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The  social  brain  hypothesis  predicts  that  humans  have  an  average  of  about  150  relationships  at any
given  time.  Within  this  150,  there  are  layers  of  friends  of  an  ego,  where  the number  of  friends  in  a
layer  increases  as the emotional  closeness  decreases.  Here  we  analyse  a mobile  phone  dataset,  firstly,
to ascertain  whether  layers  of  friends  can  be identified  based  on  call  frequency.  We  then  apply  different
rain
ypothesis
ommunication
go
etworks

clustering  algorithms  to  break  the call  frequency  of  egos  into  clusters  and  compare  the  number  of  alters
in  each  cluster  with  the layer  size  predicted  by  the  social  brain  hypothesis.  In  this  dataset  we find  strong
evidence  for  the existence  of a layered  structure.  The  clustering  yields  results  that  match  well with
previous  studies  for the innermost  and outermost  layers,  but  for layers  in  between  we observe  large
variability.

ublis
© 2016  The  Authors.  P

. Introduction

In recent years the availability of communication data has
llowed us to analyse the nature of human relationships and inter-
ctions on a much larger scale than previously available (see, for
xample, Onnela et al., 2007). Although modes of communication
ave changed however, our brain sizes have not, and it is suggested
here is a cognitive constraint on the number of face-to-face social
nteractions one may  have (Dunbar, 1993; Roberts et al., 2009). This
onstraint fits in a broad sense with the ‘social brain hypothesis’
hich argues that the evolution of primate brains was driven by

he need to maintain increasingly large social groups (Humphrey,
976; Dunbar, 1992, 1998; Barton and Dunbar, 1997).

Individuals do not give equal weight to each relationship
nd evidence from the social brain hypothesis suggests that ego
etworks are structured into a sequence of layers with the size of
ach layer increasing as emotional closeness decreases (Dunbar,
998; Hill and Dunbar, 2003). The mean number of friends in each
as been found to be around 5, 15, 50 and 150 in the cumulative lay-
rs (i.e. on average 10 people in the second layer to make a total of
5) (Zhou et al., 2005; Hamilton et al., 2007). Beyond this there are
ven larger groupings suggested at 500 and 1500 (Dunbar, 1993;
hou et al., 2005).
Recently these Dunbar layers have been observed in online
ocial media, such as Facebook and Twitter (Dunbar et al.,
015) and an online computer game (Fuchs et al., 2014). These
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relationships are temporal, however, and the 150 in particular rep-
resents the amount of friends at a given time. If a new friend is made,
an old one is most likely dropped, and the strength relationships
changes quicker in the outer layers than the inner ones (Sutcliffe
et al., 2012; Saramäki et al., 2014). However, other methods for
estimating personal network sizes have found numbers larger than
the outer Dunbar layer, these studies suggest an average personal
network size of around 290 for Americans (Killworth et al., 1984;
McCarty et al., 2001).

Here we use a mobile phone call dataset initially to ascertain
whether layers of friends are detectable in an offline context. If we
find evidence of these layers, we then test if they match the layer
sizes previously identified using different clustering algorithms.

A European phone-call dataset over all 12 months of 2007 is
used. This has 34.9 million users with almost 6 billion calls. About 6
million of these users are with the company (who provide coverage
to approximately 20% of the country’s population) for whom we
have data on all calls they make.

The call frequency between two  individuals represents the
strength of a relationship and has been shown to correlate with
emotional closeness (Roberts and Dunbar, 2011; Arnaboldi et al.,
2013). Saramäki et al. (2014) have also shown that social signa-
tures in cell phone data remain robust over time even with identity
changes in the alters.

