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We explain how the Bloch–Kato conjecture leads us to the
following conclusion: a large prime dividing a critical value of the
L-function of a classical Hecke eigenform f of level 1, should of-
ten also divide certain ratios of critical values for the standard
L-function of a related genus two (and in general vector-valued)
Hecke eigenform F . The relation between f and F (Harder’s con-
jecture in the vector-valued case) is a congruence involving Hecke
eigenvalues, modulo the large prime. In the scalar-valued case we
prove the divisibility, subject to weak conditions. In two instances
in the vector-valued case, we confirm the divisibility using elab-
orate computations involving special differential operators. These
computations do not depend for their validity on any unproved
conjecture.
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1. Introduction

The Bloch–Kato conjecture [BK,Fo2] gives a conjectural formula for the leading term (up to units)
of any motivic L-function at any integer point. When combined with other conjectures on orders
of vanishing, it may be viewed as a great generalisation of Dirichlet’s class number formula (about
the Dedekind zeta function of a number field at s = 0) and the Birch and Swinnerton-Dyer conjec-
ture (about the L-function of an elliptic curve at s = 1). In this paper, we shall be concerned only
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with critical values, the subject of [De]. For such values, Deligne’s conjecture gives an interpreta-
tion of the L-value as an algebraic multiple of a certain period (which is in fact only defined up
to an algebraic multiple). The Bloch–Kato conjecture is an integral refinement, giving a conjectural
factorisation of the ratio of the L-value to the period, once choices have been made to fix the pe-
riod.

The L-function L( f , s) of a cuspidal Hecke eigenform f = q+∑∞
n=2 an( f )qn of weight k′ for SL2(Z),

is an example of an L-function to which the Bloch–Kato conjecture should apply, the critical values
being at s = 1, . . . ,k′ − 1. Choosing canonical periods to divide by, one obtains normalised L-values
Lalg( f , t) for integers 1 � t � k′ − 1. According to the Bloch–Kato conjecture, a sufficiently large prime
λ dividing Lalg( f , t) should be the order of an element in some generalised Shafarevich–Tate group.
This element will live in a group defined using the Galois cohomology of the t-th Tate twist of the
λ-adic representation ρ f ,λ of Gal(Q/Q), attached to f .

In the case that k′ = 2k−2 with k even, and t = k (or equivalently t = k′ −1−k = k−2), Brown [Br]
has shown how to construct such an element using Siegel modular forms of genus 2 and weight k for
Sp(2,Z). There is such a form f̂ , the Saito–Kurokawa lift of f . Its spinor L-function is L( f , s)ζ(s− (k−
1))ζ(s − (k − 2)), while its standard zeta function is ζ(s)L( f , s + k − 1)L( f , s + k − 2). It is a cuspidal
Hecke eigenform, and the Hecke eigenvalue for T (p) is given by λ f̂ (p) = ap( f ) + pk−1 + pk−2. Under
certain conditions, it is possible to show [Br,Ka1] that there exists another cuspidal Hecke eigenform
F of genus 2 and weight k for Sp(2,Z), but which is not a Saito–Kurokawa lift, such that the Hecke
eigenvalues of F and f̂ are congruent modulo λ. To this F may be attached a 4-dimensional λ-adic
Galois representation ρF ,λ , by a theorem of Weissauer [We1]. Interpreting Hecke eigenvalues as eigen-
values of Frobenius, it follows from the congruence that if we reduce modulo λ then the composition
factors of the reduced representation ρ F ,λ are ρ f ,λ (if we ensure it is irreducible) together with the
twists Fλ(1−k) and Fλ(2−k) of the trivial representation. The required Galois cohomology class may
be constructed using a non-trivial extension of Fλ(2 − k) by ρ f ,λ inside ρ F ,λ . This generalises Ribet’s
construction of elements in class groups of cyclotomic fields [R], which uses the Galois interpretation
of congruences between classical Eisenstein series and cusp forms.

In this paper we exploit Brown’s construction, together with an injection of ρ f ,λ(2 −k) (i.e. ρ f ,λ ∧
Fλ(2 − k)) into

∧2 ρ F ,λ , to construct a non-zero element of order λ in a Selmer group defined in
terms of the Galois cohomology of an appropriate twist of

∧2 ρF ,λ . Although the standard L-function
of F is not actually known to arise from a premotivic structure, it ought to, so assuming that it does
we can see what consequence our construction should have, given that the L-function attached to
the Galois representation

∧2 ρF ,λ is ζ(s − ( j + 2k − 3))L(F , s − ( j + 2k − 3),St). The prediction we
arrive at (the case j = 0 of Conjecture 5.3) is that (under certain conditions) the ratio of L(F ,2,St)
to (a power of π times) any other critical value, has a factor of λ in the numerator. (The trick of
looking at a ratio of critical values has the effect of making unknown Deligne periods in the Bloch–
Kato conjecture cancel out.) If we replace F by f̂ , the factor of λ arises because L( f ,k) is a factor
of L( f̂ ,2,St) (using L( f̂ , s,St) = ζ(s)L( f , s + k − 1)L( f , s + k − 2)). In Section 6, we show how this
divisibility can be somehow transmitted across the congruence between f̂ and F .

Brown’s construction can be applied to other critical values L( f , t) (not just t = k) if one accepts
a conjecture of Harder [Ha,vdG]. In general, we write the weight of f as k′ = j + 2k − 2, and look at
large λ dividing Lalg( f , j + k). So far we have only considered the case j = 0. This time we must look
at Siegel modular forms for Sp(2,Z), of type detk ⊗Sym j(C2), which are vector-valued when j > 0.
Once j > 0 there is no Saito–Kurokawa lift, but Harder’s conjecture cuts out this intermediary, and
asserts nonetheless the existence of a cuspidal eigenform F such that, for all primes p,

λF (p) ≡ ap( f ) + p j+k−1 + pk−2 (mod λ).

Using ρF ,λ as before, we are led to Conjecture 5.3, on the ratio of L(F , j + 2,St) to other critical
values. In particular, in the case k = 10, j = 4, for which the space of cusp forms is 1-dimensional, we

predict that ord41(
π6 L(F ,6,St)

L(F ,8,St) ) > 0.
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In the case that k′/2 is odd, L( f ,k′/2) vanishes, and using a theorem of Nekovář [N2] (to whom
we are grateful for the reference), we get an element of order λ in a Selmer group associated to
ρ f ,λ(k′/2), which as before may be moved, using the supposed congruence, to a Selmer group for

a twist of
∧2 ρF ,λ . We are then led to Conjecture 5.4 on the ratio of L(F , ( j/2) + 1,St) to other

critical values. In particular, in the case k = 11, j = 10, for which the space of cusp forms is again

1-dimensional, we predict that ord97(
π6 L(F ,6,St)

L(F ,8,St) ) > 0.
In these cases where j > 0, there is no Saito–Kurokawa lift with which to prove (assuming Harder’s

conjecture) our predictions, but we may, without the need to assume any conjecture, seek to confirm
our predictions numerically by calculating the standard L-values in question. Kozima [Koz] gave a
formula for the pullback, to H2 × H2, of a genus 4 Siegel–Eisenstein series, to which a certain com-
position of differential operators (due to Böcherer) had been applied to produce a vector-valued form.
Choosing the operators appropriately, a desired critical value of the standard L-function of F appears
in the coefficient of F ⊗ F on the right-hand side. The case of the rightmost critical value was already
in [BSY]. In principle, using knowledge of the Fourier coefficients of the Siegel–Eisenstein series [Ka2],
one could hope to use this pullback formula to calculate the critical values we require. However, the
differential operators are not easy to work with, so we replace them by certain differential operators
introduced in [I1], which are known to be necessarily the same up to a multiplicative constant (which
may be determined by applying both to a test function). Computing these operators is possible (just)
in the cases at hand, and involves finding certain invariant pluri-harmonic polynomials, one of which
takes two pages just to write down.

Section 2 introduces the Bloch–Kato conjecture in the case of critical values of L( f , s). In Section 3
we state Katsurada’s version of the theorem on congruences of Hecke eigenvalues between Saito–
Kurokawa lifts and non-lifts, and also Harder’s conjecture on the analogous congruence in the vector-
valued case. Section 4 gives a summary of Brown’s construction of elements in Selmer groups. In
Section 5 we exploit this as outlined above to make our conjectures about ratios of standard L-values.
Section 6 contains the proof of the scalar-valued case, while Sections 7 and 8 report on the two big
computations confirming our specific predictions involving � = 41 and � = 97.

1.1. Definitions and notation

Let Hr be the Siegel upper half-plane of r by r complex symmetric matrices with positive–definite
imaginary part. Let Γr := Sp(r,Z) = Sp2r(Z) = {M ∈ GL2r(Z): t M J M = J }, where J = ( 0r Ir

−Ir 0r

)
. For

M = [ A B
C D

] ∈ Γr and Z ∈ Hr , let M(Z) := (A Z + B)(C Z + D)−1 and J (M, Z) := C Z + D . Let V be the
space of a finite-dimensional representation ρ of GL(r,C). A holomorphic function f : Hr → V is said
to belong to the space Mρ = Mρ(Γr) of Siegel modular forms of genus r and weight ρ if

f
(
M(Z)

) = ρ
(

J (M, Z)
)

f (Z) ∀M ∈ Γr, Z ∈ Hr .

Such an f has a Fourier expansion

f (Z) =
∑
S�0

a(S)e
(
Tr(S Z)

) =
∑
S�0

a(S, f )e
(
Tr(S Z)

)
,

where the sum is over all positive semi-definite half-integral matrices, and e(z) := e2π iz .
The Siegel operator Φ on Mρ(Γr) is defined by

Φ f (z) = lim
t→∞ f

([
z 0
0 it

])
for z ∈ Hr−1, t ∈ R.

