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Abstract 

Griggs, J.R. and M. Wu, Spanning trees in graphs of minimum degree 4 or 5, Discrete 
Mathematics 104 (1992) 167-183. 

For a connected simple graph G let L(G) denote the maximum number of leaves in any 
spanning tree of G. Linial conjectured that if G has N vertices and minimum degree k, then 
L(G) 2 ((k -2)/(k + l))iV+ ckr where ck depends on k. We prove that if k =4, L(G) 2 
?,N + 2; if k = 5, L(G) 2 $N + 2. We give examples showing that these bounds are sharp. 

1. Introduction 

Is there a spanning tree of a connected simple graph G with many leaves? To 
find a spanning tree with the maximum number of leaves is an NP-complete 
problem, even when restricted to cubic (3-regular) graphs [4]. So people want to 
know for a given graph G with N vertices and minimum degree k, how many 
leaves at least are there for some spanning tree of G? 

Throughout this paper G always denotes a connected simple graph. Let L(G) 
denote the maximum number of leaves in any spanning tree of G. In 1981, Storer 
[6] announced that L(G) 2 $N + 2 for any 3-regular graph G with N vertices. The 
most interesting problem in this area is a conjecture due to Linial [5, cf. [l]], 
which generalizes Storer’s result. 

Conjecture. Let the minimum degree of G be k. Then 

k-2 
WP~+1N+ck, 

where ck depends on k. 

This bound is attained with ck = 2 by the following family of k-regular graphs: 
Construct a ‘necklace’ with any number of beads, where each bead is &+l- e 
(Fig. 1). 
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\ / 

Fig. 1. K, - e necklace. 

Kleitman and West [3] introduced a new method, the ‘dead leaves’ approach, 

with which they gave a proof of Linial’s Conjecture for k = 3 with a best possible 

ck = 2. The special case where G is cubic, i.e., Storer’s Theorem, had not been 

proven rigorously before. 

Through a complicated proof using dead leaves, Griggs, Kleitman, and Shastri 

[l] proved that L(G) 2 $(N + 4) if a cubic graph G with N vertices has no 

subgraph isomorphic to K4 - e. This bound is also tight, being attained by many 

graphs. 

In Section 2 we prove Linial’s Conjecture for k = 4 with the best possible value 

of cq = 9. We use the dead leaves approach. Kleitman and West [2] have 

independently developed a somewhat different proof for this case k = 4. While 

they originally obtained a proof that L(G) 2 $N + c, we discovered the sharp 

result presented here. 

Building on our work to settle k = 4, we prove our main result, which is 

Linial’s Conjecture for k = 5, in Section 3. The best possible value for c5 is 2. 

A weaker general result than Linial’s Conjecture would be to show that for 

every E > 0, L(G) 2 (1 - E)N for all graphs with sufficiently large minimum 

degree. This has just been proved by Kleitman and West [2]. 

It is worth pointing out that the proofs given in Sections 2 and 3, in fact, 

provide a polynomial algorithm to find a spanning tree which attains the lower 

bounds on L(G). 

We conclude the paper by presenting in Section 4 a new family of graphs 

attaining Linial’s bound. 

2. The lower hound for k = 4 

Suppose T is a partial tree of G. If u is a vertex of G, let NT(u) denote the set 

of neighbors of u inside T and N?(u) the set of neighbors of II outside T. Let 

N(T) denote the set of neighbors of T, i.e., N(T) = lJveT N&v). 
A leaf I of T is dead if IN&r)1 = 0, otherwise it is alive. We call r k-split if 

IN?(r)] = k. We shall form a cost function involving the number of leaves, dead 

leaves, and vertices of T, and we shall always seek to enlarge T while not 

decreasing the cost function. To consider dead leaves is a crucial idea, because we 

cannot gain enough new leaves in many cases, but we do gain some dead leaves 

to improve the value of the cost function. 

Theorem 1. If G is a connected simple graph with N vertices and minimum degree 

4, then L(G) 2 2N + 5. 
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Proof. First notice that 

L(G) 2 $N + 2 if and only if 5L(G) 2 2N + 8 

if and only if 5L(G) > 2N + 7. (1) 
Define a cost function 

A(L, D, N) = YL + $0 - 2N. 

Then (1) holds if and only if there exists some spanning tree T for G such that 

A(& D, N) > 7, 

where D is the number of dead leaves of T, since every leaf in T is dead. 
Our proof follows such procedures: First we find a partial tree with No vertices, 

Lo leaves and Do dead leaves such that 

A(&, D,, N,) ’ 7. 