2. Methods
To eliminate casual calls and business calls, the data are filtered
so that only calls are counted if there is at least one reciprocal call
between the two users.
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Although the mobile phone call dataset we  study here contains
almost complete data on over 6 million users, only a fraction of
these have a degree k ≥ 100. In order to test the hypothesis of the
layers of different levels of emotional closeness, we analyse users
52 P. Mac Carron et al. / Socia

People vary in the extent to which they use their phones, with
ome using it as a regular means of communication with family
nd friends, and others using it only for social emergencies or to
rrange meetings. While the former are likely to provide a full cov-
rage of their social network, the latter won’t. To avoid this kind
f under-reporting, we censored the dataset so as to include only
hose individuals with a minimum number of alters. Since the aver-
ge number of alters at a given time in personal, or ego-centric,
etworks is 150, with a natural range of approximately 100–250
Hill and Dunbar, 2003; Zhou et al., 2005; Roberts et al., 2009),
e set a value of 100 alters as the minimum cut-off. By doing

o, we aimed to have a more complete distribution of actual ego
etworks, while not biasing against individuals who have natu-
ally small networks. After this we lower the cut-off to 50 alters to
bserve the results for lower frequency users.

The degree k of an ego represents the number of alters called
nd the weighted degree w represents the total number of calls
n ego makes. The degree distribution pk and weighted distribu-
ion pw are the fraction of vertices in a network with degree k and
eighted degree w,  respectively. Note that in empirical networks,

he degree distributions are often found to have positive or right
kew (Newman, 2003).

In order to estimate the functional forms of degree distribution,
he method of Maximum Likelihood Estimators is used (Clauset
t al., 2009; Edwards et al., 2007). Here we test different distri-
utions; namely power law, exponential, stretched exponential,
aussian (or normal) and log-normal distributions, and use the
kaike Information Criteria to select the best model (Akaike, 1974;
urnham and Anderson, 2002).

The data for each user is considered as a one dimensional array
hich we denote by W such that the minimum possible weight is
min = 1 when an ego calls an alter once. There is no real upper limit

beyond financial or time constraints) to the maximum number of
alls a user can make to their preferred alter. In order to compare
sers, the data for user i is normalised by

̂ = Wi − Wi min

Wi max − Wi min
, (1)

here Wi is the number of calls made to each alter and Wi min and
i max are minimum and maximum number of calls they make to

ny of their alters. This ensures that, for each ego, the strongest
nteraction with an alter is 1 and the weakest is 0. A first estimate
o identify the layers is to plot the probability density of all differ-
nt weights for all users to ascertain if any pattern exists. A kernel
ensity estimate is applied to the true probability density and the

ocal minima are used to identify clusters (Rosenblatt et al., 1956;
arzen, 1962).

Many methods exist for data clustering, (see, for example, Jain
t al., 1999; Gan et al., 2007). The vast majority of these algo-
ithms, however, are for high-dimensional datasets (Jain, 2010).
ere, although we are dealing with big data, we seek to break each

ndividual’s calls into clusters or layers. Thus we  are dealing with
ne-dimensional clustering for each user, and from this we analyse
he average layer sizes.

A common method for one-dimensional clustering is the Jenks
atural breaks algorithm (Jenks, 1967). The Jenks algorithm is simi-

ar to k-means clustering in one dimension (Khan, 2012). It searches
or the minimum distance between data points and the centres
f the clusters they belong to as well as for maximum difference
etween cluster centres themselves. The goodness of fit can be cal-
ulated to optimise the number of clusters found (Coulson, 1987).

 goodness of fit of 1.0 can only be attained when there is zero

ithin-class variation (often when the number of clusters is the

ame size as the data). To choose the optimal number of clusters
e take a threshold of 0.85 for the goodness of fit as suggested in
oulson (1987).
orks 47 (2016) 151–155

We  also use a Gaussian Mixture Model which assumes that the
data are generated from a number of Gaussian distributions (Day,
1969). Naively, we may  assume that the layers are made up of
Gaussian distributions with their means on the Dunbar numbers.
The expectation maximisation algorithm is implemented for this
(Dempster et al., 1977) and, again, the Akaike Information Criterion
is used to assess the number of clusters in the data.

Another method for clustering the data, used here, is the
head/tail breaks (Jiang, 2013). This method was developed for data
with heavy-tailed distributions. It splits the data at the mean and
taking the head (all values above the mean), it recursively splits
each consecutive head at its mean. Our data is heavy tailed (Onnela
et al., 2007), with most users calling many people a small number of
times but calling their closer friends frequently. An advantage of the
head/tail breaks is that the number of clusters is derived naturally
from the distribution of the data.

