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Abstract

In our prior study, we have examined in depth the notion of an asymptotic period of the power sequence of an n × n fuzzy
matrix with max-Archimedean-t-norms, and established a characterization for the power sequence of an n × n fuzzy matrix with
an asymptotic period using analytical-decomposition methods. In this paper, by using graph-theoretical tools, we further give an
alternative proof for this characterization. With the notion of an asymptotic period using graph-theoretical tools, we additionally
show a new characterization for the limit behaviour, and then derive some results for the power sequence of an n × n fuzzy matrix
with an asymptotic period.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The limit behaviour of consecutive powers of a fuzzy matrix has been widely discussed in the literature. In the
study of the powers of a fuzzy matrix, the involvement of different algebraic operations may yield different results.
In general, most papers on consecutive powers of a fuzzy matrix are under the max–min operations [1–10], the
max-product operations [11–13], max-zero-t-norms [14], and max-Archimedean-t-norms [15]. As in the work of
Thomason [10], he proved that the sequence of consecutive powers of a fuzzy matrix with max–min composition
either converges to an idempotent matrix or oscillates in finitely many steps. Over a distributive lattice using graph-
theoretical tools, Cechlárová [16] studied the powers of a fuzzy matrix. In later years, Han and Li [17] studied the
power sequence of incline matrices, to which the boolean matrices, the fuzzy matrices and lattices matrices belong.
Moreover, Gavalec [6,7] explored the periodicity and orbits of matrices with max–min compositions. Hashimoto
then [8] assumed the transitivity for the fuzzy matrix to ensure convergence. With a clearer view, Fan and Liu [4]
defined the concept of maximum principle for the fuzzy matrix to have convergence, and Kolodziejczyk [18] defined
the notion of “s-transitive” to have convergence or to oscillate with a period 2. Fan and Liu [5] also explored the
oscillating property for the sequence of the powers of a fuzzy matrix. Guu et al. [19], in the year of 2001, extended the
study of convergence of powers of a fuzzy matrix to the products of a finite number of fuzzy matrices. In their papers,
concepts of compactness and transitivity were extended to show the convergence of products of a finite number of
fuzzy matrices. Guu et al. [20] further characterized the convergence of products of a finite number of fuzzy matrices
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in terms of boolean matrices. Possible applications to the products of many finite fuzzy matrices were suggested as
well. In particular, Lur et al. [21,22] proposed the notion of simultaneous nilpotent for a finite set of fuzzy matrices.

We [15] characterized the limit behaviour for the sequence of consecutive powers of a fuzzy matrix with the notion
of an asymptotic period under max-Archimedean-t-norms by using analytic-decomposition methods. In this paper, by
using graph-theoretical tools, we focus on giving an alternative proof for this characterization. Additionally, we shall
show a new characterization for the limit behaviour with the notion of an asymptotic period, and concluded with some
results for the power sequence of an n × n fuzzy matrix with an asymptotic.

2. Preliminaries and results

Let F denote the unit interval, i.e. F = [0, 1]. By a fuzzy matrix, A we mean A = [ai j ] with ai j ∈ F. Let Fn×n

denote the set of all the n ×n fuzzy matrices. We may denote ai j by [A]i j . The symbol 0 denotes the zero fuzzy matrix
and I denotes the identity fuzzy matrix in Fm×n . For A = [ai j ], B = [bi j ] ∈ Fn×n ,

[A ∨ B]i j := ai j ∨ bi j ,

where ai j ∨ bi j := max{ai j , bi j }. We say A ≤ B if ai j ≤ bi j for all 1 ≤ i, j ≤ n. Let ΦA denote the set of all nonzero
entries of A, and let λ̄ denote the largest element in ΦA. For a λ ∈ ΦA, Aλ denotes a boolean matrix [Aλ]i j , where

[Aλ]i j :=

{
1 if ai j ≥ λ,

0 otherwise.

Let Ā = λ̄Aλ̄, A =
∨

λ∈ΦA\{λ̄}
λAλ if ΦA 6= ∅ and Ā = A = 0 if ΦA = ∅. Then we have

A =

∨
λ∈ΦA

λAλ = Ā
∨

A.