The kernel of Φ , denoted Sρ , is the space of Siegel cusp forms of genus r and weight ρ . When ρ

is of the special form detk ⊗Sym j(Cr) (where Cr is the standard representation of GLr(C)), we put
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Mk, j and Sk, j for Mρ and Sρ , and we let Mk := Mk,0, Sk := Sk,0. For Sk, j , the Petersson inner product
and Hecke operators will be as in §2 of [Koz] and §2 of [Ar], respectively. For a Hecke eigenform F ,
the spinor and standard L-functions L(F , s, spin) and L(F , s,St) may be defined in terms of Satake
parameters as in §20 of [vdG].

2. The Bloch Kato conjecture for critical values of modular L-functions

Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform. Attached to f is its L-function

L( f , s), defined by the Dirichlet series
∑∞

n=1 an( f )n−s for Re(s) > k′+1
2 , but having an analytic contin-

uation to the whole complex plane. Also attached to f is a “premotivic structure” M f over Q with
coefficients in K , any number field (considered as a subfield of C) containing Q( f ), the extension of
Q generated by the an( f ). Thus there are 2-dimensional K -vector spaces M f ,B and M f ,dR (the Betti
and de Rham realisations) and, for each finite prime λ of O K , a 2-dimensional Kλ-vector space M f ,λ ,
the λ-adic realisation. These come with various structures and comparison isomorphisms, such as
M f ,B ⊗K Kλ � M f ,λ . See 1.1.1 of [DFG] for the precise definition of a premotivic structure, and 1.6.2 of
[DFG] for the construction of M f . The λ-adic realisation M f ,λ comes with a continuous linear action
of Gal(Q/Q). Let ρ f ,λ be this representation. For each prime number p, the restriction to Gal(Qp/Qp)

may be used to define a local L-factor (which is in fact known to be independent of λ in this case),
and the Euler product is precisely L f (s). In particular, ρ f ,λ is unramified at all primes p �= �, with

Tr
(
ρ f ,λ

(
Frob−1

p

)) = ap, det
(
ρ f ,λ

(
Frob−1

p

)) = pk′−1,

where Frobp ∈ Gal(Qp/Qp) lifts the p-power map of Gal(Fp/Fp). As the L-function attached to a
premotivic structure, its orders of vanishing and leading terms at integer points may be interpreted
via the Bloch–Kato conjecture.

On M f ,B there is an action of Gal(C/R), and the eigenspaces M±
f ,B are 1-dimensional. On M f ,dR

there is a decreasing filtration, with F t a 1-dimensional space precisely for 1 � t � k′ −1. The de Rham
isomorphism M f ,B ⊗K C � M f ,dR ⊗K C induces isomorphisms between M±

f ,B ⊗C and (M f ,dR/F )⊗C,

where F := F 1 = · · · = F k′−1. Define Ω± to be the determinants of these isomorphisms. These depend
on the choices of K -bases for M±

f ,B and M f ,dR/F , so should be viewed as elements of C×/K × . The
Tate-twisted premotivic structures M f (t), for 1 � t � k′ − 1, are critical (because the above maps are

isomorphisms), and the Deligne period (“c+”, see [De]) of M f (t) is (2π i)tΩ(−1)t
. Deligne’s conjecture

for M f (t), known in this case, asserts then that L( f , t)/(2π i)tΩ(−1)t
is an element of K .

If we choose K -bases for M f ,B and M f ,dR, to pin down Ω± , then the Bloch–Kato conjecture pre-

dicts the prime factorisation of the element L( f , t)/(2π i)tΩ(−1)t
of K . In fact, we shall choose an

O K -submodule M f ,B , generating M f ,B over K , but not necessarily free, and likewise an O K [1/S]-
submodule M f ,dR, generating M f ,dR over K , where S is the set of primes dividing k′!. We take these
as in 1.6.2 of [DFG]. They are part of the “S-integral premotivic structure” associated to f . With these
choices it is still natural to talk of an element “L( f , t)/(2π i)tΩ(−1)t

” of the group of fractional ideals
of O K [1/S], and the Bloch–Kato conjecture predicts its prime factorisation.

In order to define the various terms appearing in the conjecture, we shall need, for each prime λ

of O K , the element M f ,λ of the S-integral premotivic structure (which includes also the crystalline
realisations M f ,λ-crys for each λ /∈ S). We choose these as in 1.6.2 of [DFG]. For each λ, M f ,λ is a
Gal(Q/Q)-stable O λ-lattice in M f ,λ . Let Aλ := M f ,λ/M f ,λ , and let A[λ] be the λ-torsion subgroup

of Aλ . Let Ǎλ := M̌ f ,λ/M̌ f ,λ , where M̌ f ,λ and M̌ f ,λ are the vector space and O λ-lattice dual to M f ,λ

and M f ,λ respectively, with the natural Gal(Q/Q)-actions. Let A := ⊕
λ Aλ , etc. Let ρ f ,λ denote the

representation of Gal(Q/Q) on A[λ].
Following [BK] (Section 3), for p �= � (including p = ∞, where λ | �) let

H1
f

(
Qp, M f ,λ(t)

) = ker
(

H1(D p, M f ,λ(t)
) → H1(I p, M f ,λ(t)

))
.
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Here D p is a decomposition subgroup at a prime above p, I p is the inertia subgroup, and M f ,λ(t) is
a Tate twist of M f ,λ , etc. The cohomology is for continuous cocycles and coboundaries. For p = � let

H1
f

(
Q�, M f ,λ(t)

) = ker
(

H1(D�, M f ,λ(t)
) → H1(D�, M f ,λ(t) ⊗Q�

Bcrys
))

.

(See §1 of [BK] or §2 of [Fo1] for the definition of Fontaine’s ring Bcrys.) Let H1
f (Q, M f ,λ(t)) be the

subspace of those elements of H1(Q, M f ,λ(t)) that, for all primes p, have local restriction lying in
H1

f (Qp, M f ,λ(t)). There is a natural exact sequence

0 → M f ,λ(t) → M f ,λ(t)
π→ Aλ(t) → 0.

Let H1
f (Qp, Aλ(t)) = π∗H1

f (Qp, M f ,λ(t)). Define the λ-Selmer group H1
f (Q, Aλ(t)) to be the subgroup

of elements of H1(Q, Aλ(t)) whose local restrictions lie in H1
f (Qp, Aλ(t)) for all primes p. Note that

the condition at p = ∞ is superfluous unless � = 2. Define the Shafarevich–Tate group

Ш̃(t) =
⊕

λ

H1
f (Q, Aλ(t))

π∗H1
f (Q, M f ,λ(t))

.

Conjecture 2.1 (Case of Bloch–Kato). Suppose that 1 � t � k′ − 1. Then we have the following equality of
fractional ideals of O K [1/S]:

L( f , t)

(2π i)tΩ(−1)t =
∏

p�∞ c̃p(t) #Ш̃(t)

#H0(Q, A(t))#H0(Q, Ǎ(1 − t))
.

We omit the definition of the Tamagawa factors c̃p(t), but note that c̃∞(t) is at worst a power
of 2, that for λ | � with � �= p the λ-part of c̃p(t) is trivial (a simple consequence of M f ,λ being
unramified at all p �= �) and that even the λ-part of c̃�(t) is trivial as long as � > k′ (a consequence of
Theorem 4.1(iii) of [BK]). See §2.4 of [DFG], or §11 of [Fo2], for precise definitions.

If the λ-part of H0(Q, A(t)) is non-trivial, then A[λ] has a Gal(Q/Q)-submodule isomorphic to
Fλ(−t), with quotient isomorphic to Fλ(1 − k′ + t) (so that the determinant is Fλ(1 − k′)). Evaluating
at Frob−1

p , and taking the trace, we find that ap( f ) ≡ pt + pk′−1−t (mod λ), for all p �= �. A straight-
forward generalisation of Lemma 8 of [SD] shows that this is only possible if � < k′ or if ord�(Bk′ ) > 0
(in which case t = k′ − 1). Note also that Ǎ(1 − t) � A(k′ − t), but without considering denominators
we already have the following.

Lemma 2.2. For some 1 � t � k′ − 1, suppose that ordλ(
L( f ,t)

(2π i)tΩ(−1)t
) > 0, with λ | � and � > k′ . The Bloch–

Kato conjecture predicts that the λ-part of Ш̃(t) is non-trivial, hence also that H1
f (Q, Aλ(t)) is non-trivial.

3. Congruences between Saito–Kurokawa lifts and non-lifts, and Harder’s conjecture

Let f ∈ Sk′ (Γ1) be as above. For 1 � t � k′ −1, define Lalg( f , t) := L( f ,t)

(2π i)tΩ(−1)t
. If t > k′/2, we choose

j,k � 0 such that t = j + k and k′ = j + 2k − 2. In other words, k = k′ + 2 − t , j = 2t − 2 − k′ . Note
that t = k′ − (k − 2) is paired with k − 2 by the functional equation relating L f (s) and L f (k′ − s).