3. Results
Fig. 1. On the left panel: The degree distribution and a log-normal fit. The inset
shows users with degree k ≥ 100 and a similar fit. On the right panel: The weighted
degree distribution is shown, again with a fitted log-normal distribution.
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Fig. 2. The histogram of the normalised weights of each call for all users. The blue
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hat are in the lower bound of the outer layer, i.e. have called 100 or
ore alters. This leaves 26,680 users with a mean number of alters

f 129.9 and standard deviation of 37.7. The mean number of calls
n ego makes is 3553.8 with a standard deviation of 1894.1. We also
nalyse users with 50 < k< 100 (N = 301,190). These have an average
eighted degree of 1964.2. The remaining users with k < 50 have

n mean weighted degree of 148.8 indicating they use their phone
n average less than once every two days.

The degree distribution and the weighted degree distribution
or the entire dataset are shown in Fig. 1 with log-normal distribu-
ions fitted. The inset in the left panel shows the degree distribution
or users with degree k ≥ 100, which follows as similar distribu-
ion. Both truncated power-law and log-normal models yield high
kaike weights for the degree distribution but with slightly more
upport for the log-normal behaviour (a truncated power law is
tted to the dataset in Onnela et al. (2007)). Hence we consider
hat, of the candidate models, the log-normal model has the highest
upport for the weighted degree distribution.

Log-normal distributions are associated with multiplicative pro-
esses, in contrast with Gaussian distributions which are additive.
n important consequence of a log-normal distribution is that in a
rowth process, the growth rate is independent of the size (Sutton,
997). In terms the degree distribution, this means that the rate of
rowth of an ego’s number of friends is independent of their cur-
ent number of friends. Log-normal distributions are found in many
mpirical datasets (Eeckhout, 2004; Mitzenmacher, 2004; Clauset
t al., 2009).

Having established that the data is log-normally distributed,
efore normalising the weight array in Eq. (1), the log of each weight

s taken. Fig. 2 shows the histogram for the normalised log of the
eights ŵ for all users. There are peaks at 0 and 1 as every user has

t least one alter they call a minimal number of times (usually mul-
iple) and at least one alter they call a maximum number of times.
lthough the data is very noisy, we observe peaks indicating that

here are some groupings within the data. The blue line is a Gauss-
an kernel density estimate of the distribution. The local minima
n average split the number of alters into groups of 15 until the

ormalised strength of a relationship ŵ = 0.28 after which there
re an average of 68.8 alters. This could roughly correspond to the
hird Dunbar layer of 50. Beyond this region, the data is too noisy
o split up further on a group level.

able 1
he average number of users in each cluster using the Jenks Natural Breaks algorithm, Ga
n  a cluster is given by N, the total number of clusters the algorithm finds is denoted by 

sers  in each cluster is given in the second part of the table

N n1 n2

Jenks
c = 4 7226 4.1 (2.0) 6.8 (4.0) 

c  = 5 5983 2.9 (1.3) 4.6 (3.2) 

GMM
c  = 2 9289 43.0 (15.5) 79.9 (21.3)
c  = 3 3334 18.0 (10.1) 41.8 (15.4) 

H/T
c  = 3 12,951 4.3 (1.9) 18.1 (5.5) 

c  = 4 11,616 2.2 (0.9) 5.9 (2.5) 

Cumulative

N n1 n2

Jenks
c = 4 7226 4.1 11.0 

c  = 5 5983 2.9 7.4 

GMM
c  = 2 9289 43.0 122.9
c  = 3 3334 18.0 59.7 

H/T
c  = 3 12,951 4.3 22.4 

c  = 4 11,616 2.2 8.2 
line is a Gaussian kernel density estimator to the data. (For interpretation of refer-
ence to color in this figure legend, the reader is referred to the web version of this
article.)

Assuming then that there are some kinds of groupings within
each user’s call data W,  we  next use more traditional clustering
algorithms to attempt to identify the layers. Here we  do not need
to normalise W as we split each user’s weight array individually
and analyse the overall distributions one by one.