Definition 1 ([23]). Let T (x, y) be a real-valued function on [0, 1] × [0, 1] with 0 ≤ T (x, y) ≤ 1. T is called a
t-norm if T satisfies the following conditions:

(a) T (T (x, y), z) = T (x, T (y, z)) for all x, y, z ∈ [0, 1].
(b) T (x, y) = T (y, x) for all x, y ∈ [0, 1].
(c) T (x, y) ≤ T (x1, y1) for all 0 ≤ x ≤ x1 ≤ 1 and 0 ≤ y ≤ y1 ≤ 1.
(d) T (x, 1) = x for all x ∈ [0, 1].

Definition 2. Let T be a t-norm. Let us denote for k ≥ 2: T k(x) = T (T k−1(x), x). T is called Archimedean if
limk→∞ T k(x) = 0 for all x ∈ (0, 1).

Each Archimedean-t-norm satisfies T (x, x) < x for all x ∈ (0, 1), but the converse implication holds only with
an additional assumption that is upper semicontinuous (see [24, pp. 27–29]. For two fuzzy matrices A = [ai j ], B =

[bi j ] ∈ Fn×n , their product is denoted by A ⊗ B, where [A ⊗ B]i j = ∨
n
m=1 T (aim, bmj ) and T is an Archimedean-t-

norm. The notation A2
⊗ means A ⊗ A, Ak

⊗ means kth power of A. We say the power sequence of A is convergent if
the sequence {Ak

⊗ : k ∈ N} converges; that is, limk→∞ ak
i j exists for all i, j = 1, 2, . . . , n. Let C be an n × n boolean

matrix. Note that C2
⊗ = CC , where CC is the product of boolean matrices in boolean algebra. It is well known that the

sequence of consecutive powers of a boolean matrix in max-Archimedean-t-norms either converges in finitely many
steps or oscillates with a finite period (see, e.g. [25]). Precisely, we say that the power sequence of C is p-periodic if
there exist l0, p such that

C l
⊗ = C l+kp

⊗ , k ∈ N, l ≥ l0 ≥ 1.

The minimal such p is called the period. If p = 1, the powers of C are convergent.
Let A = [ai j ] ∈ Fn×n and let T be an Archimedean-t-norm. For x, y ∈ [0, 1], we denote xT y = T (x, y).

The weighted directed graph G(A) associated with A has vertex set {1, 2, . . . , n} and an arc (i, j) from i to j
with the weighted ai j if ai j > 0. A directed path γ (i, i1, . . . , ik−1, j) with the length k is a sequence of k
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arcs (i, i1), (i1, i2), . . . , (ik−1, j). We may say γ is a k-directed path from i to j . The weight of a directed path
γ (i0, i1, . . . , ik), as denoted by w(γ (i0, i1, . . . , ik)) or simply by w(γ ), is defined by

w(γ (i0, i1, . . . , ik)) := ai0i1 T ai1i2 T · · · T aik−1ik .

A directed circuit of the length k is a directed path γ (i0, i1, · · · , ik) with i0 = ik . The maximum weight of a directed
circuit in G(A) is denoted by µ(A). A directed circuit with the weight equal to µ(A) is called a critical directed
circuit, and vertices on critical directed circuit are called critical vertices. Associated with A, we define the critical
fuzzy matrix Ac of A as

[Ac
]i j :=

{
ai j if ai j lies on a critical directed circuit,
0 otherwise.

Note that if µ(A) = 1, then the critical fuzzy matrix Ac, Ā are boolean matrices and Ac
≤ Ā ≤ A. If there are no

directed circuits in G(A), then we let µ(A) = 0.
For all k ∈ N, 1 ≤ r, s ≤ n, let Lk denote the set of all k-directed path in G(A) and let Lrs

k denote the set of all
k-directed path from r to s in G(A). For γ (i0, i1, . . . , ik) ∈ Lk , the number of arcs (it , it+1) with 0 < ait it+1 < 1
for all t = 0, 1, . . . , k − 1, is denoted by #γ . For all i = 0, 1, 2, . . . , k, let Γi (k) = {γ ∈ Lk : #γ = i}, and let
Γ rs

i (k) = {γ ∈ Lrs
k : #γ = i}. For any subset S of directed paths in G(A), we denote w(S) := max{w(γ ) : γ ∈ S}, if

S = ∅, then w(S) = 0. For any real number x , let us denote bxc the largest integer which is less than or equal to x .