Then we expand it to a spanning tree of G by a series of steps, where for each 
step we add some number of vertices rr, such that there is a net gain of 1 leaves 
and d dead leaves, satisfying the cost function A(& d, n) 2 0. Finally the initial 
tree becomes a spanning tree T with all leaves dead, and clearly if L is the total 
number of leaves in T, then YL + $L = 5L > 2N + 7, and we are done. 

Initial procedure: Pick one vertex v, and add all edges incident on v along with 
their endpoints. Such a star is required since Lo = deg(v) 3 4 implies we have L,, 
leaves and Lo + 1 vertices so that A(L,,, 0, Lo + 1) > 7. 

Expansion procedure: Let T be the current tree. Before doing the next step, 
we repeatedly add the vertices, each of which is adjacent to some internal vertex 
of T, to T. Then only leaves of T may have neighbors outside T. We do this 
without mentioning it again. 

Next we list a collection of acceptable operations, at least one of which is 
available for the next step, until T becomes a spanning tree of G. 

(01) There is a leaf r of T with IN&r)1 = k 3 2. 
Expanding T at r to all NT(r) gives A(k - 1, 0, k) > 0. If we assume (01) fails, 

then each live leaf of T has exactly one neighbor outside T. Now we look at the 
neighbors of T. 

(02) There is a vertex x E N(T) with IN&x)l> 4. 
Adding x to T kills at least k 2 3 leaves and A(0, k, 1) 2 0. 
Assuming (01) and (02) both fail, we have lNT(v)l < 3 for each v E N(T). 

Now we consider a neighbor v of T with INT(v)l = 1, 2, 3 separately. 
(03) There exists v E N(T) and INT(v)l = 1. 
Since deg(v) 3 4, v splits into (at least) 3 vertices outside T. Expanding these 4 

vertices gives A(2, 0, 4) > 0 (Fig. 2). 
If we assume (Ol)-(03) all fail, then 2 c IN,(v)1 s 3 for each v E N(T). 

(04) There is y, E N(T) and INT(yl)( = 2. 
Assume deg(y,) = 4 and y, splits into x1 and y2 outside T (if INp( > 2, 
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Fig. 2. 

expanding at y, as in Fig. 2 again, we are done by A(2, 1, 4) > 0). We may also 
assume that xi -y2, deg(xJ = deg(y,) = 4 and none of them is adjacent to T, 
since otherwise we are done by A = j (Fig. 3) or A = $ (Fig. 4). Let x2, y, be the 
neighbors of y, besides xi, y,. For the same reason, we may assume none of them 
is adjacent to T. If {x1, x2, y2, y3} form a K4, we expand T as in Fig. 5, so y2 is 
dead, and A(2, 2, 5) = 0. If { xl, x2, y2, y3} do not form a K4 (recall x1 -y2), then 
one of x2, y, must split, say y3 splits into x 3, y, (as before assume x3, y4+ T). 
Notice that y3 should be adjacent to x1 or x2 (or both), otherwise we are done 
easily. 

Set B = T U {xi, Yj: 1 G i s 3, 1 G j < 4). Referring to Fig. 6, so far the cost 
function A = -4, so we need just one dead leaf or a 2-split to balance the deficit 
(each 2-split increases A by 4). Clearly if one of {xi, x2, x3, y4} is dead, we are 
done by A(3, 2, 7) > 0; if one of {xi, x2, x3, y4} splits into two vertices outside B, 
we are done by A(4, 1, 9) = 0. In fact, once we get a ‘4-2-split’ structure, i.e., 
expand T from y, by a full binary tree with four internal vertices (Fig. 7), and we 
win. So each one of the {xi, x2, x3, y4} has exactly one neighbor outside B. Let 
U---x 1, b-x2, c-x3, d-y4, wherea,b,c,d$B. Ifa=b=c=danddeg(a)= 
4, expand T to B U {a}, then A(3, 5, 8) = 3 > 0 (Fig. 8). If deg(u) 5 5, we are 
done by A(4, 1, 8) > 0. Fig. 9 shows the case x1 -x3. 

Now we go back and look at y3. 

(I) y3-Xl. 

Assume x2 4 x 1, otherwise refer to Fig. 4. Then x2 must be adjacent to two of 

{X3? Y3, Y4). If x2 -y3, we are done by Fig. 10, and A(4, 2, 8) > 0; otherwise we 
are done by Fig. 11, killing t and y,. 

