Objectives: Orai3 is a store-operated Ca\(^{2+}\) channel specific for mammals. Previous studies found that 2-APB, an agonist of Orai3 channel, can either cause or prevent atrial fibrillation in animals. The aim of this study is to determine whether Orai3 mutation is a pathogenetic factor of atrial fibrillation.

Methods: Genomic DNA was extracted from the peripheral blood of 124 patients with atrial fibrillation. The two exons of Orai3 gene were separately amplified from the DNA and sequenced with corresponding primers. The coding sequences were assembled and aligned with the reference sequence from GenBank. Mutation found in the alignment was confirmed by manual check on the original sequencing chromatograms.

Results: Two of the 124 patients were found to carry heterogenic mutation from C to T at position 711 of the nucleic acid sequence. However, this mutation does not lead to any change on translated amino acid sequence.

Conclusions: Due to the lack of non-synonymous mutation in Orai3 gene, we conclude that Orai3 channel is probably not directly involved in the cardiac action potential. The effect of 2-APB on atrial fibrillation is more likely related to other targets of this drug, such as IP\(_3\) receptors.

GW25-e3159
Screening of potassium channel mutations in patients with atrial fibrillation
Li Tao, Zhou Lu-Ping, Chen Gui-Lan, Huang Li, Zeng Xiao-Rong, Zeng Bo
Institute of Cardiovascular Research, Lanzhou Medical College, Lanzhou, Sichuan, China

Objectives: To identify gene mutations of potassium channels that contributed to the pathogenesis of atrial fibrillation.

Methods: Genomic DNA was extracted from the peripheral blood of 124 patients with atrial fibrillation. The coding regions of genes including KCNE1 (magnesium-tolerant KCNE1L (KCNE5), KCNE2 (MiRP1), KCNE4 (MiRP3), KCNJ2 (Kir2.1) and remodeling of canine potential.

needs to be examined in the future to understand their impacts to the cardiac action showed highest mutation rates. The electrophysiological functionality of these mutants from GenBank. Mutations found in the alignments were con

ferred from the genomic DNA and sequenced with corresponding primers. The obtained sequences were aligned with reference sequences from GenBank. Mutations found in the alignments were confirmed by manual check on the original sequencing chromatograms.

Results: Mutations leading to changes of amino acids and corresponding mutation rates were found: KCNE1, S37R (0.8%), S38G (92.7%), D85N (0.8%); KCNE1L, Y131R (0.16%); KCNE2, none; KCNE4, M109V (0.8%), D196E (91.1%); KCNJ2, V93R (0.8%); KCNJ4, none.

Conclusions: Genetic mutations on potassium channels are important pathogenetic factors of atrial fibrillation. Among the six genes screened KCNE1 and KCNE4 showed highest mutation rates. The electrophysiological functionality of these mutants needs to be examined in the future to understand their impacts to the cardiac action potential.

GW25-e3168
Sodium tashinoneIA sulfonate improves tachycardia-induced electrical remodeling of canine
Ou Xianhong, Mao-Ling Li, Lu-Zhen Wang, Xiao-Hong Bin, Rui Liu, Yan Yang, Xiao-rong Zeng
Department of Electrophysiology, Institute of Cardiavasology, Lanzhou Medical College, Lanzhou, Sichuan 646000, P.R. China

Objectives: To determine the effects of DS-201 on electrical remodeling of canine and cell membrane potassium ion channels.

Methods: Mongol canines were used for preparation of animal models with AF through rapid pacing left atrial appendage, and then the effect of DS-201 on AF was determined by frequency and duration of AF. And K\(_{\text{cL}}\) protein expression in atrial myocytes was detected with western blotting.

Results: It was showed that DS-201 significantly reduced both the frequency and duration of AF (P<0.05, n=5). The frequency of AF was reduced from 7.2±1.31 to 3.12±1.05, and the duration of AF was lowered from 5.2±2.13 s to 0.89±1.23 s. It is interested that DS-201 did not inhibit K\(_{\text{cL}}\) protein expression but significantly increase its expression.

Conclusions: DS-201 improves tachycardia-induced electrical remodeling of canine by modifying the low-level expression of K\(_{\text{cL}}\) in AF.

GW25-e3173
Inhibition of TRPC channels by the cardioprotective drug sodium tashinone IIA sulfonate
Chen Gui-Lan, Chen Tang-Ting, Zeng Xiao-Rong, Zeng Bo
Institute of Cardiovascular Research, Lanzhou Medical College, Lanzhou, Sichuan, China

Objectives: Sodium tashinone IIA sulfonate (STS) is a water-soluble derivative of tashinone IIA, the major lipophilic component extracted from the root of Danshen (Salvia Miltiorrhiza). STS is clinically used in the treatment of myocardial infarction, coronary artery disease and other cardiovascular disorders. STS can protect the heart against pathological hypertrophy in laboratory animals. However, the direct molecular targets of STS on cardiomyocytes are still unclear. Here we aim to examine the effect of STS on the activity of TRPC channels, which have been suggested to be important mediators of pathological cardiac hypertrophy.

Methods: Intracellular Ca\(^{2+}\) measurement and patch clamp recordings were performed on HEK293 cells stably transfected with human TRPC1 and TRPC5 cDNA. STS was applied to the extracellular solution to test the drug effect.