Definition 3 ([15]). Let A be an n × n fuzzy matrix. The power sequence {Al
⊗ : l ∈ N} of fuzzy matrices in Fn×n is

asymptotically p-periodic if limk→∞ Ai+kp
⊗ exists for all i = 1, 2, . . . , p. The minimal such p is called the asymptotic

period p. If p = 1, we have a convergent sequence.

Theorem 1. Let A be an n × n fuzzy matrix. Then the following statements are mutually equivalent.

(i) The sequence {Ak
⊗ : k ∈ N} has an asymptotic period p.

(ii) The powers of Ā have a period p.
(iii) The powers of Ac have a period p.

The equivalence of the two statements (i) and (ii) of Theorem 1 was established by Pang [15] using analytic-
decomposition methods. In this article, we give an alternative proof using the graph-theoretical tools. The following
lemmas will be needed in the proof of Theorem 1.

Lemma 1. Let A be an n × n fuzzy matrix. Then

(i) If µ(A) = 0, then An
⊗ = 0.

(ii) If 0 < µ(A) < 1, then limk→∞ Ak
⊗ = 0.

Proof. (i) Assume An
⊗ 6= 0. Then there exists a n-directed path γ (i, i1, . . . , in−1, j) for some 1 ≤ i, j ≤ n with

w(γ (i, i1, . . . , in−1, j)) 6= 0. Let i0 = i and in = j . By the pigeonhole principle, we have ir = is for some
0 ≤ r < s ≤ n. It follows that γ̂ (ir , ir+1, . . . , is) is a directed circuit with w(γ̂ ) 6= 0. Then µ(A) 6= 0, which leads to
a contradiction. Therefore, An

⊗ = 0.
(ii) Let α = max{ai j | 0 < ai j < 1} and let m be large enough. For all 1 ≤ r, s ≤ n, we have

Lrs
m = Γ rs

0 (m) ∪

(
m⋃

j=1

Γ rs
j (m)

)
.

Note that if γ (i, i1, . . . , in−1, j) is a n-directed path with w(γ ) = 1 for some 1 ≤ i, j ≤ n, then there exist
0 ≤ r < s ≤ n such that γ̂ (ir , ir+1, . . . , is) is a directed circuit with w(γ̂ ) = 1, where i0 = i , in = j . Let
k = b

m−2n+1
n c. Then for all j ≤ k, we have n − 1 <

m− j
j+1 . Since µ(A) < 1, we have

Γ rs
0 (m) = ∅ and

k⋃
j=1

Γ rs
j (m) = ∅.



C.-T. Pang / Computers and Mathematics with Applications 54 (2007) 310–318 313

Then

[Am
⊗]rs = w(Lrs

m )

= w

(
Γ rs

0 (m) ∪

(
k⋃

j=1

Γ rs
j (m)

)
∪

(
m⋃

j=k+1

Γ rs
j (m)

))

= w

(
m⋃

j=k+1

Γ rs
j (m)

)
≤ T k+1(α) → 0 as m → ∞.

This implies that the sequence of {Ak
⊗ : k ∈ N} converges to 0. �

Lemma 2. Let A be an n×n fuzzy matrix with µ(A) = 1. If the powers of Ac are p-periodic, then for all 1 ≤ r, s ≤ n,
i = 0, 1, 2, . . ., there exists a positive integer N rs

i such that

w(Γ rs
i (m)) = w(Γ rs

i (m + kp)) for all m > N rs
i , k = 1, 2, . . . .