(2) y3+xl, Y3-x2* 

* (a) xl -x2. Since x3 must be adjacent to two of {x1, x2, y4}, x3 should be 
adjacent to at least one of xi, x2. If x3 -xl, expanding T, gives A(3, 1, 6) >O 

Fig. 3. Fig. 4. Fig. 5. 
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Fig. 6. Fig. 7. Fig. 8. 

I 
Fig. 9. 

a 

\X 
x2 X3 e e 

VI Y2 y3 v4 

Fig. 10. Fig. 11. 

(Fig. 12). If x3-x2, expand T as in Fig. 13, so t and y2 are killed and 
A(3, 2, 7) > 0. 

(b) x1 +x2, x1 -x3: Then x3 must be adjacent to one of x2, y,+ If x3 --x2, we 
expand T as in Fig. 14, so that t, y, are dead, and A(3, 2, 7) > 0. If xg +x,, and 
xg -y4, then x2 - y4. Now if d # a, expand T by Fig. 15 while if a = d and a # b, 

expand T as in Fig. 16; if a = d = b but a Zc, expand T as in Fig. 17. We have a 
4-2-split for each case. 

(c) Xl + {x2,-%), Xl - y4: Then x3 must be adjacent to x2 and y4. Now if d #a, 

expand T by Fig. 18; if a = d, a f b expand T by Fig. 19; if a = b = d but a #c, 

expand T by Fig. 20. Again we have a split for each case. 
It remains to consider the case that (Ol)-(04) all fail. Then each u E N(T) has 

I%(u)l = 3. 
(05) There ex&.s yl E iV( T) with I& (yl)l = 3. 

If INp( ~2, refer to Fig. 2. Hence we may assume No = {x1, y2}. 
Assume x1 + T + y2 (otherwise done by killing many leaves). One of x1, y2 must 
split, say y2 splits into x2, y3, and expanding gives A(2, 2, 5) = 0 (Fig. 21). Finally 
assume N&y,) = {y2}. If y2- T, we get A(0, 6, 2) = 0 (Fig. 22). If y2+ T, y2 
should split into at least 3 vertices outside T, and expanding T gives A(2, 2, 5) = 0 

(Fig. 23). 
Clearly (Ol)-(05) cover all cases, and we are done. q 

Fig. 12. Fig. 13. Fig. 14. 
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Fig. 15. Fig. 16 Fig. 17. 

Fig. 18. 

Fig. 21. 

Fig. 19. 
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Fig. 23. 

Notice that the lower bound of L(G) given in Theorem 1 is sharp. For 
example, the graph G(4, 6) in Fig. 24, which is 4-regular with 6 vertices, is such a 

example. Another graph G(4, 8) almost matches this lower bound (Fig. 25). It is 

not clear whether there are some other graphs matching this lower bound, but we 

know that such graphs should be 4-regular, and each edge is involved in a triangle. 

3. The lower bound for k = 5 

Now let us consider graphs G with minimum degree 5. 

Theorem 2. Zf G is a connected simple graph with N vertices and minimum degree 

at least 5, then L(G) 3 +N + 2. 
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Proof. First notice that if N is even, then L(G) * 4N + 2 if and only if 

L(G) >iN + 1, i.e., 2,%(G) > N + 2. Define the cost function A(L, D, N) = 

$L + $D - N. It is enough to show that 

A(L, D, N) > 2. (2) 

If N is an odd number, then L(G) 3 +N + 2 if and only if L(G) > +N + 2, i.e., 

2L(G) > N + 3, so it is enough to show that 

A(L, D, N) > 3. (3) 

As before, we find a partial tree which satisfies (2) or (3) according to whether 

N is even or odd, and then expand it by a finite sequence of steps, such that each 

step preserves A 2 0. The proof depends on a series of lemmas. 

Initial procedure: Pick v E V(G) with maximum degree in G, adding all edges 

incident on v with the end points. If N is even, d(v) 2 5, so this star has no 3 6 

vertices and no - 1 leaves and 7(n, - 1)/4 - rrO > 2, while if N is odd, then 

d(v) 2 6, so this star has n, 2 7 vertices and 7(n,, - 1)/4 - n, > 3. 

Expansion procedure: We list a collection of acceptable operations, such that if 

T is not yet a spanning tree, then certainly at least one of the operations is 

available for the next step. 

