On the asymptotic period of powers of a fuzzy matrix

Chin-Tzong Pang
Department of Information Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 320, Taiwan, ROC

Received 26 January 2007; accepted 1 March 2007

Abstract

In our prior study, we have examined in depth the notion of an asymptotic period of the power sequence of an $n \times n$ fuzzy matrix with max-Archimedean- t-norms, and established a characterization for the power sequence of an $n \times n$ fuzzy matrix with an asymptotic period using analytical-decomposition methods. In this paper, by using graph-theoretical tools, we further give an alternative proof for this characterization. With the notion of an asymptotic period using graph-theoretical tools, we additionally show a new characterization for the limit behaviour, and then derive some results for the power sequence of an $n \times n$ fuzzy matrix with an asymptotic period.

(C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Boolean matrices; Fuzzy matrices; Max-Archimedean-t-norms

1. Introduction

The limit behaviour of consecutive powers of a fuzzy matrix has been widely discussed in the literature. In the study of the powers of a fuzzy matrix, the involvement of different algebraic operations may yield different results. In general, most papers on consecutive powers of a fuzzy matrix are under the max-min operations [1-10], the max-product operations [11-13], max-zero-t-norms [14], and max-Archimedean-t-norms [15]. As in the work of Thomason [10], he proved that the sequence of consecutive powers of a fuzzy matrix with max-min composition either converges to an idempotent matrix or oscillates in finitely many steps. Over a distributive lattice using graphtheoretical tools, Cechlárová [16] studied the powers of a fuzzy matrix. In later years, Han and Li [17] studied the power sequence of incline matrices, to which the boolean matrices, the fuzzy matrices and lattices matrices belong. Moreover, Gavalec [6,7] explored the periodicity and orbits of matrices with max-min compositions. Hashimoto then [8] assumed the transitivity for the fuzzy matrix to ensure convergence. With a clearer view, Fan and Liu [4] defined the concept of maximum principle for the fuzzy matrix to have convergence, and Kolodziejczyk [18] defined the notion of " s-transitive" to have convergence or to oscillate with a period 2. Fan and Liu [5] also explored the oscillating property for the sequence of the powers of a fuzzy matrix. Guu et al. [19], in the year of 2001, extended the study of convergence of powers of a fuzzy matrix to the products of a finite number of fuzzy matrices. In their papers, concepts of compactness and transitivity were extended to show the convergence of products of a finite number of fuzzy matrices. Guu et al. [20] further characterized the convergence of products of a finite number of fuzzy matrices

[^0]in terms of boolean matrices. Possible applications to the products of many finite fuzzy matrices were suggested as well. In particular, Lur et al. [21,22] proposed the notion of simultaneous nilpotent for a finite set of fuzzy matrices.

We [15] characterized the limit behaviour for the sequence of consecutive powers of a fuzzy matrix with the notion of an asymptotic period under max-Archimedean-t-norms by using analytic-decomposition methods. In this paper, by using graph-theoretical tools, we focus on giving an alternative proof for this characterization. Additionally, we shall show a new characterization for the limit behaviour with the notion of an asymptotic period, and concluded with some results for the power sequence of an $n \times n$ fuzzy matrix with an asymptotic.

2. Preliminaries and results

Let \mathbb{F} denote the unit interval, i.e. $\mathbb{F}=[0,1]$. By a fuzzy matrix, A we mean $A=\left[a_{i j}\right]$ with $a_{i j} \in \mathbb{F}$. Let $\mathbb{F}^{n \times n}$ denote the set of all the $n \times n$ fuzzy matrices. We may denote $a_{i j}$ by $[A]_{i j}$. The symbol $\mathbf{0}$ denotes the zero fuzzy matrix and I denotes the identity fuzzy matrix in $\mathbb{F}^{m \times n}$. For $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathbb{F}^{n \times n}$,

$$
[A \vee B]_{i j}:=a_{i j} \vee b_{i j}
$$

where $a_{i j} \vee b_{i j}:=\max _{\overline{-}}\left\{a_{i j}, b_{i j}\right\}$. We say $A \leq B$ if $a_{i j} \leq b_{i j}$ for all $1 \leq i, j \leq n$. Let Φ_{A} denote the set of all nonzero entries of A, and let $\bar{\lambda}$ denote the largest element in Φ_{A}. For a $\lambda \in \Phi_{A}, A_{\lambda}$ denotes a boolean matrix $\left[A_{\lambda}\right]_{i j}$, where

$$
\left[A_{\lambda}\right]_{i j}:= \begin{cases}1 & \text { if } a_{i j} \geq \lambda \\ 0 & \text { otherwise }\end{cases}
$$

Let $\bar{A}=\bar{\lambda} A_{\bar{\lambda}}, \underline{A}=\bigvee_{\lambda \in \Phi_{A} \backslash\{\bar{\lambda}\}} \lambda A_{\lambda}$ if $\Phi_{A} \neq \emptyset$ and $\bar{A}=\underline{A}=\mathbf{0}$ if $\Phi_{A}=\emptyset$. Then we have

$$
A=\bigvee_{\lambda \in \Phi_{A}} \lambda A_{\lambda}=\bar{A} \bigvee \underline{A}
$$

Definition 1 ([23]). Let $T(x, y)$ be a real-valued function on $[0,1] \times[0,1]$ with $0 \leq T(x, y) \leq 1$. T is called a t-norm if T satisfies the following conditions:
(a) $T(T(x, y), z)=T(x, T(y, z))$ for all $x, y, z \in[0,1]$.
(b) $T(x, y)=T(y, x)$ for all $x, y \in[0,1]$.
(c) $T(x, y) \leq T\left(x_{1}, y_{1}\right)$ for all $0 \leq x \leq x_{1} \leq 1$ and $0 \leq y \leq y_{1} \leq 1$.
(d) $T(x, 1)=x$ for all $x \in[0,1]$.

