A Note on a Decomposition Theorem for Simple Deterministic Languages

Akira Fusaoka
Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, Kyoto-shi, Japan

> A procedure to resolve simple deterministic languages into the concatena- tion of other simple deterministic languages is presented.

The simple deterministic grammar (s-grammar) is the standard form grammar in which the handles of the Z-rules are distinct for each nonterminal symbol Z. The language generated by an s-grammar is called the simple deterministic language (s-language). It is known that the s-languages have the the prefix property and that their equivalence problem is solvable. (Korenjak and Hopcroft, 1966).

Using these facts, we present a procedure to resolve s-languages into the concatenation of the prime s-languages that can be resolved no more.

Lemma. Let A be a prime s-language and let B and C be s-languages. Let $G=(V, \Sigma, P, \sigma)$ be an s-grammar such that $L(G)=B . C A=B$ if and only if for every $\alpha \in B$ there exist $\beta \in V^{*}$ and $W \in(V-\Sigma)$ satisfying $\sigma \stackrel{*}{\Rightarrow} \beta W \stackrel{*}{\Rightarrow} \alpha$ and $L(W)=A$.

Proof. Let $\gamma \in C$ be a prefix of $\alpha \in B$. The pair (σ, γ) uniquely determines $W \in(V-\Sigma)^{*}$ such that $\sigma \stackrel{\text { 娄 }}{\Rightarrow} \gamma W \stackrel{\text { * }}{\Rightarrow} \alpha$. For such a $W, L(W)=A$ from $C \backslash C=\epsilon$. Clearly, $W \in(V-\Sigma)$, since A is a prime s-language.

To prove the converse, we construct an s-grammar G^{\prime} such that $L\left(G^{\prime}\right)=C$. Let

$$
P=\left\{Z_{i} \rightarrow a_{i} X_{i} Y_{i}, Z_{j} \rightarrow a_{j} X_{j}, Z_{k} \rightarrow a_{k}\right\}
$$

and

$$
F=\{W \mid W \in(V-\Sigma), L(W)=A\}=\left\{W_{1}, W_{2}, \ldots, W_{q}\right\}
$$

We introduce a set of new symbols $\bar{V}=\{\bar{Z} \mid Z \in(V-\Sigma)-F\}$ and the sets of rewriting rules

$$
\begin{aligned}
& P^{\prime}=\left\{\bar{Z}_{i} \rightarrow a_{i} X_{i} \bar{Y}_{i}, \bar{Z}_{3} \rightarrow a_{j} \bar{X}_{j}, \bar{Z}_{k} \rightarrow a_{k}\right\} \\
& P^{\prime \prime}=\left\{\bar{Z}_{i} \rightarrow a_{i} X_{\imath} Y_{i}, \bar{Z}_{j} \rightarrow a_{j} X_{j} \mid Y_{i}, X_{j} \in F\right\}
\end{aligned}
$$

and

$$
P_{m}=\left\{\bar{Z}_{i} \rightarrow a_{\imath} X_{i}, \bar{Z}_{j} \rightarrow a_{j} \mid Z_{\imath} \rightarrow a_{\imath} X_{i} W_{m}, Z_{\jmath} \rightarrow a_{j} W_{m} \in P\right\}
$$

for $1 \leqslant m \leqslant q$. For a right linear grammar $\bar{G}=\left(\bar{V}, V, P^{\prime} \cup P^{\prime \prime}, \bar{\sigma}\right)$ and a regular set

$$
R=\left\{z \in V^{*} \mid \sigma \underset{\vec{G}}{\overrightarrow{\vec{G}}} z\right\},
$$

$R \subseteq V^{*} F$ if and only if for every $\alpha \in B$ there exist $W_{m} \in F$ and $\beta \in V^{*}$ such that $\sigma \stackrel{*}{\Rightarrow} \beta W_{m} \stackrel{*}{\Rightarrow} \alpha$. If $R \subseteq V^{*} F$, then $G^{\prime}=\left(V \cup \bar{V}, \Sigma, \cup_{m=1}^{q} P_{m} \cup P^{\prime} \cup P, \bar{\sigma}\right)$ is an s-grammar such that $L\left(G^{\prime}\right)=B$.

Since $R \subseteq V^{*} F$ is a containment problem for regular sets and F is constructed by using the solvability of the equivalence problem, there is an effective procedure to decide whether an s-language satisfies the condition of the above lemma.

Theorem. For a given s-grammar G, there exists an effective procedure to find the prime s-languages $X_{1}, X_{2}, \ldots, X_{n}$ satisfying $X_{1} X_{2} \cdots X_{n}=L(G)$, and $X_{1}, X_{2}, \ldots, X_{n}$ are uniquely determined.

Proof. Let $a_{1} a_{2} \cdots a_{s}$ be one of the shortest elements of $L(G)$ and let

$$
\sigma \Rightarrow \gamma_{1} Z_{1} \Rightarrow \gamma_{2} Z_{2} \Rightarrow \cdots \Rightarrow \gamma_{p} Z_{p} \Rightarrow \gamma_{p+1} a_{s} \stackrel{*}{\Rightarrow} a_{1} a_{2} \cdots a_{s}
$$

be the rightmost derivation of $a_{1} a_{2} \cdots a_{s}$. Find the maximum $k \leqslant p$ such that $Y L\left(Z_{k}\right)=L(G)$ for some s-language Y using the procedure of the above lemma. Clearly, $L\left(Z_{k}\right)$ is a prime s-language. If such a Y does not exist, then $L(G)$ is a prime s-language. Repeating the procedure, we can find $X_{1}, X_{2}, \ldots, X_{n}$. The uniqueness of this decomposition is clear.

We state a corollary proved by using the concatenative decomposition and the prefix property of s-languages.

Corollary. There are the effective procedures to decide whether for given s-grammars G_{1} and G_{2}, there exists the s-language X satisfying the equations
$L\left(G_{1}\right) X=L\left(G_{2}\right), X L\left(G_{1}\right)=L\left(G_{2}\right)$, and $X^{n}=L\left(G_{1}\right)$. The solutions of such equations are uniquely determined.

Received: September 30, 1970; Revised: April 6, 1971

Reference

Korenjak, A. J. and Hopcroft, J. E. (1966), Simple deterministic languages, in "IEEE Conference Record of Seventh Annual Symposium on Switching and Automata Theory," IEEE Pub. No 16-C-40, pp. 36-46.