We define a saw path SP to be a path (no repeated vertices, as usual) of G such 

that the vertices of SP are alternatively inside T and outside T. A saw cycle SC is 

a saw path such that the first vertex is outside T, and adjacent to the last vertex 

inside T. The length of the SC is defined as the number of vertices outside T in 

SC (Fig. 26). 

(01) Zf one leaf r is k-split with k 2 3, we expand r to all of its neighbors, and 

A(k-l,O,k)>O. 
Now if we assume (01) fails, then [NT(r)1 c 2 for every leaf r of T. 
(02) There is a leaf rl with N&r,) = {aI, uz}. 
If one of {a,, u2}, say u2, is not adjacent to T by at least one other edge, then 

u2 has at least 4 neighbors outside T, and expanding at r, to all neighbors of u2, 

we have A(3,0, 5) > 0. Assume u2 - r2 E T. If N#,r,) = {u2}, we are done by 

expanding r, to al, u2, killing r,, and A(1, 1, 2) = 0. So we may assume 

N&r,) = {u2, u3}, where u3 # ai, or otherwise we have a saw cycle with length 2, 

and we are done by Lemma 1 below. Repeatedly searching, if some ri - uj for 

some Z < i, there is a saw cycle, and we are done by Lemma 1. Otherwise at the 

very end of the finite saw path, either it ends inside T, so we are done by 

expanding the last 2-split killing one old leaf, or it ends outside T, so we are done 

by the argument for u2. 

Fig. 26. 
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If we assume (Ol), (02) both fail, then IN&r)1 < 1 for every leaf r of T. Now 

we look at the neighbors of T. 

(03) There is v E N(T) with INr(v)l = 1. 
Since lN~(u)l = k 2 4, expand T to V, then to all NT(V), and A(k - 1, 0, k + 

1) > 0. 
Suppose (03) also fails, then IN,(v)1 3 2 for each v E N(T). 

(04) There exists v E N(T) with INr(v)l = 2. 

We are done by Lemma 2. 
If (Ol)-(04) all fail, clearly IN,(v)1 2 3 for each v E N(T). 
(05) There exists v E N(T) with INr(v)l = 3. 

We are done by Lemma 3. 
If we assume (Ol)-(05) all fail, then INT(u)l 2 4 for every u E N(T). 

(06) There exists v E N(T) with INr(v)l = 4. 

Then v -x $ T. If x - T (at least 4 times) expand T to u and x, killing 8 leaves, 
so A(0, 8,2) = 0. If x + T, x should split into 4 vertices outside T, expanding 
these vertices gives A(3, 3, 6) = 0. (It is trivial if deg(v) > 5 or deg(x) > 5.) 

Finally we assume (Ol)-(06) all fail. 
(07) There exists a v E N(T) with NT(v) 2 5. 

Expand T by u, killing at least 4 old leaves, and we are done by A(0, 4, 1) = 0. 

(Ol)-(07) cover all cases which may appear when expanding T to a spanning 
tree of G. The summation of the costs of all steps including the initial procedure 
gives L(G) 2 $N + 2. We have completed the proof, subject to proving the 
lemmas that follow. 

Lemma 1. Suppose G is a simple connected graph with minimum degree at least 5. 

Let T be a tree in G that does not span it. Assume IN&r)/ < 2 for every leaf r of T. 

If there is a saw cycle SC, then we may expand T preserving A 2 0. 

Proof. Let SC be a shortest saw cycle with length k. Clearly k 2 2. Label all 
vertices of SC outside Tin order by al, u2, . . . , ak, and set A = {aI, u2, . . . , ak}. 

Correspondingly label vertices of SC inside T by r,, r,, . . . , rk, i.e., a, - r, - a2 - 

r,-***, and so on. 
Case 1: k = 2m, integer m 2 1. 

Expand every other 2-split, say expand rl to {a,, u2}, r3 to {u3, a.,}, . . . , r*n_1 

to {ah-r, U~}, killing r2, r,, . . . , r,, so A(m, m, 2m) = 0 (Fig. 27). 
Case 2: k = 2m + 1, where m 3 1. 
(1) Assume there is an edge from A to T besides SC. We assume q._,+, - 

r, 5 r3 r4 r 2m-2 r2m-l r2m 

Fig. 27. 
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Fig. 28. 

roe T. If IN&r,)1 = 1, we simply expand r2m+, to a, and u2m+l, killing ro, so 

A(1, 1, 2) = 0. Assume I&(q,)l = 2, say r,, - a0 $ T, a0 f u~+~. If a0 E A we have 

a shorter saw cycle, a contradiction. Therefore, a,, $ A, and we expand T as in 

Case 1, and cj to {uzm+,, a,,}, killing r2, . . . , r2m+l, giving us A(m + 1, m + 

1,2m+2)=O(Fig.28). 
(2) Assume there is no edge from A to the complement of A U T. While 

expanding every other 2-split as in Case 1, we expand r2m+l to u2m+ i, killing 
3m + 1 leaves (all q’s and r,, r,, . . . , r2m), so that A(m, 3m + 1, 2m + 1) 2 0 for 
m > 1. 