First we consider the case t = (k′/2)+1, the critical point immediately right-of-centre. In this case,
t = k, k′ = 2k − 2 and j = 0. We suppose that k is even. For any quadratic character χD associated
to a fundamental discriminant D < 0, define Lalg( f ,k − 1,χD) := L( f ,k−1,χD )

(2π i)k−1τ (χD )Ω+ , where L( f , s,χD) =∑∞
n=1 χD(n)an( f )n−s and τ (χD) is a Gauss sum. Associated with f is a Hecke eigenform f̂ ∈ Sk(Γ2),
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its Saito–Kurokawa lift. This is only defined up to scaling. It is related to f by its standard L-function

L( f̂ , s,St) = ζ(s)L( f , s + k − 1)L( f , s + k − 2)

and its spinor L-function

L( f̂ , s, spin) = ζ
(
s − (k − 1)

)
ζ
(
s − (k − 2)

)
L( f , s).

Related to the latter is the following, for any prime p:

μ f̂ (p) = pk−1 + pk−2 + ap( f ),

where T (p) f̂ = μ f̂ (p) f̂ . Let Q( f ) be the field generated by the Hecke eigenvalues of f . Likewise, for
any Hecke eigenform F ∈ Sk(Γ2), let Q(F ) be the field generated by the Hecke eigenvalues of F . The
following is (a consequence of) Theorem 6.1 of [Ka1]. Theorem 6.5 of [Br] is also closely related. It is
essentially part of what is proved in Section 6 below.

Theorem 3.1. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform, with k′ = 2k − 2 and k

even. Let λ′ | �, with � > 2k, be a prime of Q( f ), such that ordλ′ Lalg( f ,k) > 0. Suppose that

(1) λ′ is not a congruence prime for f in Sk′ (Γ1), i.e. there does not exist another normalised Hecke eigenform
g ∈ Sk′ (Γ1), and a prime λ of Q( f )Q(g), dividing λ′ , such that an( f ) ≡ an(g) (mod λ) for all n � 1.

(2) There exists a fundamental discriminant D < 0 such that ordλ′ (|D|k−1Lalg( f ,k − 1,χD)) = 0.
(3) There exists even m such that 2 < m < k − 2 and

ordλ′
(
Lalg(m + k − 2)Lalg(m + k − 1)ζ(1 − m)

) = 0.

Then there exists a Hecke eigenform F ∈ Sk(Γ2), not a Saito–Kurokawa lift from Sk′ , and a prime λ | λ′ in (any
field containing) Q( f )Q(F ), such that for all primes p,

μF (p) ≡ μ f̂ (p) (mod λ) and μF
(

p2) ≡ μ f̂

(
p2) (mod λ).

In particular, for all primes p,

μF (p) ≡ pk−2 + pk−1 + ap( f ) (mod λ).

The conditions (1)–(3) are very weak.
In the case j > 0 there is no Saito–Kurokawa lift with which to prove such a theorem. The follow-

ing, due to Harder, is Conjecture 3 in §26 of [vdG]. Special cases are discussed in [Ha].

Conjecture 3.2. Let f = ∑
an( f )qn ∈ Sk′ (Γ1) be a normalised eigenform, and suppose that a “large” prime

λ′ of Q( f ) divides Lalg( f , t), with (k′/2) < t � k′ − 1. As above, let k = k′ + 2 − t, j = 2t − 2 − k′ . In the
case j > 0, there exists an eigenform F ∈ Sk, j(Γ2), and a prime λ | λ′ in (any field containing) Q( f )Q(F ) such
that, for all primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ).
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Numerical evidence obtained by Faber and van der Geer [vdG] supports the conjecture in the
following cases (where the subscript on f is the weight k′):

41 | Lalg( f22,14), 43 | Lalg( f26,23), 97 | Lalg( f26,21), 29 | Lalg( f26,19)

(and in some other cases with k′ � 38). The corresponding spaces S10,4(Γ2), S5,18(Γ2), S7,14(Γ2) and
S9,10(Γ2) are all 1-dimensional.

Note that if one tries to allow j = 0 in this conjecture (the case to which Theorem 3.1 applies),
one must exclude the case that k is odd. For example, when k′ = 48 (so k = 25), ordλ′ Lalg( f ,k) > 0,
for λ′ | � = 7 025 111 (obtained from [St]), but Sk = {0} for odd k < 35. We also note that a variant
of Harder’s conjecture for Siegel modular forms of half-integral weight is proposed in [I2], directly
connected to the integral weight case through a conjectural Shimura type correspondence.

4. Brown’s construction of elements in Selmer groups

To a Hecke eigenform F ∈ Sk, j(Γ2) may be associated a cuspidal automorphic form ΦF ∈
L2

0(Z(AQ)GSp4(Q) \ GSp4(AQ)). This adelic interpretation is described in detail in §3 of [AS] (§3.1
for the scalar-valued case, §3.5 for the vector-valued case). Let ΠF be any irreducible constituent of
the unitary representation of GSp4(AQ) generated by right translates of ΦF , as in 3.4 of [AS]. They
are all isomorphic, in fact this unitary representation is expected to be irreducible already. To such
a ΠF we shall shortly apply (with our special choice of λ) the following theorem, which is part of
Theorem I of [We1].

Theorem 4.1 (Weissauer). Suppose that Π is a unitary, irreducible, automorphic representation of GSp4(AQ)

for which Π∞ belongs to the discrete series of weight (k1,k2). Let S denote the set of ramified places of the
representation Π . Put w = k1 + k2 − 3. Then there exists a number field E such that

(1) for any prime p /∈ S, if L p(p−s) = L p(Πp, s − w/2) is the local factor in the spinor L-function, then
L p(X)−1 ∈ E[X];

(2) for any prime λ of O E , there exists a finite extension K of E (and Kλ of Eλ), and a 4-dimensional semisim-
ple Galois representation

ρΠ,λ : Gal(Q/Q) → GL4(Kλ),

unramified outside S ∪ {�} (where λ | �), such that for each prime p /∈ S ∪ {�},

Lp(Πp, s − w/2) = det
(

I − ρΠ,λ

(
Frob−1

p

)
p−s)−1

.

These Galois representations are found (when Π is neither CAP nor a weak endoscopic lift) in the
third �-adic cohomology (in general with non-trivial coefficients) of an inverse system of Siegel mod-
ular threefolds. They were studied by Taylor [T], who deduced a list of possibilities, but he was not
able to narrow it down enough to prove the existence of a 4-dimensional representation (or in that
case to prove such a strong statement about the set of primes where the L-factors match). To prove
Theorem 4.1 required trace formula methods. The main theorems in [We1] depend on hypotheses
(A and B), whose proofs have now appeared in [We2].

Now recall the situation of Section 3, where F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all
primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ), (1)

where λ is a “large” prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Recall that,
in the case j = 0, k even, the existence of such a non-Saito–Kurokawa lift F is given by Theorem 3.1,
assuming weak hypotheses, while in the case j > 0 we assume Harder’s conjecture.
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Proposition 4.2. Let F and λ be as above. Suppose that k � 3, � > k′ +1 and ord�(Bk′ ) = 0. Then the following
hold.

(1) If K is sufficiently large then there exists a 4-dimensional semisimple Galois representation

ρF ,λ : Gal(Q/Q) → GL(4, Kλ),

unramified outside {�}, such that for each prime p �= �, det(I − ρF ,λ(Frob−1
p )p−s)−1 is the local factor in

the spinor L function of F .
(2) Choose a Gal(Q/Q)-invariant O λ-lattice T ′

λ in V ′
λ (the space of ρF ,λ) and consider the representation

ρ F ,λ of Gal(Q/Q) on T ′
λ/λT ′

λ . Then the composition factors of ρ F ,λ are Fλ(2 − k), Fλ(1 − j − k) and
ρ f ,λ .

Proof.

(1) This is a direct consequence of Theorem 4.1, applied to ΠF . Note that here k1 = j + k, k2 = k,
w = j + 2k − 3, and the condition k � 3 is necessary to ensure that Π∞ is discrete series. Also
ΠF is unramified at all primes p, since F is for the full modular group Γ2.

(2) The congruence (1), with conclusion (1), implies that tr(ρ F ,λ(Frob−1
p )) = tr((χ2−k ⊕ χ1− j−k ⊕

ρ f ,λ)(Frob−1
p )), where χ is the (mod �) cyclotomic character. It remains to observe that ρ f ,λ is

(absolutely) irreducible, a consequence of � > k′ + 1 and � � Bk′ , by Lemma 8 of [SD]. �
The following is a very straightforward generalisation of Theorem 8.4 of [Br], which is the case

j = 0. In the case j > 0, Harder [Ha] clearly recognised this consequence of his conjecture.

Proposition 4.3. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform. Suppose that k′ = j +

2k − 2, with j � 0 and k � 3, and that F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ),

where λ | � is a prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Suppose that � > k′ + 1
and ord�(B j+2) = ord�(Bk′ ) = 0. Let K be large enough as in Proposition 4.2. With notation as in Section 2,
H1

f (Q, Aλ( j + k)) is non-trivial, in accord with the Bloch–Kato conjecture (see Lemma 2.2).

Proof. We merely sketch the proof. The isomorphism class of ρ F ,λ depends on the choice of T ′
λ ,

though the set of composition factors is well defined. We claim it is possible to choose T ′
λ in such

a way that T ′
λ/λT ′

λ (the space of ρ F ,λ) has a 3-dimensional submodule, with a submodule ρ f ,λ and
a quotient Fλ(2 − k). Clearly it is possible to arrange for ρ f ,λ to be a submodule of T ′

λ/λT ′
λ . If it is

not possible to make Fλ(2 − k) the “next factor up” then the quotient of T ′
λ/λT ′

λ by ρ f ,λ must be
a non-trivial extension of Fλ(2 − k) by Fλ(1 − j − k), which gives a non-trivial extension of Fλ by
Fλ(− j − 1). As in §8 of [Br] (which is the case j = 0), the action of Gal(Q/Q) on this 2-dimensional
representation factors through Gal(F/Q), where F is an extension of Q(μ�) which corresponds, by
Class Field Theory, to a non-trivial quotient of the χ−1− j -isotypical part of the �-part of the class
group of Q(μ�). But by Herbrand’s theorem, this would contradict our assumption that � � B j+2.