Definition 2. Let T be a t-norm. Let us denote for $k \geq 2: T^{k}(x)=T\left(T^{k-1}(x), x\right) . T$ is called Archimedean if $\lim _{k \rightarrow \infty} T^{k}(x)=0$ for all $x \in(0,1)$.

Each Archimedean-t-norm satisfies $T(x, x)<x$ for all $x \in(0,1)$, but the converse implication holds only with an additional assumption that is upper semicontinuous (see [24, pp. 27-29]. For two fuzzy matrices $A=\left[a_{i j}\right], B=$ $\left[b_{i j}\right] \in \mathbb{F}^{n \times n}$, their product is denoted by $A \otimes B$, where $[A \otimes B]_{i j}=\vee_{m=1}^{n} T\left(a_{i m}, b_{m j}\right)$ and T is an Archimedean- t norm. The notation A_{\otimes}^{2} means $A \otimes A, A_{\otimes}^{k}$ means k th power of A. We say the power sequence of A is convergent if the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ converges; that is, $\lim _{k \rightarrow \infty} a_{i j}^{k}$ exists for all $i, j=1,2, \ldots, n$. Let C be an $n \times n$ boolean matrix. Note that $C_{\otimes}^{2}=C C$, where $C C$ is the product of boolean matrices in boolean algebra. It is well known that the sequence of consecutive powers of a boolean matrix in max-Archimedean-t-norms either converges in finitely many steps or oscillates with a finite period (see, e.g. [25]). Precisely, we say that the power sequence of C is p-periodic if there exist l_{0}, p such that

$$
C_{\otimes}^{l}=C_{\otimes}^{l+k p}, \quad k \in \mathbb{N}, l \geq l_{0} \geq 1
$$

The minimal such p is called the period. If $p=1$, the powers of C are convergent.
Let $A=\left[a_{i j}\right] \in \mathbb{F}^{n \times n}$ and let T be an Archimedean- t-norm. For $x, y \in[0,1]$, we denote $x T y=T(x, y)$. The weighted directed graph $\mathcal{G}(A)$ associated with A has vertex set $\{1,2, \ldots, n\}$ and an arc (i, j) from i to j with the weighted $a_{i j}$ if $a_{i j}>0$. A directed path $\gamma\left(i, i_{1}, \ldots, i_{k-1}, j\right)$ with the length k is a sequence of k
arcs $\left(i, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{k-1}, j\right)$. We may say γ is a k-directed path from i to j. The weight of a directed path $\gamma\left(i_{0}, i_{1}, \ldots, i_{k}\right)$, as denoted by $w\left(\gamma\left(i_{0}, i_{1}, \ldots, i_{k}\right)\right)$ or simply by $w(\gamma)$, is defined by

$$
w\left(\gamma\left(i_{0}, i_{1}, \ldots, i_{k}\right)\right):=a_{i_{0} i_{1}} T a_{i_{1} i_{2}} T \cdots T a_{i_{k-1} i_{k}} .
$$

A directed circuit of the length k is a directed path $\gamma\left(i_{0}, i_{1}, \cdots, i_{k}\right)$ with $i_{0}=i_{k}$. The maximum weight of a directed circuit in $\mathcal{G}(A)$ is denoted by $\mu(A)$. A directed circuit with the weight equal to $\mu(A)$ is called a critical directed circuit, and vertices on critical directed circuit are called critical vertices. Associated with A, we define the critical fuzzy matrix A^{c} of A as

$$
\left[A^{c}\right]_{i j}:= \begin{cases}a_{i j} & \text { if } a_{i j} \text { lies on a critical directed circuit, } \\ 0 & \text { otherwise } .\end{cases}
$$

Note that if $\mu(A)=1$, then the critical fuzzy matrix A^{c}, \bar{A} are boolean matrices and $A^{c} \leq \bar{A} \leq A$. If there are no directed circuits in $\mathcal{G}(A)$, then we let $\mu(A)=0$.

For all $k \in \mathbb{N}, 1 \leq r, s \leq n$, let \mathcal{L}_{k} denote the set of all k-directed path in $\mathcal{G}(A)$ and let $\mathcal{L}_{k}^{r s}$ denote the set of all k-directed path from r to s in $\mathcal{G}(A)$. For $\gamma\left(i_{0}, i_{1}, \ldots, i_{k}\right) \in \mathcal{L}_{k}$, the number of $\operatorname{arcs}\left(i_{t}, i_{t+1}\right)$ with $0<a_{i_{t} i_{t+1}}<1$ for all $t=0,1, \ldots, k-1$, is denoted by $\# \gamma$. For all $i=0,1,2, \ldots, k$, let $\Gamma_{i}(k)=\left\{\gamma \in \mathcal{L}_{k}: \# \gamma=i\right\}$, and let $\Gamma_{i}^{r s}(k)=\left\{\gamma \in \mathcal{L}_{k}^{r s}: \# \gamma=i\right\}$. For any subset S of directed paths in $\mathcal{G}(A)$, we denote $w(S):=\max \{w(\gamma): \gamma \in S\}$, if $S=\emptyset$, then $w(S)=0$. For any real number x, let us denote $\lfloor x\rfloor$ the largest integer which is less than or equal to x.