Here we must point out that under the assumption of (2), if m = 1, then each 

of {a,, u2, us} must have one more edge incident on T besides SC, so refer to 

Case (1). 

(3) Neither (1) nor (2) happens, say a, -x 4 A U T. 

Claim. {a,, u2, . . . , a2m+l, aI> form a cycle, otherwise we may expand T 

preserving A > 0. 

Proof. To prove the claim, observe that if for some i, ai -t- uicl (mod 2m + l), 

then since there are no edges from uj to T besides SC, ui should split into 3 

vertices outside T other than u~+~. Then we expand I; to {a;, ai+*}, and ai to the 3 

vertices, giving A(3, 0, 5) > 0. 0 

We have a, 5 Use+, by the claim. Expand T by m 2-splits as in Case 1, and 

expand ~1 to {x, em+l}, killing r2, r4, . . . , r,,, and r2m+l, so that A(m + 1, m + 
1, 2m + 2) = 0 (Fig. 29). 

This completes Lemma 1. Cl 

Lemma 2. Suppose G is a simple connected graph with minimum degree at least 5. 

Let T be a tree in G that does not spun it. Assume IN&r)1 s 1 for any leaf r of T 

rl r2 r3 r4 r 
2m 5m+l 

Fig. 29. 
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Fig. 30. Fig. 31. Fig. 32. 

and I&(v)1 > 2 for each v E N(T). If there exists v E N(T) with IiVT(v)l = 2, then 

we may expand T preserving A 3 0. 

Proof. If deg(v) > 5, then IN&v)1 2 4, and expanding T to all N&v), we have 

A(3, 1, 5) > 0. Hence assume deg(v) = 5. Let v split into {x, y, z}. Assume none 

of {x, y, z} is adjacent to T, since otherwise we are done by A(2, 3, 4) > 0. None 

of {x, y, z} has degree >5, since otherwise it should split into 3 new vertices 

other than its brothers (‘brothers’ means that they grow from the same vertex in 

T), and we have A(4, 1, 7) > 0 (Fig. 30). 

Furthermore, {x, y, z} should form a triangle (Fig. 31), since otherwise one of 

{x, y, z} must split into 3 new vertices outside T, and we are done as above. 

Let x split into {a, b}, y into {c, d}, z into {e, f}. 
Case 1: One of {a, b, c, d, e, f } is adjacent to T. 
This gives A(3, 3, 6) = 0. Fig. 32 shows the case a - T. 

Case 2: One of {a, . . . , f} is adjacent to only one of {x, y, z}. 

Then it must split into 3 new vertices other than {x, y, z} and its brother, so 

A(5, 1, 9) = 0 (Fig. 33). 

If neither Case 1 nor Case 2 happens, then we need to consider the following 

two more cases. 

Case 3: {a, b} = {c, d} = {e, f}. 
Expand x to a, b, killing y, z, A(3, 3, 6) = 0 (Fig. 34). 

Case 4: Assume a = f, b = d, c = e (Fig. 35). 

We may assume a - b - c, because if there is only one edge among a, b and c, 

then one of {a, b, c} should split into 3 new vertices, and we can refer to Case 2. 

For the same reason we may assume deg(a) = deg(b) = deg(c) = 5. 

Assume u - c. Then each of {a, b, c} has exactly one edge to a vertex besides 

{a, 6, c, x, y, z}, say a -g. If g -b or c, say g -b, then expand x to {a, b}, a to 

{g, c}, which k 11 i s y, z, s, and b, so we have A(4, 4, 8) = 0 (Fig. 35). Otherwise, 

suppose b + g + c. If g - T, we are done by expanding x to {a, b}, a to {c, g}, 

Fig. 33. Fig. 34. Fig. 35 
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Fig. 36. Fig. 37. Fig. 38. 

which kills many leaves and A(4, 5, 8) > 0. If g + T, g splits into 4 new vertices, 

so expanding all such neighbors gives A(7, 3, 12) > 0 (Fig. 36). 