We get then, inside T ′
λ/λT ′

λ , an extension of Fλ(2 − k) by ρ f ,λ . For a different choice, T ′′
λ , of

Gal(Q/Q)-invariant O λ-lattice, this extension is inside a 3-dimensional quotient of T ′′
λ/λT ′′

λ . If it was
not possible to choose in such a way that it is a non-trivial extension (of Fλ[Gal(Q/Q)]-modules)
then, applying the method of the proof of Proposition 2.1 of [R] (as in the proof of Proposition 8.3
of [Br], where all the sums should start at n = 0), we would get a quotient of rank 1 of T ′′

λ , which is
not possible, as explained in the proof of Proposition 8.3 of [Br].
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This non-trivial extension of Fλ(2 − k) by ρ f ,λ gives, by twisting, a non-trivial extension of Fλ by
ρ f ,λ(k − 2), hence a non-zero element of H1(Q, A[λ](k − 2)). (Recall that A[λ] is the space of ρ f ,λ .)
One may show, just as in §8 of [Br], that its image in H1(Q, Aλ(k − 2)) is a non-zero element of
the Bloch–Kato Selmer group H1

f (Q, Aλ(k − 2)). The proof of the local conditions at p �= � uses the
fact that ρF ,λ is unramified at such p, while the proof of the local condition at � uses the fact that
ρF ,λ|Gal(Q�/Q�)

is crystalline (Theorem 3.2(ii) of [U], which refers to [Fa] and [CF]).

By the main result of [Kato], H1
f (Q, V ′

λ(r)) = 0 for any integer r �= k′/2 with 1 � r � k′ − 1. Hence

H1
f (Q, Aλ(k − 2)) = Ш̃(k − 2). Using [Fl], we may reflect across the central point s = k′/2 to get a

non-zero element of λ-torsion in Ш̃( j + k), and hence in H1
f (Q, Aλ( j + k)), as required. �

5. The Bloch–Kato conjecture for critical values of genus-two standard L-functions

5.1. The conjecture

Let F ∈ Sk, j(Γ2) be a cuspidal Hecke eigenform. There ought to exist an “L-admissible premo-
tivic structure” (cf. 1.1.1 of [DFG]) M ′ over Q, with coefficients in some finite extension K of Q(F ),
such that L(M ′, s) = L(F , s, spin). For each prime λ of O E there would be a 4-dimensional repre-
sentation of Gal(Q/Q), with coefficients in Kλ , arising from the λ-adic realisation M ′

λ . In particular
L(M ′

λ, s) = L(F , s, spin). At least these Galois representations are known to exist, by Proposition 4.2.
Strictly speaking, for each non-archimedean completion of Q(F ) there is a representation with co-
efficients in some finite extension. Let’s just imagine that these are all completions of a fixed K .
Eventually we shall be concerned only with the particular prime λ of previous sections.

If M := ∧2 M ′ then L(M, s) = ζ(s − ( j + 2k − 3))L(F , s − ( j + 2k − 3),St). M ′ should have Hodge-
type {(0, j + 2k − 3), (k − 2, j + k − 1), ( j + k − 1,k − 2), ( j + 2k − 3,0)}. (On this list, (p,q) appears
hp,q = dim H p,q times, where M ′

B ⊗C = ⊕
H p,q is the Hodge decomposition.) Consequently, M would

have Hodge-type

{
(k − 2,2 j + 3k − 4), ( j + k − 1, j + 3k − 5), ( j + 2k − 3, j + 2k − 3), ( j + 2k − 3, j + 2k − 3),

( j + 3k − 5, j + k − 1), (2 j + 3k − 4,k − 2)
}
.

Now dim M ′
B
+ and dim M ′

B
− would both be 2 (since complex conjugation switches H p,q and Hq,p),

from which would follow dim M+
B = 2 and dim M−

B = 4. Then the right-of-centre critical points for M
would be of the form r = m + ( j + 2k − 3), where m is even with 0 < m � k − 2. Note that r is chosen
so that M(−1)r

B and MdR/F r have the same dimension, 4 in this case. According to Deligne’s conjecture,
L(M,m + ( j + 2k − 3))/(2π i)4m+4 j+8k−12ω−(M) belongs to K . Here ω−(M) is the determinant (w.r.t.
K -bases of M−

B and MdR/F r ) of the isomorphism M−
B ⊗ C � (MdR/F r) ⊗ C. Different choices of bases

result in it being scaled by some factor in K × .
Let V ′

λ be the (space of the) 4-dimensional representation of Gal(Q/Q) that is supposed to be M ′
λ .

Let T ′
λ be a choice of Gal(Q/Q)-invariant O λ-lattice in V ′

λ , and W ′
λ = V ′

λ/T ′
λ . Let W ′[λ] denote the

λ-torsion in W ′
λ . Let Vλ = ∧2 V ′

λ , Tλ = ∧2 T ′
λ and Wλ = Vλ/Tλ . Then let W := ⊕

λ Wλ . Having made
the choice of Tλ , and having chosen also a K -basis of MdR, the factors appearing in Eq. (2) below may
be defined as in the case of M f in Section 2.

According to the Bloch–Kato conjecture,

L(M,m + ( j + 2k − 3))

(2π i)4rω−(M)
=

∏
p cp(r)#Ш(r)

#H0(Q, W (r))#H0(Q, W̌ (1 − r))
, (2)

where r := m + ( j + 2k − 3), with m even and 0 < m � k − 2. We read the two sides of this equation
as fractional ideals of K . Note that L(M, s) would be the same thing as ζ(s − ( j + 2k − 3))L(F , s − ( j +
2k − 3),St).
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We return now to the situation of Section 3, and direct our attention to the λ-part of the Bloch–
Kato conjecture, for critical values of L(M, s). We shall make a different choice of T ′

λ from that used
in Section 4. From now on T ′

λ will be like the T ′′
λ of Section 4. So T ′

λ/λT ′
λ ⊃ B ⊃ C ⊃ {0}, with C �

Fλ(1 − j − k), B/C � ρ f and (T ′
λ/λT ′

λ)/B � Fλ(2 − k).

5.2. Construction of elements of Selmer groups for the standard L-function

Proposition 5.1. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform. Suppose that k′ = j +

2k − 2, with j � 0 and k � 3, and that F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ),

where λ | � is a prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Suppose that � > 2 j +
2k − 1 and ord�(B j+2) = ord�(Bk′ ) = 0. Let K be large enough as in Proposition 4.2. Then, with notation as
in Section 5.1, H1

f (Q, Wλ(2 j + 2k − 1)) is non-trivial.

Note that 2 j + 2k − 1 = ( j + 2) + ( j + 2k − 3).

Proof of Proposition 5.1. Since
∧2

(Fλ(1− j −k)) = 0, we see that W [λ] = ∧2 W ′[λ] has a submodule
isomorphic to ρ f ,λ(1 − j −k). Hence W [λ](2 j + 2k − 1) has a submodule isomorphic to ρ f ,λ( j +k) �
A[λ]( j + k), and the inclusion map will induce a map in Galois cohomology.

From Proposition 4.3, we have a non-zero element c′′ of H1(Q, A[λ]( j + k)), whose image d′′ in
H1(Q, Aλ( j + k)) lies in H1

f (Q, Aλ( j + k)). Let c be the image of c′′ in H1(Q, W [λ](2 j + 2k − 1)), and

let d be the image of c in H1(Q, Wλ(2 j + 2k − 1)). Our goal is to show that d is a non-zero element
of H1

f (Q, Wλ(2 j + 2k − 1)).

First we show that it is non-zero. There are two 1-dimensional subfactors of W [λ] = ∧2
(W ′[λ]),

both isomorphic to Fλ(3 − 2k − j). Hence the only 1-dimensional subfactors of W [λ](2 j + 2k − 1) are
isomorphic to Fλ(2 + j). Since � > 3 + j, this is non-trivial. Hence H0(Q, W [λ](2 j + 2k − 1)) = 0, from
which it follows that H0(Q, Wλ(2 j + 2k − 1)) = 0. Also, H0(Q, W [λ](2 j + 2k − 1)/A[λ]( j + k)) = 0.
Hence H1(Q, A[λ]( j + k)) injects into H1(Q, W [λ](2 j + 2k − 1)), which injects into H1(Q, Wλ(2 j +
2k − 1)), so d is indeed non-zero.

Next we show that resp(d) ∈ H1
f (Qp, Wλ(2 j + 2k − 1)) for any p �= �. Since W ′[λ] is unram-

ified at p, the image of c′′ in H1(I p, A[λ]( j + k)) is zero. It follows that the image of d in
H1(I p, Wλ(2 j + 2k − 1)) is zero. Since Wλ(2 j + 2k − 1) is unramified at p, this guarantees that
resp(d) ∈ H1

f (Qp, Wλ(2 j + 2k − 1)) (see, for example, Lemma 7.4 of [Br]).

Finally we show that res�(d) ∈ H1
f (Q�, Wλ(2 j + 2k − 1)). In Lemma 4.4 of [BK], a cohomologi-

cal functor {hi}i�0 is constructed on the Fontaine–Lafaille category of filtered Dieudonné modules
over Zp . hi(M) = 0 for all i � 2 and all M, and hi(M) = Exti(1FD, M) for all i and M, where 1FD is
the “unit” filtered Dieudonné module.