Proof. For all 1 ≤ r, s ≤ n, i = 0, 1, 2, . . .. It suffices to show that w(Γ rs
i (m)) = w(Γ rs

i (m + p)). Since
the powers of Ac are p-periodic, there exists l0 such that (Ac)l

⊗ = (Ac)
l+kp
⊗ for all k ∈ N, l ≥ l0 ≥ 1. Let

N rs
i = n(i +1)(l0 + p)−1− p. Then m > N rs

i is equivalent to (m + p − i)/(i +1) > n(l0 + p)−1, which implies by
a simple counting argument that any directed path γ (r = i0, i1, . . . , im+p = s) ∈ Γ rs

i (m + p) contains one t-directed
path γ ′(ih, ih+1, . . . , ih+t ) with w(γ ′) = 1, where t ≥ n(l0 + p), 0 ≤ h ≤ h + t ≤ m + p.

Claim. The directed path γ ′(ih, ih+1, . . . , ih+t ) contains a critical directed circuit with the length greater than or
equal to l0 + p.

Put n1 = h, and let s1 be the maximum integer such that n1 ≤ s1 ≤ h + t and in1 = is1 . Put n2 = s1 + 1, and let
s2 be the maximum integer such that n2 ≤ s2 ≤ h + t and in2 = is2 . Following the continuity, we have a sequence of

h = n1 ≤ s1 < n2 ≤ s2 < · · · < n ĵ ≤ s ĵ

with ĵ ≤ n and ink = isk for all k = 1, 2, . . . , ĵ . Then

ĵ∑
k=1

|sk − nk | + ( ĵ − 1) ≥ n(l0 + p),

so that there exists 1 ≤ î ≤ ĵ such that |sî − n î | ≥ l0 + p. Then the directed path γ ′(ih, ih+1, . . . , ih+t )

contains a critical directed circuit with the length greater than or equal to l0 + p. Without loss of generality, we
assume that |s1 − n1| ≥ l0 + p. Since the powers of Ac are p-periodic, there exists a critical directed circuit
γ ′′(in1 , ir̂ , . . . , ir̂+|s1−n1|−p−2, is1) with the length |s1 − n1| − p. Then the directed path

γ̂ (i0, i1, . . . , in1 , ir̂ , . . . , ir̂+|s1−n1|−p−2, is1 , . . . , im+p) ∈ Γ rs
i (m),

and w(γ ) = w(γ̂ ). This implies that

w(Γ rs
i (m + p)) ≤ w(Γ rs

i (m)). (1)

On the other hand, since m > N rs
i is equivalent to

m − i
i + 1

> nl0 − 1 +
(ni + n − 1)p

i + 1
≥ nl0 − 1,

which implies by a simple counting argument that for any directed path γ (i0, i1, . . . , im) ∈ Γ rs
i (m) contains a t-

directed path γ ′(ih, ih+1, . . . , ih+t ) with w(γ ′) = 1, where t ≥ nl0, 0 ≤ h ≤ h + t ≤ m.
Claim. The directed path γ ′(il , il+1, . . . , il+t ) contains a critical directed circuit with the length greater than or

equal to l0.
Put n1 = h, and let s1 be the maximum integer such that n1 ≤ s1 ≤ h + t and in1 = is1 . Put n2 = s1 + 1, and let

s2 be the maximum integer such that n2 ≤ s2 ≤ h + t and in2 = is2 . Following the continuity, we have a sequence

h = n1 ≤ s1 < n2 ≤ s2 < · · · < n ĵ ≤ s ĵ
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with ĵ ≤ n and ink = isk for all k = 1, 2, . . . , ĵ . Then

ĵ∑
k=1

|sk − nk | + ( ĵ − 1) ≥ nl0,

so that there is 1 ≤ î ≤ ĵ such that |sî − n î | ≥ l0. Then the directed path γ ′(ih, ih+1, . . . , ih+t ) contains a directed
circuit with the length greater than or equal to l0. Without loss of generality, we assume that |s1 − n1| ≥ l0. Since the
powers of Ac are p-periodic, there exists a critical directed circuit γ ′′(in1 , ir̂ , . . . , ir̂+|s1−n1|+p−2, is1) with the length
|s1 − n1| + p. Then the path