It only remains to suppose a + c. Then a has two new neighbors, say g and h. 
Expand z to {a, c}, a to {b, g, h}, killing {s, y, x}, and we are done by 

A(5, 3, 9) > 0 (Fig. 37). Cl 

Lemma 3. Suppose G is a simple connected graph with minimum degree at least 5. 
Let T be a tree in G, that does not span it. Assume IN?(r)1 < 1 for every leaf r of T, 
and IN,(v)1 2 3 for every v E N(T). Zf there exists v E N(T) with IN,(v)1 = 3 then 
we may expand T preserving A 2 0. 

Proof. Notice the following points first: 

(1) deg(v) = 5. Otherwise IN&v)1 a3, and expanding v to all N?(v) gives 

A(2, 2, 4) = 0. 

(2) Let NT(V) = ix, Y >, and x -t- T + y. Otherwise, we are done by killing many 

leaves (Fig. 38). 

(3) n -y. Otherwise, x has 4 neighbors other than y, and expanding T as in 

Fig. 39 gives A(4, 2,7) > 0. For the same reason we may assume deg(x) = 

deg(y) = 5. 

(4) Let x split into {a, b, c}, y split into {d, e, f}, where none of 

{a, b, c, d, e, f} is adjacent to T, since otherwise we have A(3, 5, 6) > 0 (Fig. 40). 

Next we need to take care of the following cases. 

Case 1: /{a, b, c} n {d, e, f}l = 0. 

Expand x to {a, b, c}, y to {d, e, f }, and we have A(5, 2, 9) > 0. 

Case 2: I{a, 6, c} fl {d, e, f}l = 1, where, say, c =f. 
Notice that {a, b, c} should form a triangle, for otherwise one of {a, b}, say a, 

has 3 neighbors other than its brothers, so we are done by A(5,2,9) > 0 (Fig. 41). 

Similarly {c, d, e} form a triangle also. But this is impossible if deg(c) = 5. If 

Fig. 39. Fig. 40. Fig. 41 
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deg(c) > 5, {a, 6, c} and {c, d, e} do form two triangles, and we are done by 

Lemma 4 below. 

Case 3: [{a, b, c} rl {d, e,f}l = 2, and we ussume b = e, c =f. 
It is clear by the above argument that a, d -b, c. 
Subcuse 3.1: u-d, b+c. 

We may assume deg(u) = deg(b) = deg(c) = deg(d) = 5, or otherwise one of 

them must split to 3 neighbors other than its brothers, and we can expand T as in 

Fig. 41 again. So each one of {a, b, c, d} has exactly one more new neighbor. 

Assume a - g. If g - T, we are done by Fig. 42 and A(4, 6, 8) > 0. If a is 

expanded to {d, g}, killing one of {b, c, d}, we have A(4, 4, 8) = 0 (Fig. 43 but 

with b + c, and g + b, c or d). Otherwise g splits into 4 vertices other than 

{b, c, d}, so A(7, 3, 12) > 0 (Fig. 44). 

Subcuse 3.2: a - d, b - c. 
As before we are done unless deg(u) = deg(d) = 5, and deg(b), deg(c) G 6. Let 

g be another neighbor of a. If one of {b, c} is of degree 5, we expand T as in Fig. 

43, killing s, t, y, and b (or c), so A(4, 4, 8) = 0. Assume deg(b) = deg(c) = 6. 

Each one of {a, b, c, d} has exactly one new neighbor. Then we may refer to the 

last part of Subcase 3.1 (Fig. 43 or 44). 

Subcuse 3.3: d + a and b - c. 
As above we assume deg(u) = deg(d) = 5, deg(b) < 6, deg(c) s 6. Then a has 

two other neighbors g and h, d has i and j. Assume T +g, h, i, j (else we are 

done by killing many leaves). 

If {g, h, i, j} are all distinct, there are at most two of them which may be 

adjacent to b or c, so one of {g, h, i, j} must split into 3 vertices other than its 

brothers, say h, so A(6, 2, 11) = 0 (Fig. 45). 

If I{g,h}n{i,j}l=l, assume h=j. We should have g-h and h-i, or 

otherwise one of {g, i} must split into at least 3 new vertices (one such instance is 

Fig. 42. Fig. 43. Fig. 44. 

Fig. 45. Fig. 46. 