Recall that ρF ,λ|Gal(Q�/Q�)
(whose space is V ′

λ) is crystalline, so Vλ = ∧2 V ′
λ is also crystalline.

Examination of the composition factors of Tλ/λTλ shows that the Hodge–Tate weights of Vλ must be
as expected, i.e.

k − 2, j + k − 1, j + 2k − 3, j + 2k − 3, j + 3k − 5, 2 j + 3k − 4.

Meanwhile, the Hodge–Tate weights of ρ f ,λ|Gal(Q�/Q�)
are 0 and j + 2k − 3. Let E and D be

filtered Dieudonné modules over Z� such that the associated representations of Gal(Q�/Q�) are
(on) Tλ and M f ,λ respectively (viewed as representations with Z� coefficients). The condition
� > 2 j + 2k − 1 ensures that these both exist, and that E {2 j + 2k − 1} and D{ j + k} both satisfy
Fila M = M, Fila+�−1 M = {0}, with a = −2 j − k − 1. It is essentially the condition (∗) in §4 of [BK].
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By Lemma 4.5(c) of [BK], (with the typo that substituted “e” for “f ” corrected),

h1(D) � H1
f (Q�,M f ,λ)

(defined to be the inverse image in H1(Q�,M f ,λ) of H1
f (Q�, M f ,λ)). Twists may be applied to both

sides of this isomorphism.
Something like the exact sequence in the middle of p. 366 of [BK] gives us a commutative diagram

h1(D( j + k))
π

h1(D( j + k)) h1(D(k)/λD( j + k))

H1(Q�,M f ,λ( j + k)) H1(Q�,M f ,λ( j + k)) H1(Q�, A[λ]( j + k)).

Here π is a uniformiser at λ. The vertical arrows are all inclusions and we know that the image of
h1(D( j + k)) in H1(Q�,M f ,λ( j + k)) is exactly H1

f (Q�,M f ,λ( j + k)). The top right horizontal map is

surjective since h2(D( j + k)) = 0. In fact, Lemma 4.4 of [BK] gives a description of Ext1(1FD, M) as a
quotient of M, namely M/(1 − φ0)(Fil0 M), from which the surjectivity is obvious.

The class c′′ ∈ H1(Q�, A[λ]( j + k)) is in the image of H1
f (Q�,M f ,λ( j + k)) and therefore is in the

image of h1(D( j + k)/λD( j + k)). Recall that W [λ](2 j + 2k − 1) has a Galois submodule isomorphic
to A[λ]( j + k). By the fullness of the Fontaine–Lafaille functor [FL] (see Theorem 4.3 of [BK]), E (2 j +
2k − 1)/λE (2 j + 2k − 1) has a subobject isomorphic to D( j + k)/λD( j + k).

It follows that the class c ∈ H1(Q�, W [λ](2 j +2k−1)) is in the image of h1(E (2 j +2k−1)/λE (2 j +
2k − 1)) by the vertical map in the exact sequence analogous to the above. Since the map from
h1(E (2 j + 2k − 1)) to h1(E (2 j + 2k − 1)/λE (2 j + 2k − 1)) is surjective, c lies in the image of
H1

f (Q�, Tλ(2 j + 2k − 1)). From this it follows that d ∈ H1
f (Q�, Wλ(2 j + 2k − 1)), as desired. �

Proposition 5.2. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform, with k′/2 odd. Suppose

that k′ = j + 2k − 2, with j � 0 and k � 3, and that F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all
primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ),

where λ | � is a prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Suppose that � > 2 j +
2k − 1 and ord�(Bk′ ) = 0. Let K be large enough as in Proposition 4.2. Then, with notation as in Section 5.1,
H1

f (Q, Wλ((k′/2) + j + k − 1)) is non-trivial.

Note that (k′/2) + j + k − 1 = (3 j/2) + 2k − 2 = ( j/2) + 1 + ( j + 2k − 3).

Proof of Proposition 5.2. The sign in the functional equation of L( f , s) is (−1)k′/2 = −1, so the parity
of the order of vanishing at s = k′/2 is odd. The conditions of Theorem B of [N2] (� �= 2 and ρ f ,λ

irreducible) are satisfied. Hence H1
f (Q, M f ,λ(k′/2)) is non-trivial (because the parity of its rank is also

odd), from which one easily deduces that H1
f (Q,M f ,λ(k′/2)) and H1

f (Q, A[λ](k′/2)) are non-trivial.

Taking non-zero c′′ ∈ H1
f (Q, A[λ](k′/2)), one proceeds as above. This time, the only 1-dimensional

subfactors of W [λ]((k′/2) + j + k − 1) are isomorphic to Fλ(1 + ( j/2)). �
Note that, by an analogue of the Birch and Swinnerton-Dyer conjecture, vanishing of L( f ,k′/2)

should suffice for the non-triviality of H1
f (Q, M f ,λ(k′/2)). (See the “conjectures” Cr(M) in §1 of [Fo2],

and C i
λ(M) in §6.5 of [Fo2].) Also, had we imposed a condition that f is ordinary at λ (i.e. λ � a�),

then we could have used either Théorème A of [SU] or the main theorem of §12 of [N1] instead.
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5.3. Conjectural consequences

Suppose we are in the situation of Proposition 5.1 or Proposition 5.2. Recall that the only 1-di-
mensional composition factors of W [λ] are isomorphic to Fλ(3 − 2k − j). It follows that none of
the global torsion terms appearing in (2) for critical r could have a non-trivial λ-part, since � >

k − 1. For p �= �, the λ-part of cp(r) is trivial, as in the case of M f . If we choose the basis for the
conjecturally existing MdR in such a way that V(M) = Tλ , where M is the O λ-lattice in MdR ⊗ Kλ

spanned by the basis and V is the Fontaine–Lafaille functor, then the λ-part of c�(r) is also trivial.
The (conjecturally existing) period ω−(M) depends on our choices, but will cancel when we consider
ratios of critical values of L(M, s). The Selmer groups attached to these (non-central) critical points
are conjecturally finite, so should be equal to the corresponding Shafarevich–Tate groups. Recalling
that L(M, s) = ζ(s − ( j + 2k − 3))L(F , s − ( j + 2k − 3),St), we are led, by the Bloch–Kato conjecture
(2) and Propositions 5.1 and 5.2, to the following. (In any particular example it seems unlikely that
the λ-part of Ш(m + ( j + 2k − 3)) could be non-trivial, though strictly speaking there might be cases
which would have to be excluded from the conjectures.)

Conjecture 5.3. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform. Suppose that k′ = j +

2k − 2, with j � 0 and k � 4, and that F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ),

where λ | � is a prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Suppose that � > 2 j +
2k − 1 and ord�(B j+2) = ord�(Bk′ ) = 0. Suppose that j � k − 4 (so that 0 < j + 2 � k − 2). Take any even m
with 0 < m � k − 2 but m �= j + 2. Then

ordλ

(
π3(m−( j+2))L(F , j + 2,St)

L(F ,m,St)

)
> 0.

Under mild conditions, we shall prove the case j = 0 in Section 6 below, using the Saito–Kurokawa
lift, but in the vector-valued case we have to resort to computation. In the case that f is a normalised
generator of S22(Γ1) and F is a generator of the 1-dimensional space S10,4(Γ2), there is good numeri-
cal evidence for Harder’s conjecture, with � = 41 dividing Lalg( f ,14) [FvdG,vdG]. In this case j+2 = 6,
which is in the required range, and in Section 7 below we shall confirm that

ord41

(
π6L(F ,6,St)

L(F ,8,St)

)
> 0.

Conjecture 5.4. Let f = ∑∞
n=1 an( f )qn ∈ Sk′ (Γ1) be a normalised Hecke eigenform, with k′/2 odd. Suppose

that k′ = j + 2k − 2, with j � 0 and k � 3, and that F ∈ Sk, j(Γ2) is a Hecke eigenform such that, for all
primes p,

μF (p) ≡ pk−2 + p j+k−1 + ap( f ) (mod λ),

where λ | � is a prime divisor (in any field K containing Q( f )Q(F )) of Lalg( f , j + k). Suppose that � > 2 j +
2k − 1 and ord�(Bk′ ) = 0. Suppose that ( j/2) is odd, and that j � 2k − 6, so that ( j/2) + 1 is even, with
0 < ( j/2) + 1 � k − 2. Suppose also that ord�(B( j/2)+1) = 0. Take any even m with 0 < m � k − 2 but
m �= ( j/2) + 1. Then

ordλ

(
π3(m−(( j/2)+1))L(F , ( j/2) + 1,St)

L(F ,m,St)

)
> 0.
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The requirement that ( j/2) + 1 is even rules out j = 0, so there is nothing to try to prove
in the scalar-valued case here. In the case that f is one of the Galois-conjugate pair of nor-
malised eigenforms spanning S30(Γ1), and F is an appropriate Hecke eigenform in the 1-dimensional
space S11,10(Γ2), there is good numerical evidence for Harder’s conjecture, with λ | � = 97 dividing
Lalg( f ,21) [vdG]. In this case ( j/2) + 1 = 6, which is in the required range (while j + 2 fails to be
� k − 2), and in Section 8 below we shall confirm that

ordλ

(
π6L(F ,6,St)

L(F ,8,St)

)
> 0.

6. The scalar-valued case

First we shall investigate the orders at λ of (normalised) standard L-values for the Saito–Kurokawa
lift f̂ , then we shall note the occurrence of these values, as well as standard L-values for non-lifts, in
a pullback formula. This will then be used to prove what we need about the standard L-values of the
non-lift F to which f̂ is congruent (mod λ).