Definition 3 ([15]). Let A be an $n \times n$ fuzzy matrix. The power sequence $\left\{A_{\otimes}^{l}: l \in \mathbb{N}\right\}$ of fuzzy matrices in $\mathbb{F}^{n \times n}$ is asymptotically p-periodic if $\lim _{k \rightarrow \infty} A_{\otimes}^{i+k p}$ exists for all $i=1,2, \ldots, p$. The minimal such p is called the asymptotic period p. If $p=1$, we have a convergent sequence.

Theorem 1. Let A be an $n \times n$ fuzzy matrix. Then the following statements are mutually equivalent.
(i) The sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ has an asymptotic period p.
(ii) The powers of \bar{A} have a period p.
(iii) The powers of A^{c} have a period p.

The equivalence of the two statements (i) and (ii) of Theorem 1 was established by Pang [15] using analyticdecomposition methods. In this article, we give an alternative proof using the graph-theoretical tools. The following lemmas will be needed in the proof of Theorem 1.

Lemma 1. Let A be an $n \times n$ fuzzy matrix. Then
(i) If $\mu(A)=0$, then $A_{\otimes}^{n}=\mathbf{0}$.
(ii) If $0<\mu(A)<1$, then $\lim _{k \rightarrow \infty} A_{\otimes}^{k}=0$.

Proof. (i) Assume $A_{\otimes}^{n} \neq \mathbf{0}$. Then there exists a n-directed path $\gamma\left(i, i_{1}, \ldots, i_{n-1}, j\right)$ for some $1 \leq i, j \leq n$ with $w\left(\gamma\left(i, i_{1}, \ldots, i_{n-1}, j\right)\right) \neq 0$. Let $i_{0}=i$ and $i_{n}=j$. By the pigeonhole principle, we have $i_{r}=i_{s}$ for some $0 \leq r<s \leq n$. It follows that $\hat{\gamma}\left(i_{r}, i_{r+1}, \ldots, i_{s}\right)$ is a directed circuit with $w(\hat{\gamma}) \neq 0$. Then $\mu(A) \neq 0$, which leads to a contradiction. Therefore, $A_{\otimes}^{n}=\mathbf{0}$.
(ii) Let $\alpha=\max \left\{a_{i j} \mid 0<a_{i j}<1\right\}$ and let m be large enough. For all $1 \leq r, s \leq n$, we have

$$
\mathcal{L}_{m}^{r s}=\Gamma_{0}^{r s}(m) \cup\left(\bigcup_{j=1}^{m} \Gamma_{j}^{r s}(m)\right) .
$$

Note that if $\gamma\left(i, i_{1}, \ldots, i_{n-1}, j\right)$ is a n-directed path with $w(\gamma)=1$ for some $1 \leq i, j \leq n$, then there exist $0 \leq r<s \leq n$ such that $\hat{\gamma}\left(i_{r}, i_{r+1}, \ldots, i_{s}\right)$ is a directed circuit with $w(\hat{\gamma})=1$, where $i_{0}=i, i_{n}=j$. Let $k=\left\lfloor\frac{m-2 n+1}{n}\right\rfloor$. Then for all $j \leq k$, we have $n-1<\frac{m-j}{j+1}$. Since $\mu(A)<1$, we have

$$
\Gamma_{0}^{r s}(m)=\emptyset \quad \text { and } \quad \bigcup_{j=1}^{k} \Gamma_{j}^{r s}(m)=\emptyset .
$$

Then

$$
\begin{aligned}
{\left[A_{\otimes}^{m}\right]_{r s} } & =w\left(\mathcal{L}_{m}^{r s}\right) \\
& =w\left(\Gamma_{0}^{r s}(m) \cup\left(\bigcup_{j=1}^{k} \Gamma_{j}^{r s}(m)\right) \cup\left(\bigcup_{j=k+1}^{m} \Gamma_{j}^{r s}(m)\right)\right) \\
& =w\left(\bigcup_{j=k+1}^{m} \Gamma_{j}^{r s}(m)\right) \leq T^{k+1}(\alpha) \rightarrow 0 \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

This implies that the sequence of $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ converges to $\mathbf{0}$.
Lemma 2. Let A be an $n \times n$ fuzzy matrix with $\mu(A)=1$. If the powers of A^{c} are p-periodic, then for all $1 \leq r, s \leq n$, $i=0,1,2, \ldots$, there exists a positive integer $N_{i}^{r s}$ such that

$$
w\left(\Gamma_{i}^{r s}(m)\right)=w\left(\Gamma_{i}^{r s}(m+k p)\right) \quad \text { for all } m>N_{i}^{r s}, k=1,2, \ldots
$$