Spanning trees in graphs of minimum degree 4 or 5 179 

Fig. 47. Fig. 48. 

shown in Fig. 46), and we get A(6, 2, 11) = 0. Also notice that g (as well as i) is 
adjacent to one of {b, c} (otherwise we are done by g (or i) splitting into 3 new 
neighbors). Then expand a to {g, h}, h to {d, i}, killing (6, c, d, y, s, t}, so 
A(5, 6, 10)) > 0 (Fig. 47). 

Now we assume {g, h} = {i, j}. 
If one of {g, h} has two neighbors other than {a, b, c, d, g, h}, say g has 

neighbors k and 1, we expand a to {g, h}, g to {d, k, 1)) and A(6, 4, 11) > 0 (Fig. 
48). Otherwise g - b (or c), h - c (or b), g has one new neighbor k. Expanding T 
gives A(5, 6, 10) > 0 (Fig. 49). 

Subcase 3.4: d +a, b -f-c. 
We may follow the proof of Subcase 3.3, while assuming deg(b) = deg(c) = 5, 

to expand T preserving A 2 0. 

Case 4: I{a, b, c} n {d, e,f}l = 3. 
Expand x to {a, b, c}, killing s, t, y, so that A(3, 3, 6) = 0 (Fig. 50). 
This completes the proof of Lemma 3. •i 

Lemma 4. Suppose G is a simple connected graph with minimum degree at least 5. 
Let T be a tree in G, that does not span it. Suppose IN&r)1 < 1 for every leaf r of 
T. Assume INr(v)I a 3 for every v E N(T), and we have the structure as in Fig. 51, 
where deg(v) = deg(x) = deg(y) = 5. Then we may suitably expand T from it 
preserving A 2 0. 

Proof. We notice that expanding out to a, b, c, d, e gives 

A(4, 3, 8) = - $ < 0, 

so we need just one dead leaf to finish. 

We may assume that deg(a) = deg(b) = deg(d) = deg(e) = 5, and deg(c) = 6, 

Fig. 49. Fig. 50. Fig. 51. 
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and none of them is adjacent to T. In fact, if one of {a, 6, d, e} is of degree >5 or 

if deg(c) > 6, it should split into at least 3 vertices other than its brothers, so that 

A(5, 2, 9) > 0; if one of {a, b, c, d, e} - T, we are done by killing many leaves. 
Now we discuss the following cases. 

Case 1: u-d, e. 

Expand a to {e, d}, killing 4 leaves, so A(4, 4, 8) = 0 (Fig. 52). 

Because a, b, d, and e are symmetric in Fig. 51, we assume Case 1 does not 

hold for any one of a, b, d, or e, i.e., a is adjacent to at most one of {d, e} (so is 

b), d is adjacent to at most one of {a, b} (so is e). 

Case 2: There are two edges between a or b and d or e, say a - e, and b - d. 

Each one of {a, b, d, e} has a new neighbor. Let a -g. Assume g + T, or 

otherwise expand a to {g, e} (omitting d), then A(4, 5, 8) > 0. If g + e (Fig. 53 

shows the case g -d), or g -e and d +g 7~ b (Fig. 54), then g has 3 new 

neighbors other than a, b or c, so if we expand g to those 3 new neighbors, we 

have A(6, 2, 11) = 0. If g -e and g is adjacent to one of {b, d} (notice Fig. 51 is 

symmetric), expand T as in Fig. 55. If g - {a, b, d, e}, g has another neighbor h, 

and expanding g to {d, h} we have A(5,7, 10) > 0. 

Case 3: There is just one edge between a or b and d or e. 

Assume a - e, d + b. Then b has two new neighbors g and h, and g, h + T for 

otherwise we are done by killing many leaves. But one of {g, h} must have 3 

neighbors other than a, b, c, and its brother, so expanding T gives A(6, 2, 11) = 0 

(Fig. 56). 

Case 4: d, e + a, b. 

Each one of {a, 6, d, e} has 2 new neighbors. Assume a splits to {g, h}, b to 

{k, I} (none of {g, h, k, I} is adjacent to T, otherwise we are done by killing 

many leaves). In fact, if {g, h} # {k, I}, one of them should split into 3 new 

neighbors other than a, b, c, and its brothers, so we are done by A(6, 2, 11) = 0 

Fig. 52. Fig. 53. Fig. 54 

Fig. 55. Fig. 56. 
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/ eJ 
Fig. 57. 

Fig. 59. 

/ eJ 
Fig. 58. 

Fig. 60. Fig. 61. 