The analysis with the Jenks algorithm is found to split almost
half of the users (13,209) into 4–5 clusters, but it also finds of the
order of a hundred users in every cluster from clusters of 7 and up.
Fig. 3 shows the number of users in each cluster.

We identify the most common number of clusters to be 4 for
7226 (27.1%) users. The average number of users and their standard
deviation in each cluster are reported in Table 1 and the average
cumulative layer turns out to hold 4.1, 11.0, 29.8 and 128.9 users.
These numbers are a little smaller than the conventional numbers
for Dunbar layers, but within their natural range of variation. The

next most common number of clusters, as shown in Fig. 3, is 5 clus-
ters for 5983 (22.4%) users with cumulative layers holding 2.9, 7.4,
17.7, 43.0, and 134.3 users. These numbers are quite similar to the
Dunbar numbers, but with an another layer between the first two.

ussian Mixture Model (GMM) and the Head/Tail Breaks (H/T). The number of users
c and ni gives the average number of alters in cluster i. The cumulative number of

n3 n4 n5

18.9 (8.7) 99.1 (32.7)
10.2 (6.1) 25.4 (11.4) 91.3 (32.7)

66.6 (19.8)

98.5 (22.9)
21.6 (7.7) 103.7 (32.9)

n3 n4 n5

29.8 128.9
17.7 43.0 134.3

126.4

120.9
29.8 133.5
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Fig. 3. Number of users in each cluster using the Jenks algorithm. The majority of
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Fig. 4. The probability distributions for the number of users in each cluster for 4

lenge.
sers have four layers of friends. The algorithm does not converge well for large
umbers (>7) of clusters.

The probability distributions for 4 and 5 clusters are shown in
ig. 4. Each cluster is log-normally distributed. This is perhaps not
urprising given that the original distribution is log-normal; there
s already a large variation with some users perhaps having 100
riends split into 4 clusters and others having almost 500 split into

 clusters. Therefore even if the estimates for the mean size of each
ayer are accurate, there is large variance with numbers of alters
oing far to the right of these means.

Next we use a Gaussian Mixture Model to split the data. For
his algorithm, we however take the log of the data as it is log-
ormally distributed and not Gaussian. In this case 9289 of the
sers are split into 2 clusters and 3334 users into 3 clusters. (The
odel finds about 1000 thousand users in each cluster above this

p to 12 clusters.) The average and standard deviations are reported
n Table 1. For 2 clusters, the cumulative layer-size means are
3.0 and 122.9 users, which again are quite close to the outer
wo Dunbar layers. For 3 clusters the means are at 18.0, 59.7 and
26.4 users which are close to the outer three layers but miss the

nner one.
Lastly we apply the head/tail breaks algorithm. For users with

ore than 100 alters, it finds 12,951 users in 3 clusters with cumu-
ative layer sizes of 4.3, 22.4 and 122.9 users and 11,616 users in 4
lusters with cumulative layer sizes of 2.2, 8.2, 29.8 and 133.5 users.
he full details are reported in Table 1. Again, the layers are found
o be log-normally distributed using this method.

Each of the three algorithms finds small number of layers for the
ajority of the data. The Jenks and head/tails algorithms find an

nner layer ranging from 2.2 to 4.3 alters and almost all algorithms
ield a large outer layer of 80–100 alters at the end. The Jenks algo-
ithm and Gaussian Mixture Model both give good evidence for the
uter two layers.

If we assume that the majority of 4 clusters is the appropriate
alue, we can use the Jenks algorithm to force everyone into 4 clus-
ers. The values of the cumulative layers are then 3.5, 10.6, 31.1
nd 129.9 users, which are slightly smaller numbers than those
onventionally considered for the Dunbar layers, but have virtually
he same scaling ratio between the layers, i.e. on average, 3.3 here,
ompared to an average of 3.2 found by Zhou et al. (2005) and 3.2
n Facebook traffic by Dunbar et al. (2015).