Proof. For all $1 \leq r, s \leq n, i=0,1,2, \ldots$. It suffices to show that $w\left(\Gamma_{i}^{r s}(m)\right)=w\left(\Gamma_{i}^{r s}(m+p)\right)$. Since the powers of A^{c} are p-periodic, there exists l_{0} such that $\left(A^{c}\right)_{\otimes}^{l}=\left(A^{c}\right)_{\otimes}^{l+k p}$ for all $k \in \mathbb{N}, l \geq l_{0} \geq 1$. Let $N_{i}^{r s}=n(i+1)\left(l_{0}+p\right)-1-p$. Then $m>N_{i}^{r s}$ is equivalent to $(m+p-i) /(i+1)>n\left(l_{0}+p\right)-1$, which implies by a simple counting argument that any directed path $\gamma\left(r=i_{0}, i_{1}, \ldots, i_{m+p}=s\right) \in \Gamma_{i}^{r s}(m+p)$ contains one t-directed path $\gamma^{\prime}\left(i_{h}, i_{h+1}, \ldots, i_{h+t}\right)$ with $w\left(\gamma^{\prime}\right)=1$, where $t \geq n\left(l_{0}+p\right), 0 \leq h \leq h+t \leq m+p$.

Claim. The directed path $\gamma^{\prime}\left(i_{h}, i_{h+1}, \ldots, i_{h+t}\right)$ contains a critical directed circuit with the length greater than or equal to $l_{0}+p$.

Put $n_{1}=h$, and let s_{1} be the maximum integer such that $n_{1} \leq s_{1} \leq h+t$ and $i_{n_{1}}=i_{s_{1}}$. Put $n_{2}=s_{1}+1$, and let s_{2} be the maximum integer such that $n_{2} \leq s_{2} \leq h+t$ and $i_{n_{2}}=i_{s_{2}}$. Following the continuity, we have a sequence of

$$
h=n_{1} \leq s_{1}<n_{2} \leq s_{2}<\cdots<n_{\hat{j}} \leq s_{\hat{j}}
$$

with $\hat{j} \leq n$ and $i_{n_{k}}=i_{s_{k}}$ for all $k=1,2, \ldots, \hat{j}$. Then

$$
\sum_{k=1}^{\hat{j}}\left|s_{k}-n_{k}\right|+(\hat{j}-1) \geq n\left(l_{0}+p\right)
$$

so that there exists $1 \leq \hat{i} \leq \hat{j}$ such that $\left|s_{\hat{i}}-n_{\hat{i}}\right| \geq l_{0}+p$. Then the directed path $\gamma^{\prime}\left(i_{h}, i_{h+1}, \ldots, i_{h+t}\right)$ contains a critical directed circuit with the length greater than or equal to $l_{0}+p$. Without loss of generality, we assume that $\left|s_{1}-n_{1}\right| \geq l_{0}+p$. Since the powers of A^{c} are p-periodic, there exists a critical directed circuit $\gamma^{\prime \prime}\left(i_{n_{1}}, i_{\hat{r}}, \ldots, i_{\hat{r}+\left|s_{1}-n_{1}\right|-p-2}, i_{s_{1}}\right)$ with the length $\left|s_{1}-n_{1}\right|-p$. Then the directed path

$$
\hat{\gamma}\left(i_{0}, i_{1}, \ldots, i_{n_{1}}, i_{\hat{r}}, \ldots, i_{\hat{r}+\left|s_{1}-n_{1}\right|-p-2}, i_{s_{1}}, \ldots, i_{m+p}\right) \in \Gamma_{i}^{r s}(m),
$$

and $w(\gamma)=w(\hat{\gamma})$. This implies that

$$
\begin{equation*}
w\left(\Gamma_{i}^{r s}(m+p)\right) \leq w\left(\Gamma_{i}^{r s}(m)\right) . \tag{1}
\end{equation*}
$$

On the other hand, since $m>N_{i}^{r s}$ is equivalent to

$$
\frac{m-i}{i+1}>n l_{0}-1+\frac{(n i+n-1) p}{i+1} \geq n l_{0}-1
$$

which implies by a simple counting argument that for any directed path $\gamma\left(i_{0}, i_{1}, \ldots, i_{m}\right) \in \Gamma_{i}^{r s}(m)$ contains a t directed path $\gamma^{\prime}\left(i_{h}, i_{h+1}, \ldots, i_{h+t}\right)$ with $w\left(\gamma^{\prime}\right)=1$, where $t \geq n l_{0}, 0 \leq h \leq h+t \leq m$.

Claim. The directed path $\gamma^{\prime}\left(i_{l}, i_{l+1}, \ldots, i_{l+t}\right)$ contains a critical directed circuit with the length greater than or equal to l_{0}.