γ̂ (i0, . . . , in1 , ir̂ , . . . , ir̂+|s1−n1|+p−2, is1 , . . . , im) ∈ Γ rs
i (m + p),

and clearly w(γ ) = w(γ̂ ). This implies that

w(Γ rs
i (m)) ≤ w(Γ rs

i (m + p)). (2)

Hence by (1) and (2), we have w(Γ rs
i (m + p)) = w(Γ rs

i (m)). This completes the proof. �

We proceed now to prove Theorem 1. We first prove that the following statements are mutually equivalent:

(i)′ The sequence {Ak
⊗ : k ∈ N} is asymptotically p-periodic;

(ii)′ The powers of Ā are p-periodic;
(iii)′ The powers of Ac are p-periodic.

If µ(A) < 1, then (i)′ ⇔(ii)′ ⇔ ow(iii)′ follows from Lemma 1 and Ac
≤ A and Ā ≤ A. Next, we consider the case

µ(A) = 1.
(i)′ ⇒ (ii)′. Since the sequence {Ak

⊗ : k ∈ N} is asymptotically p-periodic, then for all 1 ≤ î ≤ p, we let

Ãî
⊗ = limk→∞ Aî+kp

⊗ . Let 1 ≤ r, s ≤ n. For all î = 1, 2, . . . , p, k = 1, 2, . . ., we have

[Aî+kp
⊗ ]rs = w(Lrs

î+kp
)

= w(Γ rs
0 (î + kp))

∨
w

î+kp⋃
j=1

Γ rs
j (î + kp)

 .

Moreover,

w(Γ rs
0 (î + kp)) ∈ {0, 1} and w

î+kp⋃
j=1

Γ rs
j (î + kp)

 ≤ α < 1,

where α = max{ai j : 0 ≤ ai j < 1}. Then we have for all k = 1, 2, . . .,

w(Lrs
î+kp

) = 1 if and only if w(Γ rs
0 (î + kp)) = 1

and

w(Lrs
î+kp

) ≤ α if and only if w(Γ rs
0 (î + kp)) = 0.

We distinguish two cases:

Case 1. If [ Ãî
⊗]rs = 1, then there exists a positive integer Nî such that [Aî+kp

⊗ ]rs = 1 for all k ≥ Nî , so that

w(Lrs
î+kp

) = 1 and w(Γ rs
0 (î + kp)) = 1 for k ≥ Nî .

Hence, [ Āî+kp
⊗ ]rs = 1 for all k ≥ Nî .

Case 2. If [ Ãî
⊗]rs 6= 1, then there exists a positive integer N such that [Aî+kp

⊗ ]rs ≤ α < 1 for k ≥ Nî , so that

w(Lrs
î+kp

) ≤ α and w(Γ rs
0 (î + kp)) = 0 for k ≥ Nî .
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Hence, [ Āî+kp
⊗ ]rs = 0 for all k ≥ Nî .

Let N = max1≤î≤p(î + pNî ). Then we have

[ Āl
⊗]rs = [ Āl+kp

⊗ ]rs for all k ∈ N, l ≥ N .

Therefore, the powers of Ā are p-periodic.
(ii)

′

⇒ (iii)
′

. Since µ(A) = 1, there exists a critical directed circuit in G(A) with the weight equal to 1, so that
each entries of Ac is either 0 or 1. For all 1 ≤ i, j ≤ n,

[ Āc
]i j = 1 ⇔ there exist 1 ≤ i, j, i1, . . . , ik, i ≤ n such that āi j T ā j i1 T · · · T āik i = 1

⇔ āi j = ā j i1 = · · · = āik i = 1
⇔ ai j = a j i1 = · · · = aik i = 1
⇔ there exist 1 ≤ i, j, i1, . . . , ik, i ≤ n such that ai j T a j i1 T · · · T aik i = 1
⇔ [Ac

]i j = 1.