Results: We found that STS at micromolar concentrations inhibited TRPC4 and TRPC5 channels. The potency of tashinone IIA on the inhibition of these channels is much lower than that of STS, suggesting the sulfonation of this compound is important for its channel-inhibitory activity.

Conclusions: The inhibition of TRPC channels by STS found in this study is a novel aspect of the cardioprotective pharmacology of this drug. As STS has been used in patients by injection with safety approval, our results suggest that blockade of TRPC channels is a potentially safe strategy for clinical therapy.

GW25-e3207
β-adrenoceptor Autoantibodies Induce Repolarization Abnormalities and Increase Susceptibility to Ventricular Arrhythmias in Guinea Pigs
Zhao Yuhui, Suli Zhang, Peng Liu, Hui Xia Huang, Yunhui Du, Huijun Zhang, Ye Wu, Ping-Long Yao, Xiao-Li Li, Li Wang, HuaRong Liu
1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100009, China, 2Department of Physiology, School of Basic Medical Sciences, Shaxi Medical University, Shaxi, 030001 China, 3Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, 100009 China

Objectives: The objective of this study was to investigate whether mononuclear autoantibodies against the second extracellular loop of β\(_1\)-adrenergic receptor (β\(_1\)-AR mAb) induce directly ventricular arrhythmias and to clarify the electrophysiological mechanisms.

Methods: To identify the function of β\(_1\)-AR mAb, the binding of β1-AR mAb with the β\(_1\)-adrenergic receptor (β\(_1\)-AR) on the H9C2 cell by laser scanning confocal microscopy and the scope of the β\(_1\)-AR mAb on the beat frequency in cultured ventricular myocytes of neonatal rats were observed. A langendorff perfused heart model was used in this study to explore the direct roles of β1-AR mAb in arrhythmias.

Results: Results showed that β\(_1\)-AR mAb may bind with β1-AR and increase the beat frequency of ventricular myocytes of neonatal rats, which was similar to autoanti-

body-induced ventricular arrhythmias. But the second extracellular loop of β1-AR receptor (β\(_1\)-AA) isolated from patients, thus β1-AR mAb might be seen as the tool to stay β1-AR. β1-AR mAb induced ventricular premature contractions, and enhanced the excitability of ventricular fibrillation by decreasing the threshold of ventricular fibrillation (β1-AR mAb group: 9.0±1.5 V; Control group: 11.0±2.1 V, P<0.05, n=5/group) and prolonging the duration of ventricular fibrillation (β1-AR mAb group: 1668.0±155.0 ms; Control group: 1000.0±127.1 ms, P<0.05, n=5/group); β1-AR mAb increased the susceptibility to ventricular arrhythmias as a result of repolarization abnormalities by reducing corrected QT intervals (0 min: 360.0±11.1 ms; 10 min: 333.0±14.0 ms, P<0.05, n=5/group) and prolonging late phase repolarization of monophasic action (MAPD200) (0 min: 360.0±11.1 ms; 10 min: 333.0±14.0 ms, P<0.05, n=5/group) in isolated guinea pig hearts.

Conclusions: It is concluded that β1-AR mAb could induce directly ventricular arrhythmias attributed to the increase of the susceptibility of ventricular arrhythmias by causing repolarization abnormalities.

GW25-e3301
Cardioprotective Effect of Pinacidil on Rats Heart with Transient Hypoxia and Reperfusion Injury
Shu Fen, Xiaoyan Dong
Department of Cardiology, Wuhan University School of Medicine Affiliated Tongren Hospital, Wuhan, China

Objectives: The aim of this study was to evaluate the cardioprotective effect of pinacidil postconditioning on rat hearts with transient hypoxia and reperfusion.

Methods: An acute myocardial anoxia-reperfusion rat model was created by ligating coronary arteries for 10 min and subsequent reperfusion for 60 min. Twenty-four rats in 4 groups received different treatments: normal hearts as control (N=6), anoxia-reperfusion (A/R) only (N=6), pinacidil postconditioning (N=6), and pinacidil plus adenosine triphosphate-sensitive potassium channel inhibitors (glibenclamide) (N=6). The kinetic parameters and electrophysiological properties, including early apoptosis protein expression changes of Bax, Bcl-2, and FN were examined using the isolated perfused heart and patch-clamp technique and immunohistochemistry.

Results: The left ventricular systolic pressure and maximum -dp/dt in A/R groups were significantly higher than those in the control group (P<0.05). The left ventricular developing pressure, maximum +dp/dt, and heart rate in the A/R group were slightly decreased. The pinacidil-postconditioned group has better cardiac function recovery after ischemia/reperfusion than the A/R group (P<0.01). In addition, using the patch-clamp technique, significant differences in the mean open time and conductance value were found in the pinacidil group related to the A/R group. The expression of apoptosis proteins (Bax, FN) increased during A/R, while the Bcl-2 protein expression decreased. A significant difference was found in the pinacidil treatment group relative to the A/R group.

Conclusions: Pinacidil postconditioning can exert cardioprotective effects on A/R-injured rat hearts, which may indicate a potential application of pinacidil post-conditioning to protect A/R-injured hearts.