These results are from call frequency. We  also have the duration
f each call. The duration and call frequency are highly correlated
ith a Pearson correlation coefficient of r = 0.71. For egos with

 ≥ 100 this is slightly higher at r = 0.76. Using the Jenks algorithm

his again yields a majority of egos with 4 clusters (27% of egos) with
umulative layers of 3.9, 10.1, 27.2 and 129.3. These are slightly
ower than the results for call frequency.
clusters on the left and 5 clusters on the right using the Jenks algorithm and shown
on a log-log scale. Log-normal distributions can be fitted to each as seen by the
dotted lines.

Finally we apply the Jenks algorithm to egos’ call frequencies
with 50 ≤ k < 100 (N = 301, 190). In this case the majority of users
are found to be best clustered into 3 (23.5%) with cumulative layers
of 3.9, 11.9 and 63.91. This matches the first three Dunbar layers
well. The next most common is 4 clusters (14.5%) with cumulative
layers of 2.7, 6.7, 17.9 and 64.3. These also contain the first three
Dunbar layers well but have an additional lower value close to the
1.5 layer found in Dunbar et al. (2015). Once again the duration
gives very similar results to the call frequency.

4. Conclusions

In this study, by applying different clustering algorithms to a
mobile phone dataset we find strong evidence for a layering struc-
ture. Fig. 2, for example, makes no prior assumptions and shows
that there is some structure within the dataset in spite of all the
noise. However, finding discrete layers is still a considerable chal-
Although the clustering methods yield slightly different results,
as shown at the bottom of Table 1, they have important similarities.
They all find a small number of clusters and show good support for
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Sutcliffe, A., Dunbar, R., Binder, J., Arrow, H., 2012. Br. J. Psychol. 103, 149.
P. Mac Carron et al. / Socia

he outer two layers. While the data is noisy, all methods support
wo different groupings well. This could, for example, mean intro-
erts and extroverts have a different number of layers of friends.
urther work could investigate this possibility. Another suggestion
s that over a year, friendships are more transient. Alters could move
p or down from one layer to the next on a regular basis. This
ould reflect the temporal nature of emotional closeness, espe-

ially among one’s non-closest friends.
The Jenks algorithm and Gaussian Mixture Model for four layers,

hey give results close to the Dunbar layers. In addition, they have
he same scaling pattern (∼3) as has previously been reported for
he structure of offline egocentric social networks and the organi-
ation of natural communities (Zhou et al., 2005; Hamilton et al.,
007), Facebook and Twitter traffic (Dunbar et al., 2015) and online
aming environments (Fuchs et al., 2014). We  still do not have any
rincipled explanation for why these structural layers should have
uch a consistent pattern, but they are closely tied into the psycho-
ogical aspects of relationships like emotional closeness (Sutcliffe
t al., 2012).

The means in the clusters are generally smaller than the pre-
icted means from the Dunbar layers, though they match the ranges
ound in Hill and Dunbar (2003). A reason they could be smaller
ere is due to the fact that a mobile phone call dataset only cap-
ures a portion of an ego’s social network, even with taking users
ho call more than 100 alters. With many other modes of com-
unication available, it is unlikely that a user would only resort to

honing their friends. We  emphasise however, that the year 2007 is
 good time to use cellphone data for this kind of analysis as it is just
rior to smart phones (the first iPhone was released a few months
efore this dataset ends) which facilitates many other avenues of
nline communication. It is also before platforms, such as Skype or
acebook, were at the height of their popularity. We  also show that
sers who call 50–100 people throughout the year match the inner
hree Dunbar layers well.

This study has strong implications for the social brain hypothe-
is as, regardless of the mode of communication, similar structure
s observed. Future work on this will involve analysing the turnover
ime in the layers using temporal data in different communication
atasets. We believe that the turnover time will relate to the emo-
ional closeness, for example the inner layer is likely to be more
obust in phone data than on Twitter.

A final point of note here is on the structure of the layers. From
ach algorithm we find that the layers are log-normally distributed
or all number of clusters. This, to the best of our knowledge, has not
een observed before. It is important to point out that this right-
ard skew and large standard deviation exist. The log-normality

s due to the entire degree distribution being log-normal and thus

lready having considerable skew. This potentially also shows a dif-
erence between extroverts, who tend to have a number of friends
ar greater than the mean. Regardless of their number of friends
owever, they still show evidence of layers.
orks 47 (2016) 151–155 155
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