Then we have Āc
= Ac. Since the powers of Ā are p-periodic, the powers of Āc are p-periodic (by Theorem 5.4.25

(3) in [25]). Therefore, the powers of Ac are p-periodic.
(iii)′ ⇒ (i)′. Assume that the powers of Ac are p-periodic and let α = max{ai j : 0 ≤ ai j < 1}. For ε > 0 be

given. Since limk→∞ T k(α) = 0, there exists a integer î such that T j (α) < ε/2 for all j ≥ î . Let 1 ≤ r, s ≤ n. For
all m = 1, 2, . . . and k = 1, 2, . . ., we have

Lrs
m = Γ rs

0 (m) ∪

 î⋃
j=1

Γ rs
j (m)

 ∪

 m⋃
j=î+1

Γ rs
j (m)


and

Lrs
m+kp = Γ rs

0 (m + kp) ∪

 î⋃
j=1

Γ rs
j (m + kp)

 ∪

m+kp⋃
j=î+1

Γ rs
j (m + kp)

 .

By Lemma 2, we may choose a positive integer N rs such that for all j = 0, 1, 2, . . . , î ,

w(Γ rs
j (m)) = w(Γ rs

j (m + kp)) for m > N rs, k ∈ N.

Also, we have k ∈ N,

|w(Γ rs
j (m)) − w(Γ rs

j (m + kp))| ≤ 2T î+1(α) < ε,

where î + 1 ≤ j ≤ m + kp.
Since

[Am
⊗]rs = w(Lrs

m ) and [Am+kp
⊗ ]rs = w(Lrs

m+kp),

then we have

|[Am
⊗]rs − [Am+kp

⊗ ]rs | < ε for m > N rs, k ∈ N.

So limk→∞[Am+kp
⊗ ]rs exists for m > N rs . Hence, limk→∞ Ai+kp

⊗ exists for i = 1, 2, . . . p. Therefore, the sequence
{Ak

⊗ : k ∈ N} is asymptotically p-periodic.
Next, we prove that the sequence {Ak

⊗ : k ∈ N}, the powers of Ā and the powers of Ac have the same period.
Assume that the sequence {Ak

⊗ : k ∈ N} has an asymptotic period p1, the powers of Ā have a period p2 and the powers
of Ac have a period p3. Then we have p2 ≤ p1 by implication (i)′ ⇒ (ii)′, p3 ≤ p2 by implication (ii)′ ⇒ (iii)′ and
p1 ≤ p3 by implication (iii)′ ⇒ (i)′, so that p1 = p2 = p3. This completes the proof of Theorem 1. �
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Example 1. Consider the following 4 × 4 fuzzy matrix

A =


1/3 1 1/2 0
1 1/3 1/3 0

1/2 1 1/3 0
0 0 0 1/2

 .

Then,

Ā =


0 1 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 and Ac
=


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

It is easy to see that the powers of Ā have a period two and the powers of Ac have a period two. The directed
computation verifies this assertion:

Ak
⊗ =


1 1/2 1/3 0

1/2 1 1/2 0
1 1/2 1/3 0
0 0 0 T k(1/2)

 , k = 4, 6, 9, . . .

and

Ak
⊗ =


1/2 1 1/2 0
1 1/2 1/3 0

1/2 1 1/2 0
0 0 0 T k(1/2)

 , k = 5, 7, 9, . . . .

Then

lim
k→∞

A2k
⊗ =


1 1/2 1/3 0

1/2 1 1/2 0
1 1/2 1/3 0
0 0 0 0


and

lim
k→∞

A2k+1
⊗ =


1/2 1 1/2 0
1 1/2 1/3 0

1/2 1 1/2 0
0 0 0 0

 .

Therefore, the sequence {Ak
⊗ : k ∈ N} has an asymptotic period two.

The following theorem provides an extension of Fan’s theorem in [14].

Corollary 1. Let A be an n × n fuzzy matrix. Then the following statements are mutually equivalent:

(i) The sequence {Ak
⊗ : k ∈ N} is convergent.

(ii) The powers of Ā are convergent.
(iii) The powers of Ac are convergent.

Proof. This is the case of p = 1 in Theorem 1. �

The equivalence of the two statements (i) and (ii) of Corollary 1 were established by Fan [14].

