] € ">, their product is denoted by A ® B, where [A ® B];; = V”m:l T (aim, bpj) and T is an Archimedean-¢-
norm. The notation Aé means A ® A, A’é means kth power of A. We say the power sequence of A is convergent if
the sequence {Ag : k € N} converges; that is, limg_, o afj exists foralli, j =1,2,...,n.Let C be an n x n boolean
matrix. Note that C é) = CC, where CC is the product of boolean matrices in boolean algebra. It is well known that the
sequence of consecutive powers of a boolean matrix in max-Archimedean-z-norms either converges in finitely many
steps or oscillates with a finite period (see, e.g. [25]). Precisely, we say that the power sequence of C is p-periodic if
there exist [y, p such that

ch=ci™, keNizl=>1

The minimal such p is called the period. If p = 1, the powers of C are convergent.

Let A = [a;;] € F"*" and let T be an Archimedean-z-norm. For x,y € [0, 1], we denote xTy = T (x, y).
The weighted directed graph G(A) associated with A has vertex set {1,2,...,n} and an arc (i, j) from i to j
with the weighted a;; if a;; > 0. A directed path y(i,ii,...,ix—1,j) with the length k is a sequence of k
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arcs (i,11), (i1,12), ..., (ix—1, j). We may say y is a k-directed path from i to j. The weight of a directed path
y (io, i1, - - -, i), as denoted by w(y (ig, i1, - .., ix)) or simply by w(y), is defined by

w(yGo, i1, ..., i) = aiyi,Tay,i, T -+ Ta;,_,i,.

A directed circuit of the length k is a directed path y (ig, i1, - - -, ix) with iy = ix. The maximum weight of a directed
circuit in G(A) is denoted by w(A). A directed circuit with the weight equal to w(A) is called a critical directed
circuit, and vertices on critical directed circuit are called critical vertices. Associated with A, we define the critical
Sfuzzy matrix A€ of A as

AT a;j if a;; lies on a critical directed circuit,
[A%];j == .
0 otherwise.

Note that if w(A) = 1, then the critical fuzzy matrix A€, A are boolean matrices and A < A < A. If there are no
directed circuits in G(A), then we let £t(A) = 0.

Forallk € N, 1 < r,s < n, let L denote the set of all k-directed path in G(A) and let £;* denote the set of all
k-directed path from r to s in G(A). For y (i, i1, ...,ix) € Ly, the number of arcs (i;, i;41) with 0 < a;,;,,, < 1
forallt = 0,1,...,k — 1, is denoted by #y. Foralli = 0,1,2,...,k,let I;(k) = {y € Ly : #y = i}, and let
I (k) = {y € L}’ : #y = i}. For any subset S of directed paths in G(A), we denote w(S) := max{w(y) : y € §},if
S = ¢, then w(S) = 0. For any real number x, let us denote |x | the largest integer which is less than or equal to x.

Definition 3 (/7/5]). Let A be an n x n fuzzy matrix. The power sequence {A{e : | € N} of fuzzy matrices in F"*" is

asymptotically p-periodic if limg_, o A'gkp exists foralli = 1, 2, ..., p. The minimal such p is called the asymptotic
period p.If p = 1, we have a convergent sequence.

Theorem 1. Let A be an n X n fuzzy matrix. Then the following statements are mutually equivalent.

(1) The sequence {4& : k € N} has an asymptotic period p.
(ii) The powers of A have a period p.
(iii) The powers of A€ have a period p.

The equivalence of the two statements (i) and (ii) of Theorem 1 was established by Pang [15] using analytic-
decomposition methods. In this article, we give an alternative proof using the graph-theoretical tools. The following
lemmas will be needed in the proof of Theorem 1.

Lemma 1. Let A be an n X n fuzzy matrix. Then

@) If u(A) =0, then Al = 0.
(i) If 0 < ju(A) < 1, then limy_ o A% = 0.

Proof. (i) Assume Ag’9 # 0. Then there exists a n-directed path y (i, if, ..., in—1, j) for some 1 < i, j < n with
w(y(@,it,...,in—1,J)) # 0. Let ip = i and i, = j. By the pigeonhole principle, we have i, = iy for some
0 <r <s < n.Itfollows that P (i,, iy+1, ..., is) is a directed circuit with w(y) # 0. Then w(A) # 0, which leads to
a contradiction. Therefore, A{é =0.