Put $n_{1}=h$, and let s_{1} be the maximum integer such that $n_{1} \leq s_{1} \leq h+t$ and $i_{n_{1}}=i_{s_{1}}$. Put $n_{2}=s_{1}+1$, and let s_{2} be the maximum integer such that $n_{2} \leq s_{2} \leq h+t$ and $i_{n_{2}}=i_{s_{2}}$. Following the continuity, we have a sequence

$$
h=n_{1} \leq s_{1}<n_{2} \leq s_{2}<\cdots<n_{\hat{j}} \leq s_{\hat{j}}
$$

with $\hat{j} \leq n$ and $i_{n_{k}}=i_{s_{k}}$ for all $k=1,2, \ldots, \hat{j}$. Then

$$
\sum_{k=1}^{\hat{j}}\left|s_{k}-n_{k}\right|+(\hat{j}-1) \geq n l_{0}
$$

so that there is $1 \leq \hat{i} \leq \hat{j}$ such that $\left|s_{\hat{i}}-n_{\hat{i}}\right| \geq l_{0}$. Then the directed path $\gamma^{\prime}\left(i_{h}, i_{h+1}, \ldots, i_{h+t}\right)$ contains a directed circuit with the length greater than or equal to l_{0}. Without loss of generality, we assume that $\left|s_{1}-n_{1}\right| \geq l_{0}$. Since the powers of A^{c} are p-periodic, there exists a critical directed circuit $\gamma^{\prime \prime}\left(i_{n_{1}}, i_{\hat{r}}, \ldots, i_{\hat{r}+\left|s_{1}-n_{1}\right|+p-2}, i_{s_{1}}\right)$ with the length $\left|s_{1}-n_{1}\right|+p$. Then the path

$$
\hat{\gamma}\left(i_{0}, \ldots, i_{n_{1}}, i_{\hat{r}}, \ldots, i_{\hat{r}+\left|s_{1}-n_{1}\right|+p-2}, i_{s_{1}}, \ldots, i_{m}\right) \in \Gamma_{i}^{r s}(m+p),
$$

and clearly $w(\gamma)=w(\hat{\gamma})$. This implies that

$$
\begin{equation*}
w\left(\Gamma_{i}^{r s}(m)\right) \leq w\left(\Gamma_{i}^{r s}(m+p)\right) \tag{2}
\end{equation*}
$$

Hence by (1) and (2), we have $w\left(\Gamma_{i}^{r s}(m+p)\right)=w\left(\Gamma_{i}^{r s}(m)\right)$. This completes the proof.
We proceed now to prove Theorem 1. We first prove that the following statements are mutually equivalent:
(i)' The sequence $\left\{{\underset{A}{\otimes}}_{\otimes}^{k}: k \in \mathbb{N}\right\}$ is asymptotically p-periodic;
(ii)' The powers of \bar{A} are p-periodic;
(iii) ${ }^{\prime}$ The powers of A^{c} are p-periodic.

If $\mu(A)<1$, then (i) $)^{\prime} \Leftrightarrow(\text { (ii) })^{\prime} \Leftrightarrow$ ow(iii)' follows from Lemma 1 and $A^{c} \leq A$ and $\bar{A} \leq A$. Next, we consider the case $\mu(A)=1$.
(i) $\Rightarrow(\text { (ii })^{\prime}$. Since the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ is asymptotically p-periodic, then for all $1 \leq \hat{i} \leq p$, we let $\tilde{A}_{\otimes}^{\hat{i}}=\lim _{k \rightarrow \infty} A_{\otimes}^{\hat{i}+k p}$. Let $1 \leq r, s \leq n$. For all $\hat{i}=1,2, \ldots, p, k=1,2, \ldots$, we have

$$
\begin{aligned}
{\left[A_{\otimes}^{\hat{i}+k p}\right]_{r s} } & =w\left(\mathcal{L}_{\hat{i}+k p}^{r s}\right) \\
& =w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right) \bigvee w\left(\bigcup_{j=1}^{\hat{i}+k p} \Gamma_{j}^{r s}(\hat{i}+k p)\right) .
\end{aligned}
$$

Moreover,

$$
w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right) \in\{0,1\} \quad \text { and } \quad w\left(\bigcup_{j=1}^{\hat{i}+k p} \Gamma_{j}^{r s}(\hat{i}+k p)\right) \leq \alpha<1,
$$

where $\alpha=\max \left\{a_{i j}: 0 \leq a_{i j}<1\right\}$. Then we have for all $k=1,2, \ldots$,

$$
w\left(\mathcal{L}_{\hat{i}+k p}^{r s}\right)=1 \quad \text { if and only if } w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right)=1
$$

and

$$
w\left(\mathcal{L}_{\hat{i}+k p}^{r s}\right) \leq \alpha \quad \text { if and only if } w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right)=0
$$

We distinguish two cases:
Case 1. If $\left[\tilde{A}_{\otimes}^{\hat{i}}\right]_{r s}=1$, then there exists a positive integer $N_{\hat{i}}$ such that $\left[A_{\otimes}^{\hat{i}+k p}\right]_{r s}=1$ for all $k \geq N_{\hat{i}}$, so that

$$
w\left(\mathrm{~L}_{\hat{i}+k p}^{r s}\right)=1 \quad \text { and } \quad w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right)=1 \quad \text { for } k \geq N_{\hat{i}}
$$

Hence, $\left[\bar{A}_{\otimes}^{\hat{i}+k p}\right]_{r s}=1$ for all $k \geq N_{\hat{i}}$.
Case 2. If $\left[\tilde{A}_{\otimes}^{\hat{i}}\right]_{r s} \neq 1$, then there exists a positive integer N such that $\left[A_{\otimes}^{\hat{i}+k p}\right]_{r s} \leq \alpha<1$ for $k \geq N_{\hat{i}}$, so that

$$
w\left(\mathcal{L}_{\hat{i}+k p}^{r s}\right) \leq \alpha \quad \text { and } \quad w\left(\Gamma_{0}^{r s}(\hat{i}+k p)\right)=0 \quad \text { for } k \geq N_{\hat{i}}
$$