Let f ∈ S2k−2(Γ1) be a normalised Hecke eigenform, with k even. Let K be a number field con-
taining Q( f ). Let f̃ = ∑

c(n)qn ∈ Sk−1/2(Γ0(4))+ be a Hecke eigenform in the Kohnen plus-space,

corresponding to f under the Kohnen–Shimura correspondence. Though f̃ is only defined up to scalar
multiples, we may (and shall) assume that its Fourier coefficients belong to K . (This follows from the
fact that Sk−1/2(Γ0(4))+ has a basis consisting of forms with rational Fourier coefficients [Koh1], to-

gether with the fact that the eigenvalues of the Hecke operators T +
k−1/2(p2) (with p odd) on f̃ are

the same as those of T2k−2(p) on f .) We define the Saito–Kurokawa lift to be the image of f̃ under
a natural linear map from Sk−1/2(Γ0(4))+ to Sk(Γ2), as in [EZ] (passing through Jacobi cusp forms of

weight k and index 1 on the way). The scaling of f̃ then determines the scaling of f̂ , and f̂ also has
Fourier coefficients in K . Note also that Q( f̂ ) = Q( f ). By Kohnen and Skoruppa [KS],

Γ (k)L( f ,k)

(2π)k
= 3 · 23−k 〈 f̂ , f̂ 〉

〈 f̃ , f̃ 〉 . (3)

By Kohnen and Zagier [KZ],

c(|D|)2

〈 f̃ , f̃ 〉 = Γ (k − 1)|D|k−3/2L( f ,k − 1,χD)

πk−1〈 f , f 〉 , (4)

where D < 0 is a fundamental discriminant. Combining (3) and (4) gives

〈 f̂ , f̂ 〉 = (k − 1)

233π
· c(|D|)2

|D|k−3/2
· L(k, f )

L(k − 1, f ,χD)
〈 f , f 〉.

Calculating as in (5.18) of [Hi] (and using Lemma 5.1.6 of [De], and the latter part of 1.5.1 of [DFG]),
one finds that, up to S-units (where S is the set of primes dividing k′!),

〈 f , f 〉
iΩ+Ω− = c( f ),

where c( f ) is a certain “cohomology congruence ideal”, which is integral. Take now an even integer
0 < m � k −2. Then L( f̂ ,m,St) is a critical value. Combining the previous two equations, and recalling
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that L( f̂ , s,St) = ζ(s)L( f , s + k − 1)L( f , s + k − 2), we arrive at (up to S-units)

L( f̂ ,m,St)

π2k+3m−3〈 f̂ , f̂ 〉 = ζ(m)

πm
Lalg( f ,m + k − 1)Lalg( f ,m + k − 2) · |D|k−1

c(|D|)2
· Lalg( f ,k − 1,χD)

Lalg( f ,k)c( f )
. (5)

(We have pretty much followed [Br] or [Ka1].)
Let {F1, . . . , Fd} be a basis for Sk(Γ2), consisting of Hecke eigenforms. Let Q(Fi) be the field gen-

erated by the Hecke eigenvalues of Fi , and let K be the compositum of the Q(Fi). Let

Fi(Z) =
∑

A

ai(A)exp
(
2π i tr(A Z)

)
,

where A runs over positive definite, half-integral, symmetric matrices, be the Fourier expansion
of Fi . We may (and shall) assume that these Fourier coefficients belong to Q(Fi). This follows
from the fact that there exists a basis for Sk(Γ2) consisting of forms with rational Fourier coef-
ficients [Ba]. For a positive definite, half-integral, symmetric matrix A = [ u v/2

v/2 w

]
, define the con-

tent cont A := gcd(u, v, w), and let D A := v2 − 4uw . The following is a special case of Lemma 5.1
of [Ka1].

Lemma 6.1. Let {F1, . . . , Fd} and K be as above. Suppose that G ∈ Sk(Γ2), with Fourier expansion G =∑
A aG(A)exp(2π i tr(A Z)). Let λ be a prime ideal of the ring of integers of K , dividing a rational prime �.

Assume that

(1) all aG(A) ∈ K , with ordλ(aG(A)) � 0 for all A and, for some A1 , ordλ(aF1 (A1)) = 0;
(2) there exist c1, . . . , cd ∈ K such that ordλ(c1) < 0 and

G =
d∑

i=1

ci Fi .

Then there exists i �= 1 such that, for all primes p,

μF1

(
T (p)

) ≡ μFi

(
T (p)

)
(mod λ) and μF1

(
T
(

p2)) ≡ μFi

(
T
(

p2)) (mod λ).

If F is a Hecke eigenform in Sk(Γ2), we shall need a certain multiple Λ(F ,m,St) = Ck,m
L(F ,m,St)

π2k+3m−3〈F ,F 〉 ,

as defined precisely in the next section. All we need to know here about the constant Ck,m is that it
is a rational number with ord�(Ck,m) = 0 for any prime � > 2k − 2. According to Theorem 4.4 of [Ka1],
for any even integer m with 0 < m < k − 2,

Fm+2,k;A1(Z) =
d∑

j=1

Λ(F j,m,St)a j(A1)F j(Z). (6)

Here Fm+2,k;A1 (Z) ∈ Sk(Γ2) has rational Fourier coefficients, with denominators divisible at worst
by primes less than or equal to 2m − 1. It is a coefficient in a partial Fourier expansion of the
pullback to H2 × H2 of the result of applying a certain non-trivial differential operator to the Siegel–

Eisenstein series of degree 4 and weight m + 2. Comparing (6) with [Ka1], note that F j(−Z) = F j(Z),
since we have arranged for the Fourier coefficients of the F j to belong to K , which is totally
real.
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Lemma 6.2. Suppose that λ | � > k − 2, and that

(1) ordλLalg( f , t) � 0 for all 1 � t � 2k − 3;
(2) there exists a fundamental discriminant D < 0 with ordλ(|D|k−1Lalg( f ,k − 1,χD)) = 0.

Then

(1) it is possible to scale f̃ in such a way that ordλ(c(|D|)) = 0 and, for all n, ordλ(c(n)) � 0;
(2) for the corresponding scaling of f̂ , ordλ(a f̂ (A)) � 0 for all A. Furthermore, if we choose A1 such that

D A1 = D, then ordλ(a f̂ (A1)) = 0.

Proof.

(1) Let D ′ < 0 be any fundamental discriminant. Using modular symbols, Lalg( f ,k − 1,χD ′) may be
expressed as a linear combination of the Lalg( f , t). See for example the formula (8.6) of [MTT] (to-
gether with the discussion in §2 of [MTT] for the reduction of the modular symbols). This formula
has in its denominator a (k − 2)! and a power of the conductor of the character, but � > k − 2,
and the power of the conductor cancels with |D ′|k−1, so in our case the coefficients in the linear
combination for |D ′|k−1Lalg( f ,k − 1,χD ′ ) will be integral at � (hence at λ). Given assumption (1),
it follows that ordλ(|D ′|k−1Lalg( f ,k − 1,χD ′ )) � 0. Given that ordλ(|D|k−1Lalg( f ,k − 1,χD)) = 0,

it follows from Eq. (4) that, if we fix any scaling of f̃ then, among fundamental discriminants
D ′ < 0, ordλ(c(|D|)) is the minimum. Part (1) follows easily from this.

(2) This is a direct consequence of the formula

a(A) =
∑

b|cont A

bk−1c

( |D A |
b2

)
,

which comes from Theorem 1 and Proposition 3 of [Koh2]. For the second part, note that
cont A1 = 1. �

Let { f1 = f , f2, . . . , fr} be a basis of normalised Hecke eigenforms in S2k−2(Γ1). Order the basis
{F1, . . . , Fd} for Sk(Γ2) in such a way that (F1, . . . , Fr) = ( f̂1, . . . , f̂ r). Recall that K is the compositum
of the Q(Fi) for 1 � i � d, and note that Q( f ) ⊂ K , since Q( f̂ ) = Q( f ).

Theorem 6.3. Suppose that λ | � > 2k − 2 and that

ordλLalg( f ,k) > 0,

with

(1) ordλLalg( f , t) � 0 for all 1 � t � 2k − 3;
(2) there exists a fundamental discriminant D < 0 with ordλ(|D|k−1Lalg( f ,k − 1,χD)) = 0;
(3) there exists an even m such that 2 < m < k − 2 and ordλ(Bm Lalg(m + k − 1)Lalg(m + k − 2)) = 0;
(4) there does not exist 1 < i � r such that ap( f ) ≡ ap( f i) for all primes p.

Then

(1) there exists a Hecke eigenform F ∈ Sk(Γ2), not a Saito–Kurokawa lift, such that
(a) for all primes p,

μF (p) ≡ μ ˆ (p) ≡ pk−2 + pk−1 + ap( f ) (mod λ) and μF
(

p2) ≡ μ ˆ
(

p2) (mod λ);
f f
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(b) if we scale F to have Fourier coefficients integral at λ, then, for m as in (3),

ordλΛ(F ,m,St) < 0.

(2) If F is unique (up to scaling) with the property (1)(a), and if we scale F so that ordλ(aF (A)) � 0 for all A
but ordλ(aF (B)) = 0 for some B, then

ordλΛ(F ,2,St) � 0.

Note that the Λ(F j,m,St) are solutions of linear equations with coefficients in K , arising from (6),
so they do belong to K .

Proof of Theorem 6.3.