(ii) Let @ = max{a;; | 0 < a;; < 1} and let m be large enough. For all 1 <7, s < n, we have

Ly =T§ (m)u (U F;S(m)> :

=1
Note that if y (i, i1,...,i,—1, j) is a n-directed path with w(y) = 1 for some 1 < i,j < n, then there exist
0 <r < s < nsuchthat p(iy,ir41,...,1I) is a directed circuit with w(p) = 1, where ip = i, i, = j. Let
k= L%J- Then forall j <k, wehaven — 1 < ';'J:{ . Since (A) < 1, we have

k
Iffmy=9  and | JI7m)=0.
j=1
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Then
[Ag]rs = w(c’rnv)

k m
w <F6S(m) U <U F;S(m)> U < U F;S(m)>)

j=1 Jj=k+1

w< U Ff(m)) <T"*'a) >0 asm — oo.

j=k+1

This implies that the sequence of {A'f® : k € N} convergesto 0. W

Lemma 2. Let A be an n xn fuzzy matrix with u(A) = 1. If the powers of A€ are p-periodic, then forall 1 <r,s <n,
i =0,1,2,..., there exists a positive integer N]* such that

w7 (m)) = w7 (m +kp)) forallm > N* k=1,2,....

Proof. For all 1 < r,s < n,i = 0,1,2,.... It suffices to show that w(I7*(m)) = w(I]*(m + p)). Since

the powers of A€ are p-periodic, there exists /p such that (Ac)l® = (Ac)grkp for all k € N,I > [p > 1. Let

N =n(i+1)(lo+p)—1—p.Thenm > N/ is equivalent to (m+ p —i)/(i +1) > n(lo+ p) — 1, which implies by
a simple counting argument that any directed path y (r = ig, i1, ..., im+p = §) € I°(m + p) contains one ¢-directed
path ¥'(in, int1s - .., inee) With w(y’) = 1, wheret > n(lp + p),0 <h <h+t <m+ p.

Claim. The directed path y’'(is, if11, ..., iper) contains a critical directed circuit with the length greater than or
equal to o + p.

Put ny = h, and let s; be the maximum integer such that ny < s1 < h + 1t and i,,;, = i5;. Putny = 51 + 1, and let
52 be the maximum integer such that np < s, < h + ¢ and i,,, = i,,. Following the continuity, we have a sequence of

h=n1§s1<n2§sz<---<n;§sf

with j < nandi,, =i forallk =1,2,...,j. Then

j
D sk —mil + (= 1) = ndlo + p),
k=1

so that there exists 1 < i < f such that |SZ — n;.l > Iy + p. Then the directed path y'(i, ipat1, ..., insr)
contains a critical directed circuit with the length greater than or equal to /[y + p. Without loss of generality, we
assume that |s; — n1| > Iy + p. Since the powers of A° are p-periodic, there exists a critical directed circuit
Y (nys ifs - ooy Bf 45y —ny|—p—2 is,) With the length |s1 — n1| — p. Then the directed path

V0s s ooy ngs By oo oy B sy —ny = p=2s sy s oo iy p) € 17 (m),
and w(y) = w(y). This implies that

w7 (m + p)) < w7 (m)). ey
On the other hand, since m > N/* is equivalent to

T+1l >nlo—1+(m_‘i—i—ll)pznlo—l,
which implies by a simple counting argument that for any directed path y (ig, i1, ...,in) € I}°(m) contains a ¢-
directed path v'(ip, ipt1, ..., ipar) Withw(y’) =1, wheret > nlp,0 <h < h+1t < m.

Claim. The directed path y’(ij, ij+1, ..., i;+;) contains a critical directed circuit with the length greater than or
equal to [p.