Hence, $\left[\bar{A}_{\otimes}^{\hat{i}+k p}\right]_{r s}=0$ for all $k \geq N_{\hat{i}}$.
Let $N=\max _{1 \leq \hat{i} \leq p}\left(\hat{i}+p N_{\hat{i}}\right)$. Then we have

$$
\left[\bar{A}_{\otimes}^{l}\right]_{r s}=\left[\bar{A}_{\otimes}^{l+k p}\right]_{r s} \quad \text { for all } k \in \mathbb{N}, l \geq N
$$

Therefore, the powers of \bar{A} are p-periodic.
(ii) $^{\prime} \Rightarrow(\text { (iii })^{\prime}$. Since $\mu(A)=1$, there exists a critical directed circuit in $\mathcal{G}(A)$ with the weight equal to 1 , so that each entries of A^{c} is either 0 or 1 . For all $1 \leq i, j \leq n$,

$$
\begin{aligned}
{\left[\bar{A}^{c}\right]_{i j}=1 } & \Leftrightarrow \text { there exist } 1 \leq i, j, i_{1}, \ldots, i_{k}, i \leq n \text { such that } \bar{a}_{i j} T \bar{a}_{j i_{1}} T \cdots T \bar{a}_{i_{k} i}=1 \\
& \Leftrightarrow \bar{a}_{i j}=\bar{a}_{j i_{1}}=\cdots=\bar{a}_{i_{k} i}=1 \\
& \Leftrightarrow a_{i j}=a_{j i_{1}}=\cdots=a_{i_{k} i}=1 \\
& \Leftrightarrow \text { there exist } 1 \leq i, j, i_{1}, \ldots, i_{k}, i \leq n \text { such that } a_{i j} T a_{j i_{1}} T \cdots T a_{i_{k} i}=1 \\
& \Leftrightarrow\left[A^{c}\right]_{i j}=1 .
\end{aligned}
$$

Then we have $\bar{A}^{c}=A^{c}$. Since the powers of \bar{A} are p-periodic, the powers of \bar{A}^{c} are p-periodic (by Theorem 5.4.25 (3) in [25]). Therefore, the powers of A^{c} are p-periodic.
(iii) ${ }^{\prime} \Rightarrow\left(\right.$ i $^{\prime}$. Assume that the powers of A^{c} are p-periodic and let $\alpha=\max \left\{a_{i j}: 0 \leq a_{i j}<1\right\}$. For $\varepsilon>0$ be given. Since $\lim _{k \rightarrow \infty} T^{k}(\alpha)=0$, there exists a integer \hat{i} such that $T^{j}(\alpha)<\varepsilon / 2$ for all $j \geq \hat{i}$. Let $1 \leq r, s \leq n$. For all $m=1,2, \ldots$ and $k=1,2, \ldots$, we have

$$
\mathcal{L}_{m}^{r s}=\Gamma_{0}^{r s}(m) \cup\left(\bigcup_{j=1}^{\hat{i}} \Gamma_{j}^{r s}(m)\right) \cup\left(\bigcup_{j=\hat{i}+1}^{m} \Gamma_{j}^{r s}(m)\right)
$$

and

$$
\mathcal{L}_{m+k p}^{r s}=\Gamma_{0}^{r s}(m+k p) \cup\left(\bigcup_{j=1}^{\hat{i}} \Gamma_{j}^{r s}(m+k p)\right) \cup\left(\bigcup_{j=\hat{i}+1}^{m+k p} \Gamma_{j}^{r s}(m+k p)\right) .
$$

By Lemma 2, we may choose a positive integer $N^{r s}$ such that for all $j=0,1,2, \ldots, \hat{i}$,

$$
w\left(\Gamma_{j}^{r s}(m)\right)=w\left(\Gamma_{j}^{r s}(m+k p)\right) \quad \text { for } m>N^{r s}, k \in \mathbb{N}
$$

Also, we have $k \in \mathbb{N}$,

$$
\left|w\left(\Gamma_{j}^{r s}(m)\right)-w\left(\Gamma_{j}^{r s}(m+k p)\right)\right| \leq 2 T^{\hat{i}+1}(\alpha)<\varepsilon,
$$

where $\hat{i}+1 \leq j \leq m+k p$.
Since

$$
\left[A_{\otimes}^{m}\right]_{r s}=w\left(\mathcal{L}_{m}^{r s}\right) \quad \text { and } \quad\left[A_{\otimes}^{m+k p}\right]_{r s}=w\left(\mathcal{L}_{m+k p}^{r s}\right),
$$

then we have

$$
\left|\left[A_{\otimes}^{m}\right]_{r s}-\left[A_{\otimes}^{m+k p}\right]_{r s}\right|<\varepsilon \quad \text { for } m>N^{r s}, k \in \mathbb{N} .
$$

So $\lim _{k \rightarrow \infty}\left[A_{\otimes}^{m+k p}\right]_{r s}$ exists for $m>N^{r s}$. Hence, $\lim _{k \rightarrow \infty} A_{\otimes}^{i+k p}$ exists for $i=1,2, \ldots p$. Therefore, the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ is asymptotically p-periodic.

