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A Note on a Decomposition Theorem
for Simple Deterministic Languages
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A procedure to resolve simple deterministic languages into the concatena-
tion of other simple deterministic languages is presented.

The simple deterministic grammar (s-grammar) is the standard form
grammar in which the handles of the Z-rules are distinct for each nonterminal
symbol Z. The language generated by an s-grammar is called the simple
deterministic language (s-language). It is known that the s-languages have the
the prefix property and that their equivalence problem is solvable. (Korenjak
and Hoperoft, 1966).

Using these facts, we present a procedure to resolve s-languages into the
concatenation of the prime s-languages that can be resolved no more.

LevmMa. Let A be a prime s-language and let B and C be s-languages. Let
G = (V, 2, P, o) be an s-grammar such that I(G) = B. CA = B if and only
if for every o € B there exist Be V* and W e (V — X) satisfying o & W % «
and L(W) = 4.

Progf. Lety e C be a prefix of o € B. The pair (o, y) uniquely determines
We(V-— 2)* such that o & yW % «. For such a W, L(W)=A4 from
C\C = e. Clearly, We (V — %), since 4 is a prime s-language.

To prove the converse, we construct an s-grammar G’ such that L(G") = C.
Let

P = {ZZ_“> ainY,L 3 Z]""> an] s Zk_)‘ ak}
and
Fe{W|We(V—Z),L(W) = 4} — {(W,, Wy W,}.
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We introduce a set of new symbols V ={Z | Ze (V — Z) — F} and the sets

of rewriting rules
P ={Z —»aXY,, Z,—~aX;, Z,—>a,
P ={Z,—~aXY,,Z,—aX;|Y;, X, eF)}
and

P, :{Zi_)ainaZj’_’ajsZz%ainWm,ZJ’_)aJWmEP}

for 1 <m < gq. For a right linear grammar G = (V, V, P’ U P",5) and
a regular set

R:{zer/ﬂa;g?z},

RCV*F if and only if for every a € B there exist W,, € F and 8 € I* such that
o % BW,, % a. If RCV*F, then G =(VUV, 2, 0! _ P, UP UP, )
is an s-grammar such that L(G") = B.

Since R C I*F is a containment problem for regular sets and F is con-
structed by using the solvability of the equivalence problem, there is an
effective procedure to decide whether an s-language satisfies the condition
of the above lemma.

THEOREM. For a given s-grammar G, there exists an effective procedure
to find the prime s-languages X, , X, ,..., X, satisfying X, X, - X,, = L(G),
and Xy, Xy ,..., X, are uniquely determined.

Proof. Let a,a, - a, be one of the shortest elements of L(G) and let
*
O 2l = Yol = =yl = YA = Gyt d

be the rightmost derivation of ¢;a, *** @, . Find the maximum & < p such that
YL(Z,) = L(G) for some s-language Y using the procedure of the above
lemma. Clearly, L{Z;) is a prime s-language. If such a ¥ does not exist, then
L(G) is a prime s-language. Repeating the procedure, we can find
X, X ey X, . The uniqueness of this decomposition is clear.

We state a corollary proved by using the concatenative decomposition
and the prefix property of s-languages.

CoRrOLLARY. There are the effective procedures to decide whether for given
s-grammars G, and G, , there exists the s-language X satisfying the equations
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L(G)X = L(G,), XI(G,) =I(G,), and X" = L(G,). The solutions of such
equations are uniquely determined.
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