Put n1 = h, and let 51 be the maximum integer such that ny < sy < h 4+t and i,,, = i5,. Putny = 51 4+ 1, and let
52 be the maximum integer such that n, < s, < h + ¢ and i,,, = i,,. Following the continuity, we have a sequence

h:n1§s1<n2§sz<~-~<n;§s]c
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with j <nandi,, =iy forallk =1,2,..., j. Then

j
D sk —ml + (J — 1) = nly,
k=1

so that there is 1 < i < f such that |s; — n;| > lo. Then the directed path y'(ip, ip+1, ..., int+s) contains a directed
circuit with the length greater than or equal to /y. Without loss of generality, we assume that |s; — n1| > [y. Since the
powers of A are p-periodic, there exists a critical directed circuit y” (in,, i, . .., 74 |5, —n,|+p—2. is;) With the length
|s1 —n1| + p. Then the path

y (o, ... Inpsdpy ey if+|s1—n1|+p—2’ Isys-vsim) € Firs(m +p),
and clearly w(y) = w(y). This implies that

w(l (m)) < w(I}* (m + p)). 2)
Hence by (1) and (2), we have w(I7*(m + p)) = w(I7* (m)). This completes the proof. M

We proceed now to prove Theorem 1. We first prove that the following statements are mutually equivalent:

(i)’ The sequence {{Uf@ : k € N} is asymptotically p-periodic;
(ii)" The powers of A are p-periodic;
(iii)’ The powers of A¢ are p-periodic.
If w(A) < 1, then (i)’ < (ii) < ow(iii)’ follows from Lemma 1 and A < A and A < A. Next, we consider the case

n(A) = 1. )
(i) = (ii)’. Since the sequence {Algb : k € N} is asymptotically p-periodic, then for all 1 < i < p, we let

Ag =limkﬁooA’ng_Let1 <rs §n.F0rallf= 1,2,...,p,k=1,2,... wehave
i+k
[Ag "l = wlLE, )
i+kp
= w3 G +kp) \/w [ | TG +kp)
j=1
Moreover,
f+kp )
w(I§* (@ +kp)) €{0,1} and w | |J I +kp) | < <1,
j=1

where o = max{qg;; : 0 < a;; < 1}. Then we have forallk = 1,2, ..,
w(ﬁlfikp) =1 ifand only if w(I}*(i +kp)) =1

and
w(ﬁlfikp) <a ifand only if w(I* (f + kp)) =0.

We distinguish two cases:

Case 1. If [/ﬁ@]rs = 1, then there exists a positive integer N; such that [Agkp rs = 1 forall k > N:, so that

wlit, )=1 and w(l§*(i +kp) =1 fork > N;.

Hence, [Al "], = 1 forall k > N:.
Case 2. If [Af@]rs # 1, then there exists a positive integer N such that [Agkp lrs <a < 1fork > N:, so that

w(lfy, ) <e and w3 +kp) =0 fork > N;.
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Hence, [Al "], = 0 forall k > N:.
Let N = max (f + pN;). Then we have

1<i<p
[AL1,s = [AZ*],, forallk e N,I> N.

Therefore, the powers of A are p-periodic.
(ii)l = (iii)’. Since w(A) = 1, there exists a critical directed circuit in G(A) with the weight equal to 1, so that
each entries of A€ iseitherOor 1. Forall 1 <i, j <n,

[A°);j = 1 & thereexist | <i, j, iy, ...,ix,i <nsuchthata;Ta;;,T - Ta;; =1
<:>6_lij=C_ljil :"':C_likizl
< aij = dji =---=a,'k,~=l
& thereexist1 <1, j,i1,...,ix,i <nsuchthata;jTa;;T---Tay; =1
& [A°); = 1.

Then we have A¢ = A€. Since the powers of A are p-periodic, the powers of A are p-periodic (by Theorem 5.4.25
(3) in [25]). Therefore, the powers of A€ are p-periodic.

(iii)’ = (i)’. Assume that the powers of A€ are p-periodic and let « = max{a;; : 0 < a;; < 1}. For& > 0 be
given. Since limg_s Tk(oc) = (, there exists a integer i such that T/ () < g/2forall j > i. Let1 <r s <n.For
allm=1,2,...andk=1,2,..., we have

l m
cy=rymullJrrm|u| U rrom
j=1 j=i+1
and
i m+kp
Ly =T0"m+kp) U [ | I m+kp) |U| | I n+kp)
j=1 j=i+1
By Lemma 2, we may choose a positive integer N™* such that forall j =0, 1,2, ..., f,

w7 (m)) = w(l}*(m + kp)) form > N,k € N.
Also, we have k € N,
[w (I m)) — w7 m + kp))| < 277 @) <&,

wheref—}—l <j<m+kp.
Since

k
(Al =w(Ly) and [Ag" "y = w(Cy,,),
then we have

|[Ag]rs - [Ag+kp]rs| <¢ form > N”, ke N.