Theorem 2. Let A be an n × n fuzzy matrix. Then the following statements are mutually equivalent:

(i) The sequence {Ak
⊗ : k ∈ N} converges to 0.

(ii) The powers of Ā converge to 0.
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(iii) The powers of Ac converge to 0.

Proof. If µ(A) = 1, then there exists a directed circuit γ (i, i1, . . . , it−1, i) with w(γ ) = 1 for some 1 ≤ i ≤ n,
so that [(Ac)tk

⊗ ]i i = [( Ā)tk
⊗ ]i i = 1 for all k ∈ N. Then limk→∞(Ac)k

⊗ 6= 0 and limk→∞( Ā)k
⊗ 6= 0. Since for

all k = 1, 2, . . . , (Ac)k
⊗ ≤ Ak

⊗ and ( Ā)k
⊗ ≤ Ak

⊗, limk→∞ Ak
⊗ 6= 0. Next, we consider the case µ(A) < 1. By

Lemma 1, the sequence {Ak
⊗ : k ∈ N} converges to 0. Since for all k = 1, 2, . . . , (Ac)k

⊗ ≤ Ak
⊗ and ( Ā)k

⊗ ≤ Ak
⊗,

limk→∞(Ac)k
⊗ = limk→∞( Ā)k

⊗ = 0. This completes the proof. �

The equivalence of the two statements (i) and (ii) Theorem 2 were proved by Pang [15] using analytical-
decomposition methods.

Example 2. Consider the following 3 × 3 fuzzy matrix

A =

0 1 1
0 0 1/2
0 1 0

 .

Then,

Ā =

0 1 1
0 0 0
0 1 0

 and Ac
=

0 0 0
0 0 1/2
0 1 0

 .

Then µ(A) = 1/2 and Ā3
⊗ = 0. For all k = 3, 4, . . .,

A2k
⊗ =


0 T k−1

(
1
2

)
T k
(

1
2

)
0 T k

(
1
2

)
0

0 0 T k
(

1
2

)


and

A2k+1
⊗ =


0 T k

(
1
2

)
T k
(

1
2

)
0 0 T k+1

(
1
2

)
0 T k

(
1
2

)
0


and for all k = 2, 3, . . .,

(Ac)2k
⊗ =


0 0 0

0 T k
(

1
2

)
0

0 0 T k
(

1
2

)


and

(Ac)2k+1
⊗ =


0 0 0

0 0 T k+1
(

1
2

)
0 T k

(
1
2

)
0

 .

Then limk→∞ Ak
⊗ = limk→∞(Ac)k

⊗ = 0.



318 C.-T. Pang / Computers and Mathematics with Applications 54 (2007) 310–318

Acknowledgments

The work was supported in part by NSC 94-2213-E-155-028, National Science Council, R.O.C.

References
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[16] K. Cechlárová, Powers of matrices over distributive lattices —a review, Fuzzy Sets and Systems 138 (2003) 627–641.
[17] S.-C. Han, H.-X. Li, Indices and periods of incline matries, Linear Algebra and its Applications 387 (2004) 143–165.
[18] W. Kolodziejczyk, Convergence of powers of s-transitive fuzzy matrices, Fuzzy Sets and Systems 26 (1988) 127–130.
[19] S.-M. Guu, H.-H. Chen, C.-T. Pang, Convergence of products of fuzzy matrices, Fuzzy Sets and Systems 121 (2001) 203–207.
[20] S.-M. Guu, Y.-Y. Lur, C.-T. Pang, On infinite products of fuzzy matrices, SIAM Journal of Matrix Analysis and Applications 22 (2001)

1190–1203.
[21] Y.-Y. Lur, S.-M. Guu, C.-T. Pang, On nilpotent fuzzy matrices, Fuzzy Sets and Systems 145 (2004) 287–299.
[22] Y.-Y. Lur, C.-T. Pang, S.-M. Guu, On simultaneously nilpotent fuzzy matrices, Linear Algebra and its Applications 367 (2003) 37–45.
[23] B. Schweizer, Associative functions and abstract semi-groups, Publications é Mathemaiques Debrecen 10 (1963) 69–81.
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