(1) (a) Given assumptions (1) and (2), we may scale f̂ as in Lemma 6.2. Now we apply Lemma 6.1
to Eq. (6), with A1 as in Lemma 6.2. We need ordλΛ( f̂ ,m,St) < 0, but given assumption (3)
and ordλLalg( f ,k) > 0, this follows from Eq. (5). If F were a Saito–Kurokawa lift, it is easy to
see that assumption (4) would be contradicted.

(b) We can scale all the Fi to have Fourier coefficients integral at λ, and move to the left-hand
side of Eq. (6) any terms with ordλΛ(Fi,m,St) � 0, before applying Lemma 6.1.

(2) When m = 2, the Lalg(m + k − 2) in the numerator of Eq. (5) cancels the Lalg( f ,k) in the de-

nominator, so (again scaling as in Lemma 6.2) ordλΛ( f̂ ,2,St) � 0. Note that ordλ(c(|D|)) = 0,
by Lemma 6.2, and if ordλ(c( f )) > 0 then assumption (4) would be contradicted. Consider again
Eq. (6), with m = 2 and Fi scaled as above, and move to the left-hand side any terms with
ordλΛ(Fi,2,St) � 0, including the i = 1 term. If it were not the case that ordλ(F ,2,St) � 0 then
we could apply Lemma 6.1 (with F in place of F1) to deduce a congruence (mod λ) of Hecke
eigenvalues between F and another Fi (not f̂ ), contradicting our assumption about the unique-
ness of F . �

This theorem may be illustrated by a numerical example in [Ka2], where k = 22 and � = 1423.

Corollary 6.4. In the situation of Theorem 6.3, let F be as in (1)(a). Assuming that such an F is unique up to
scaling, and taking m as in (3),

ordλ

(
π3(m−2)L(F ,2,St)

L(F ,m,St)

)
> 0.

7. Computational support for Conjecture 5.3: k = 10, j = 4, � = 41

First we review the pullback formula of the Siegel–Eisenstein series following Böcherer [Bö],
Böcherer, Satoh and Yamazaki [BSY], and Kozima [Koz]. For a C-vector space V and non-negative inte-
ger m we denote by V (m) its m-th symmetric tensor product. We make the convention that V (0) = C.
From now on we put Vr = Cu1 ⊕ · · · ⊕ Cur , and identify V (m)

r with the vector space of homogeneous
polynomials in u1, . . . , ur of degree m with coefficients in C. Let ν be a non-negative integer. We then
define the representation τr;(ν,m) : GLr(C) → Aut(V (m)

r ) as

τr;(ν,m)(g) · h(u) = (det g)νh(ug)

for g ∈ GLr(C) and h ∈ V (m)
r . This is a realisation of detν ⊗Sym(m), which will be fixed throughout

this section. In particular, if r is even, we put Vr/2,1 = Cu1 ⊕· · ·⊕Cur/2, and Vr/2,2 = Cur/2+1 ⊕· · ·⊕
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Cur . We then regard V (m)
r/2,1 and V (m)

r/2,2 as subspaces of V (m)
r in a natural way. Let Mk,m(Γr) (resp.

Sk,m(Γr)) be the space of Siegel modular forms (resp. cusp forms) of weight detk ⊗Sym(m) with
respect to Γr . In particular we put Mk(Γr) = Mk,0(Γr) and the others as usual. Then an element of

Mk,m(Γ2n) can be regarded as a function with values in V (m)
2n , and an element of Mk,m(Γn)⊗ Mk,m(Γn)

can be regarded as a function with values in V (m)
n,1 ⊗ V (m)

n,2 . Let Z = (zi j)1�i, j�2n be a matrix of variables

with zi j = z ji , and we write ∂i j = (1+δi j)

2
∂

∂zi j
, and ( ∂

∂ Z ) = (∂i j)1�i, j�2n . We use the notation in [Bö] or

[BS] and we put

�(r,q) =
∑

a+b=q

(−1)b
(

q

b

)
z[a]

2 ∂
[a]
4 � (

1[r]
n � z[b]

2 ∂
[b]
3

)(
Ad[r+b]∂1

)
∂

[r+b]
2 ,

and

D̃α =
∑

r+q=n

(
n

q

)
Cq(−α + n/2)−1�(r,q),

where C p(s) = s(s+1/2) · · · (s+(p −1)/2) for s ∈ C. (Note that there are typos in [BS] or in [Bö] in the
definition of �(r,q), e.g. in [BS], there appears

(n
b

)
but the above

(q
b

)
is correct.) Here the definition

of the notation is complicated, so we do not repeat the details (cf. [Bö]), but we note that A[0] = 1,
A[n] = det(A), Ad[n] A = 1 and that if 0 < r < n, then A[r] is a matrix such that each component is a
homogeneous polynomial of components of A of positive order. We note that D̃α can be written as

D̃α = (−1)n

Cn(α − n + 1/2)

∑
r+q=n

(
n

r

)
(−1)r Cr(α − n + 1/2)�(r,q).

For non-negative integers ν and α, we define D̃ν
α as

D̃ν
α = D̃α+ν−1 ◦ · · · ◦ D̃α+1 ◦ D̃α.

The operator D̃ν
α maps C∞(H2n,C) to C∞(H2n,C) for any non-negative integer ν . For non-negative

integers m and f ∈ C∞(H2n, V (m)
2n ), put

D̃ f = U

(
∂

∂ Z
( f )

)
t U

for U = (u1, . . . , u2n). Since we are identifying f ∈ C∞(H2n, V (m)
2n ) with polynomials in ui of de-

gree m, D̃ f belongs to C∞(H2n, V (m+2)
2n ). We note that this D̃ f is 2π i times the D f defined

in [BSY]. We also define two maps D̃↑ : C∞(H2n, V (m)
2n ) → C∞(H2n, V (m+2)

n,1 ) and D̃↓ : C∞(H2n, V (m)
2n ) →

C∞(H2n, V (m+2)
n,2 ) by

D̃↑( f )(u1, . . . , un) = D̃( f )(u1, . . . , un,0, . . . ,0)

and

D̃↓( f )(un+1, . . . , u2n) = D̃( f )(0, . . . ,0, un+1, . . . , u2n).
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Furthermore let L̃k,m be the differential operator defined as follows:

L̃k,m = 1

(k)m

[m/2]∑
μ=0

1

μ!(m − 2μ)!(2 − k − m)μ
(D̃↑ D̃↓)μ(D̃ − D̃↑ − D̃↓)m−2μ,

where (k)μ = k(k + 1) · · · (k + μ − 1). For non-negative integers k, m we put

Dk−ν,(k,m)( f ) = L̃k,m D̃ν
k−ν( f )|Hn×Hn .

In particular, Dk,(k,m) = L̃k,m . Then Dk−ν,(k,m) maps each element of C∞(H2n,C) to C∞(Hn, V (m)
n,1 ) ⊗

C∞(Hn, V (m)
n,2 ). Furthermore it maps Mk−ν(Γ2n) to Mk,m(Γn) ⊗ Mk,m(Γn), and in particular its image

is contained in Sk,m(Γn) ⊗ Sk,m(Γn) if ν > 0. For an even positive integer l, we define the Siegel–
Eisenstein series E2n,l(Z , s) of degree 2n as

E2n,l(Z , s) = ζ(1 − l − 2s)
n∏

i=1

ζ(1 − 2l − 4s + 2i)

×
∑

M∈Γ2n,∞\Γ2n

j(M, Z)−l(det
(
Im

(
M(Z)

)))s

(Z ∈ H2n , s ∈ C), where ζ(∗) is Riemann’s zeta function, and Γ2n,∞ = {( ∗ ∗
O 2n ∗

) ∈ Γ2n
}

. This series
converges for 2 Re(s) + l > 2n + 1 and is continued meromorphically to the whole plane as a function
of s. Furthermore assume that l � n + 3 or l � n + 1 according as n ≡ 1 mod 4 or not. Then E2n,l(Z ,0)

is a holomorphic Siegel modular form of weight l as a function of Z (cf. [Sh]). From now on we
assume that E2n,l(Z ,0) is holomorphic as a function of Z , and write E2n,l(Z) = E2n,l(Z ,0). For an
integer k � l put

Fl,(k,m)(Z1, Z2) = 1

(2π i)n(k−l)+m
Dl,(k,m)(E2n,l)

((
Z1 O
O Z2

))
.

Now for F ∈ Sk,m(Γn), let

Λ(F , r,St) = 2n(n+2)+2−2nk−r(n+1)−m(−1)r(n+1)/2 × ρk,k−r−n

(k)mm!

×
n−1∏
j=1

Γ (2k + 2 j − 2n − 1)

Γ (2k + j − n − 2)

× Γ (k + m/2 − 1)Γ (k + m/2 − 1/2)Γ (k − n)Γ (2k + m − n − 1)

Γ (k)Γ (k − 1/2)Γ (k − 1)Γ (2k + m − 2)

× Γ (r + n)

n∏
j=1

Γ (2r + 2n − 2 j)
L(F , r,St)

πnk+m+r(n+1)−n(n+1)/2〈F , F 〉 ,

where

ρk,ν =
ν−1∏
i=0

n∏
j=1

(−k + ν + ( j − 1)/2 − i
)
.
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Then the following result is a special case of the pullback formula for the Siegel–Eisenstein series in
[BSY] and [Koz]:

Proposition 7.1. Assume that dim Sk,m(Γn) = 1 and let F be a generator of Sk,m(Γn). Let l be an integer such
that l ≡ 0 mod 2, and n + 3 � l < k or n + 1 � l < k according as n ≡ 1 mod 4 or not. Then we have

Fl,(k,m)(Z1, Z2) = Λ(F , l − n,St)
(

F (−Z1) ⊗ F (Z2)
)
.