So limk%oo[AgJ“kp]rs exists for m > N”"*. Hence, limy_, o0 Agkp exists for i = 1,2, ... p. Therefore, the sequence

{Alg9 : k € N} is asymptotically p-periodic.

Next, we prove that the sequence {Aéb : k € N}, the powers of A and the powers of A have the same period.
Assume that the sequence {A’gg : k € N} has an asymptotic period p1, the powers of A have a period p, and the powers
of A€ have a period p3. Then we have p; < p; by implication (i)’ = (ii)’, p3 < p» by implication (ii)’ = (iii)’ and
p1 < p3 by implication (iii)’ = (i)’, so that p; = p» = p3. This completes the proof of Theorem 1. W
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Example 1. Consider the following 4 x 4 fuzzy matrix

[1/3 1 12 0
U BRI VR VAR
12 1 13 0
Lo 0 o0 12
Then,
0 1 0 0 0100
- 1000 c 1000
A=19 1 0 0| ™ A =1y 0 0 0
0 0 0 0 0000

It is easy to see that the powers of A have a period two and the powers of A have a period two. The directed
computation verifies this assertion:

[ 1 1/2 173 0 7
12 1 172 0
k _
A=11 1n 1s o | k=469

0 o0 0 Tk1/2)]

and
[1/2 1 1/2 0
1 1/2 1/3 0
k_ —
Ap = 12 1 12 0 , k=5,7,9,....
L0 0 0 TrRu/2)]
Then
1 1/2 1/3 0
ook (12 1 1720
I AS =1 12 13 0
0 0 0 O
and
12 1 1/2 0
: w1 _ |1 1/2 1/3°0
dm AR = 1 12 0
0 0 0O 0

Therefore, the sequence {A’fg : k € N} has an asymptotic period two.

The following theorem provides an extension of Fan’s theorem in [14].

Corollary 1. Let A be an n X n fuzzy matrix. Then the following statements are mutually equivalent:

(i) The sequence {ég . k € N} is convergent.
(i1) The powers of A are convergent.
(iii) The powers of A€ are convergent.

Proof. This is the case of p = 1 in Theorem 1. MW

The equivalence of the two statements (i) and (ii) of Corollary 1 were established by Fan [14].

Theorem 2. Let A be an n x n fuzzy matrix. Then the following statements are mutually equivalent:

(i) The sequence {4159 : k € N} converges to 0.
(ii) The powers of A converge to 0.
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(iii) The powers of A€ converge to 0.

Proof. If u(A) = 1, then there exists a directed circuit y (i, i1, ..., i;—1,i) with w(y) = 1 for some 1 < i < n,
so that [(A)%];; = [(A)%];; = 1 for all k € N. Then limy_, (A% # 0 and lim_,o(A)% # 0. Since for
allk = 1,2,..., (A9% < A% and (A% < AL, limioo AS # 0. Next, we consider the case ;1(A) < 1. By
Lemma 1, the sequence {A’f8 : k € N} converges to 0. Since for all k = 1,2, ..., (AC)]Q‘9 < A’é and (A)’f8 < Ag,
limy— 00 (A)% = limj— oo (A)% = 0. This completes the proof. M

The equivalence of the two statements (i) and (ii) Theorem 2 were proved by Pang [15] using analytical-
decomposition methods.

Example 2. Consider the following 3 x 3 fuzzy matrix

01 1
A=1(0 0 1/2
|01 0
Then,
_ [0 1 1 0O 0 O
A=10 0 O and A°=1|0 0 1/2
|10 1 0 o1 0

Then u(A) = 1/2and A3 = 0. Forallk = 3,4, ...,

) ()

and

and forallk =2,3,...,
0 0 0

1
w |0 T (-) 0
(AC)®: 2
0 0 (L
2
0 0 0
1
(AC)é’(-‘rl — O O Tk+l <§>
(1
0T 7 0

Then limy_, oo A% = limg_, oo (A% = 0.

and
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