Next, we prove that the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$, the powers of \bar{A} and the powers of A^{c} have the same period. Assume that the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ has an asymptotic period p_{1}, the powers of \bar{A} have a period p_{2} and the powers of A^{c} have a period p_{3}. Then we have $p_{2} \leq p_{1}$ by implication (i) $\Rightarrow(\text { (ii })^{\prime}, p_{3} \leq p_{2}$ by implication (ii) \Rightarrow (iii) ${ }^{\prime}$ and $p_{1} \leq p_{3}$ by implication (iii) $\Rightarrow\left(\right.$ i $^{\prime}$, so that $p_{1}=p_{2}=p_{3}$. This completes the proof of Theorem 1 .

Example 1. Consider the following 4×4 fuzzy matrix

$$
A=\left[\begin{array}{cccc}
1 / 3 & 1 & 1 / 2 & 0 \\
1 & 1 / 3 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

Then,

$$
\bar{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A^{c}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is easy to see that the powers of \bar{A} have a period two and the powers of A^{c} have a period two. The directed computation verifies this assertion:

$$
A_{\otimes}^{k}=\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 \\
1 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 0 & T^{k}(1 / 2)
\end{array}\right], \quad k=4,6,9, \ldots
$$

and

$$
A_{\otimes}^{k}=\left[\begin{array}{cccc}
1 / 2 & 1 & 1 / 2 & 0 \\
1 & 1 / 2 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 0 & T^{k}(1 / 2)
\end{array}\right], \quad k=5,7,9, \ldots
$$

Then

$$
\lim _{k \rightarrow \infty} A_{\otimes}^{2 k}=\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 \\
1 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\lim _{k \rightarrow \infty} A_{\otimes}^{2 k+1}=\left[\begin{array}{cccc}
1 / 2 & 1 & 1 / 2 & 0 \\
1 & 1 / 2 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ has an asymptotic period two.
The following theorem provides an extension of Fan's theorem in [14].
Corollary 1. Let A be an $n \times n$ fuzzy matrix. Then the following statements are mutually equivalent:
(i) The sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ is convergent.
(ii) The powers of \bar{A} are convergent.
(iii) The powers of A^{c} are convergent.

Proof. This is the case of $p=1$ in Theorem 1.
The equivalence of the two statements (i) and (ii) of Corollary 1 were established by Fan [14].
Theorem 2. Let A be an $n \times n$ fuzzy matrix. Then the following statements are mutually equivalent:
(i) The sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ converges to $\mathbf{0}$.
(ii) The powers of \bar{A} converge to $\mathbf{0}$.
(iii) The powers of A^{c} converge to $\mathbf{0}$.

Proof. If $\mu(A)=1$, then there exists a directed circuit $\gamma\left(i, i_{1}, \ldots, i_{t-1}, i\right)$ with $w(\gamma)=1$ for some $1 \leq i \leq n$, so that $\left[\left(A^{c}\right)_{\otimes}^{t k}\right]_{i i}=\left[(\bar{A})_{\otimes}^{t k}\right]_{i i}=1$ for all $k \in \mathbb{N}$. Then $\lim _{k \rightarrow \infty}\left(A^{c}\right)_{\otimes}^{k} \neq \mathbf{0}$ and $\lim _{k \rightarrow \infty}(\bar{A})_{\otimes}^{k} \neq \mathbf{0}$. Since for all $k=1,2, \ldots,\left(A^{c}\right)_{\otimes}^{k} \leq A_{\otimes}^{k}$ and $(\bar{A})_{\otimes}^{k} \leq A_{\otimes}^{k}, \lim _{k \rightarrow \infty} A_{\otimes}^{k} \neq \mathbf{0}$. Next, we consider the case $\mu(A)<1$. By Lemma 1, the sequence $\left\{A_{\otimes}^{k}: k \in \mathbb{N}\right\}$ converges to $\mathbf{0}$. Since for all $k=1,2, \ldots,\left(A^{c}\right)_{\otimes}^{k} \leq A_{\otimes}^{k}$ and $(\bar{A})_{\otimes}^{k} \leq A_{\otimes}^{k}$, $\lim _{k \rightarrow \infty}\left(A^{c}\right)_{\otimes}^{k}=\lim _{k \rightarrow \infty}(\bar{A})_{\otimes}^{k}=\mathbf{0}$. This completes the proof.

The equivalence of the two statements (i) and (ii) Theorem 2 were proved by Pang [15] using analyticaldecomposition methods.