(Fig. 57 or Fig. 58). So now we assume {g, h} = {k, 1}. By Fig. 56 we are done 

unless g - h and deg(g) = deg(h) = 5. Similarly if m and p are the neighbors of d, 

they should be the neighbors of e also, and m -p, deg(m) = deg(p) = 5. 

We assume {g, h} fl {m, p} = 0 because if {g, h} = {m, p}, expanding a to 

{g, h}, h to {d, e} kills many leaves (Fig. 59), while if I{g, h} fl {m, p}I = 1, say 

h =p, then deg(h) = 6, a contradiction. 

According to the above analysis, {a, b, g, h} form a Kq. If we expand a to g 

and h, killing b, we still need one more dead leaf to keep A 2 0. We define a 

K,-chain to be structure formed by using K,‘s as beads to form a chain, where 

each pair of adjacent K,‘s forms a complete bipartite graph K2,2 besides the edges 

in the K2’s (Fig. 60). 

Repeatedly applying the argument above we find that the problem occurs when 

there is a Kz-chain starting at a and b, and another K,-chain at d and e (Fig. 61). 

But the length of each K,-chain must be finite, so certainly one of the following 

cases should happen. 

Subcase 4.1: A K,-chain stops outside T. 

The structure has to be changed at the very end of it. But one of {(Y, p, p, t} 

splits into 3 new vertices besides its brother and parent (or is adjacent to T). So 

we win by gaining at least 4 in A (Fig. 62). 

Subcase 4.2: A K,-chain comes back to T. 

s” 

er 

;3== p 

Fig. 62. Fig. 63. 
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Clearly expand until the last 2-split of the K,-chain, where it kills at least one 

extra old leaf, and we are done. 

Subcase 4.3: The two K,-chains meet. 

We may expand the 2-splits along the upper K,-chain around to d and e, killing 

d, e, and y, and we win (Fig. 63). 

This completes Lemma 4. q 

These four lemmas complete the proof of Theorem 2. •i 

4. A new family of graphs attaining Linial’s bound 

We have already seen that by taking a necklace 

where each bead is Kk+, - e, a k-regular graph G is 

N=(k+l)A and L(G)=zN+2. 

These graphs are extremal for Storer’s result (k = 3) 

of any number A of beads, 

obtained with 

and Theorem 2 (k = 5). 

For k = 4 and N = 5A, the bound of Theorem 1 is not an integer, but in this 

case the implied bound is [$N + 81 = 2A + 2 = $N + 2, and the family of 

necklaces attains this bound. We also saw that for k = 4 and general N, 9 is best 

possible for ck. 

As a by-product of the proof of Theorem 2, we noticed an interesting new 

family of examples attaining Linial’s bound. For the case k = 5 of Theorem 2, let 

G be a K,-chain of B 2 3 K,‘s that closes on itself. Then G is a 5-regular graph 

with N = 2B and L(G) = B + 2. It is extremal in Theorem 2 for all even N (Fig. 

64). 

This construction extends for arbitrary m 3 1 to provide a family of graphs that 

are regular of degree k = 3m - 1: For B 2 3 form a Km-cycle consisting of B K,,,‘s 
in a circle such that vertices in consecutive K,‘s are adjacent. Such a graph G has 

N=Bm=iB(k+l) and L(G)=B(m-1)+2=gN+2. 

This is the same value for L(G) attained by the necklaces and used to support 

Linial’s Conjecture. 

Examples in the new family exist for three times as many values of N as the 

family of necklaces, although in the new family k is restricted to 2 mod 3. What is 
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significant is that the K,-cycles are highly connected compared to the necklaces, 

which are not 3-connected. The connectivity is important to consider since for 

k = 3 the bound L(G) 3 &‘V + 2 rises to L(G) 2 f(N + 4) when G is 3-connected, 

by the result of Griggs, Kleitman, and Shastri [l]. Evidently 3-connectivity does 

not improve the bound on L(G) for larger k. 

The construction can be adapted to provide k-regular graphs G for arbitrary 

k>2. Given A>1 and a, b, c>l such that a+b+c=k+l, we arrange A 

copies of the sequence of complete graphs K,, Kh, KC in cyclic order. We form a 

graph G by putting edges between vertices in consecutive complete graphs. Then 

k-2 
N=(k+l)A and L(G)=k+lN+2 

In particular, if a = b = 1 and c = k - 1, then we have the familiar example of 

necklaces. We produce examples with high connectivity by taking each of a, b, 

and c equal to [t(k + l)] or [f(k + 1)l. 
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