Example 2. Consider the following 3×3 fuzzy matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 / 2 \\
0 & 1 & 0
\end{array}\right]
$$

Then,

$$
\bar{A}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \text { and } \quad A^{c}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 / 2 \\
0 & 1 & 0
\end{array}\right]
$$

Then $\mu(A)=1 / 2$ and $\bar{A}_{\otimes}^{3}=\mathbf{0}$. For all $k=3,4, \ldots$,

$$
A_{\otimes}^{2 k}=\left[\begin{array}{ccc}
0 & T^{k-1}\left(\frac{1}{2}\right) & T^{k}\left(\frac{1}{2}\right) \\
0 & T^{k}\left(\frac{1}{2}\right) & 0 \\
0 & 0 & T^{k}\left(\frac{1}{2}\right)
\end{array}\right]
$$

and

$$
A_{\otimes}^{2 k+1}=\left[\begin{array}{ccc}
0 & T^{k}\left(\frac{1}{2}\right) & T^{k}\left(\frac{1}{2}\right) \\
0 & 0 & T^{k+1}\left(\frac{1}{2}\right) \\
0 & T^{k}\left(\frac{1}{2}\right) & 0
\end{array}\right]
$$

and for all $k=2,3, \ldots$,

$$
\left(A^{c}\right)_{\otimes}^{2 k}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & T^{k}\left(\frac{1}{2}\right) & 0 \\
0 & 0 & T^{k}\left(\frac{1}{2}\right)
\end{array}\right]
$$

and

$$
\left(A^{c}\right)_{\otimes}^{2 k+1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & T^{k+1}\left(\frac{1}{2}\right) \\
0 & T^{k}\left(\frac{1}{2}\right) & 0
\end{array}\right]
$$

Then $\lim _{k \rightarrow \infty} A_{\otimes}^{k}=\lim _{k \rightarrow \infty}\left(A^{c}\right)_{\otimes}^{k}=\mathbf{0}$.

Acknowledgments

The work was supported in part by NSC 94-2213-E-155-028, National Science Council, R.O.C.

References

[1] K. Cechlárová, Eigenvectors in bottleneck algebra, Linear Algebra and its Applications 175 (1992) 63-73.
[2] K. Cechlárová, On the powers of matrices in bottleneck/fuzzy algebra, Linear Algebra and its Applications 246 (1996) $97-111$.
[3] Z.-T. Fan, D.-F. Liu, On the power sequence of a fuzzy matrix (III). A detailed study on the power sequence of matrices of commonly used types, Fuzzy Sets and Systems 99 (1998) 197-203.
[4] Z.-T. Fan, D.-F. Liu, Convergence of the power sequence of a nearly monotone increasing fuzzy matrix, Fuzzy Sets and Systems 88 (1997) 363-372.
[5] Z.-T. Fan, D.-F. Liu, On the oscillating power sequence of a fuzzy matrix, Fuzzy Sets and Systems 93 (1998) 75-85.
[6] M. Gavalec, Periodicity of matrices and orbits in fuzzy algebra, Tatra Mountains Mathematical Publications 6 (1995) 35-46.
[7] M. Gavalec, Computing matrix period in max-min algebra, Discrete Applied Mathematics 75 (1997) 63-70.
[8] H. Hashimoto, Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems 9 (1983) 153-160.
[9] H. Hashimoto, Canonical form of a transitive fuzzy matrix, Fuzzy Sets and Systems 11 (1983) 157-162.
[10] M.G. Thomason, Convergence of powers of a fuzzy matrix, Journal of Mathematical Analysis and Applications 57 (1977) $476-480$.
[11] L. Elsner, P. van den Driessche, On the power method in max algebra, Linear Algebra and its Applications 302-303 (1999) 17-32.
[12] L. Elsner, P. van den Driessche, Modifying the power method in max algebra, Linear Algebra and its Applications 332-334 (2001) 3-13.
[13] C.-T. Pang, S.-M. Guu, A note on the sequence of consecutive powers of a nonnegative matrix in max algebra, Linear Algebra and its Applications 330 (2001) 209-213.
[14] Z.-T. Fan, A note on the power sequence of a fuzzy matrix, Fuzzy Sets and Systems 102 (1999) 281-286.
[15] C.-T. Pang, On the sequence of consecutive powers of a fuzzy matrix with max-Archimedean-t-norms, Fuzzy Sets and Systems 138 (2003) 643-656.
[16] K. Cechlárová, Powers of matrices over distributive lattices —a review, Fuzzy Sets and Systems 138 (2003) 627-641.
[17] S.-C. Han, H.-X. Li, Indices and periods of incline matries, Linear Algebra and its Applications 387 (2004) 143-165.
[18] W. Kolodziejczyk, Convergence of powers of s-transitive fuzzy matrices, Fuzzy Sets and Systems 26 (1988) 127-130.
[19] S.-M. Guu, H.-H. Chen, C.-T. Pang, Convergence of products of fuzzy matrices, Fuzzy Sets and Systems 121 (2001) 203-207.
[20] S.-M. Guu, Y.-Y. Lur, C.-T. Pang, On infinite products of fuzzy matrices, SIAM Journal of Matrix Analysis and Applications 22 (2001) 1190-1203.
[21] Y.-Y. Lur, S.-M. Guu, C.-T. Pang, On nilpotent fuzzy matrices, Fuzzy Sets and Systems 145 (2004) 287-299.
[22] Y.-Y. Lur, C.-T. Pang, S.-M. Guu, On simultaneously nilpotent fuzzy matrices, Linear Algebra and its Applications 367 (2003) 37-45.
[23] B. Schweizer, Associative functions and abstract semi-groups, Publications é Mathemaiques Debrecen 10 (1963) 69-81.
[24] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
[25] K.H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982.

[^0]: E-mail address: imctpang@saturn.yzu.edu.tw.