Furthermore assume that dim Mk,m(Γn) = dim Sk,m(Γn) = 1. Then we have

Fk,(k,m)(Z1, Z2) = Λ(F , l − n,St)
(

F (−Z1) ⊗ F (Z2)
)
.

Here note that the right-hand side does not depend on the choice of F . Also we have F (−Z) =
F (Z) if F has real Fourier coefficients, which is always the case under the assumption of this propo-
sition, for a suitably scaled generator.

Proof of Proposition 7.1. Assume that dim Sk,m(Γn) = 1. Then Fl,(k,m)(Z1, Z2) can be expressed as

Fl,(k,m)(Z1, Z2) = dF (−Z1) ⊗ F (Z2)

with some constant d. Thus we have

〈
F (Z2), Fl,(k,m)(−Z1, Z2)

〉 = dF (Z1)〈F , F 〉.

On the other hand, by the long formula given in the middle of p. 262 of [Koz], we have

〈
F (Z2), Fl,(k,m)(−Z1, Z2)

〉 = cF (Z1)

with

c = (2π i)n(l−k)ζ(1 − l)
n∏

i=1

ζ(1 − 2l + 2i)

× ρk,k−l

(k)mm!2n(n+1−k)−m+1inkπn(n+1)/2−m
n−1∏
j=1

Γ (2k + 2 j − 2n − 1)

Γ (2k + j − n − 2)

× Γ (k + m/2 − 1)Γ (k + m/2 − 1/2)Γ (k − n)Γ (2k + m − n − 1)

Γ (k)Γ (k − 1/2)Γ (k − 1)Γ (2k + m − 2)

×
(

ζ(l)
n∏

j=1

ζ(2l − 2 j)

)−1

L(F , l − n,St).

Kozima assumed that k and m are even in the above formula. But it remains valid without such an
assumption. Thus we have d = c〈F , F 〉−1. By a simple calculation
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(2π i)n(l−k)2n(n+1−k)−m+1inkπn(n+1)/2−m ζ(1 − l)

ζ(l)

n∏
j=1

ζ(1 − 2l + 2 j)

ζ(2l − 2 j)

= (−1)(l−n)(n+1)/22−2nk+n2+2n+2−(l−n)(n+1)−m

πnk+m+(l−n)(n+1)−n(n+1)/2Γ (l)
∏n

j=1 Γ (2l − 2 j)
,

and hence we can show that c = Λ(F , l − n,St)〈F , F 〉. We note that c is a real number, and therefore
we have d = Λ(F , l − n,St). This proves the first assertion. Similarly the second assertion holds. �

The differential operators described above are very useful to get the arithmetic properties of the
standard L-values. However it does not seem so easy to get exact standard L-values by using them.
But in [I1] we have another general characterisation of differential operators which behave well under
the restrictions of the domains equivariant with the action of the real symplectic group on both
domains. These differential operators contain as a part of their formulation the restriction to the locus
Z12 = 0 after the action of the above Böcherer’s operators, and besides they are easier to handle. So
we use this formulation below. We extract what we need from the theorem in [I1]. We take a positive
integer l and put d = 2l. Let X = (xrs) be an n × d matrix of variable components and for 1 � i, j � n,
we put �i j = ∑d

s=1
∂2

∂xis∂x js
. A polynomial P (X) in the entries of X is called pluri-harmonic if �i j P = 0

for any 1 � i, j � n. We fix non-negative integers ν and m and take a polynomial mapping P (X1, X2)

from Mn,d(C) × Mn,d(C) to V (m)
n,1 ⊗ V (m)

n,2 such that

D-1. P (X1, X2) is pluri-harmonic in each Xi (i = 1,2).
D-2. P (X1 g, X2 g) = P (X1, X2) for any g ∈ O (d), where O (d) is the orthogonal group of degree d = 2l.
D-3. P (a1 X1,a2 X2) = (τn;(ν,m)(a1) ⊗ τn;(ν,m)(a2))P (X1, X2) for a1,a2 ∈ GLn(C).

Assume that l � n. Then there exists a unique polynomial mapping Q (S) from S2n(C) to V (m)
n,1 ⊗

V (m)
n,2 such that P (X1, X2) = Q

(( X1
t X1 X1

t X2

X2
t X1 X2

t X2

))
, where S2n(C) denotes the set of symmetric matrices of

degree 2n with entries in C. We note that Q is homogeneous of degree nν + m. For any holomorphic
function f on H2n , we define D Q ( f ) and D̃ Q ( f ) by

D Q ( f ) = Q

(
∂

∂ Z

)
( f )

and

D̃ Q ( f ) = D Q ( f )|Z12=0,

where we write Z = ( Z1 Z12
t Z12 Z2

)
with Z1, Z2 ∈ Hn and Z12 ∈ Mn(C). On the other hand, for i = 1,2,

take gi = ( Ai Bi
Ci Di

) ∈ Sp(n, R) and put

ι(g1, g2) =
⎛
⎜⎝

A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

⎞
⎟⎠ ∈ Sp(2n, R).

Let D be a V (m)
n,1 ⊗ V (m)

n,2 -valued linear holomorphic differential operator with constant coefficient. We
consider the following condition on D.
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D-0. For any holomorphic function f (Z) on H2n and any g1, g2 ∈ Sp(n, R), we have

(
D

(
f
(
ι(g1, g2)Z

)
det

((
C1 0
0 C1

)
Z +

(
D1 0
0 D2

))−l))∣∣∣∣
Z12=0

= τn,(ν,m)

(
(C1 Z1 + D1)

−1) ⊗ τn,(ν,m)

(
(C2 Z2 + D2)

−1)(D f )

(
g1 Z1 0

0 g2 Z2

)
.

Theorem 7.2. (See [I1].) We fix a positive integer d = 2l � n and non-negative integers ν and m.

(1) Notation being as above, there exists a polynomial P that satisfies D-1 to D-3. It, and the associated Q ,
are unique up to constant multiples.

(2) For Q as in (1), D Q satisfies the condition D-0.
(3) Any linear holomorphic differential operator with constant coefficients, satisfying D-0, is of the form D Q

for some Q associated with a P satisfying D-1 to D-3.

The effect of the action of D̃ Q on the Fourier expansion is easily described as far as Q is explicitly
given. We consider the action of the above operator on the Siegel–Eisenstein series. We denote by
Hm(Z) the set of half-integral matrices of degree m over Z. Furthermore we denote by Hm(Z)>0
(resp. Hm(Z)�0) the subset of Hm(Z) consisting of positive definite (resp. semi-positive definite)
matrices. Let

E2n,l(Z) =
∑

A

c2n,l(A)
(
tr(A Z)

)

be the Fourier expansion of the Siegel–Eisenstein series. Put Gl,Q (Z1, Z2) := D̃ Q (E2n,l)(Z1, Z2). Then,
Gl,Q (Z1, Z2) belongs to Sl+ν,m(Γn) ⊗ Sl+ν,m(Γn), and we have

Gl,Q (Z1, Z2) = (2π i)nν
∑

A1,A2∈Hn(Z)>0

exp
(
2π i tr(A1 Z1 + A2 Z2)

)

×
∑

R∈Mn(Z)

Q

((
A1

1
2 R

1
2

t R A2

))
c2n,l

((
A1

1
2 R

1
2

t R A2

))
.

By the claim (3) of the above theorem, we have

Proposition 7.3. Under the above notation and the assumption, we have

Dl,(l+ν,m) = dQ D̃ Q ,

where dQ is a non-zero constant. Therefore we have

Fl,(l+ν,m)(Z1, Z2) = dQ Gl,Q (Z1, Z2).

When ν = 0, for general m, the polynomial P is obtained using the classical Gegenbauer poly-
nomials and when n = 2 and m = 0, a generating function of P is given (cf. in [I1, p. 114]). When
both ν and m are positive, it is not so easy to find a polynomial P (X1, X2) or Q (S) satisfying the
above conditions. Here we give two examples. Let S be a 4 × 4 symmetric matrix of variables and
U = (u1, u2, u3, u4) a vector of variables. We divide U into u := (u1, u2) and v := (u3, u4). We also
divide S as S = ( R T

t T S

)
with R , S symmetric 2 × 2 matrices and T a 2 × 2 matrix. First define a

polynomial φk,(k,4)(S, U ) as follows:
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φk,(k,4)(S, U ) = k(k − 1)

6

(
4(k + 1)(k + 2)s4 − 12(k + 1)s2m0 + 3m2

0

)
,

where

m1 = m1(R, u) = (u1, u2)R

(
u1
u2

)

= r11u2
1 + 2r12u1u2 + r22u2

2,

m2 = m2(S, v) = (u3, u4)S

(
u3
u4

)

= s11u2
3 + 2s12u3u4 + s22u2

4,

m0 = m0(R, S, T , u, v)

= m1m2 = (
r11u2

1 + 2r12u1u2 + r22u2
2

)(
s11u2

3 + 2s12u3u4 + s22u2
4

)
,

s = s(R, S, T , u, v) = (u1, u2)T

(
u3
u4

)
= t11u1u3 + t12u1u4 + t21u2u3 + t22u2u4

for R = ( r11 r12
r12 r22

)
, S = ( s11 s12

s12 s22

)
and T = ( t11 t12

t21 t22

)
. Then this is associated with P satisfying D-1 to D-3

for ν = 0, d = 2k and m = 4. This has been already known in [I1, p. 114]. Next we treat the case
d = 2l = 2k − 4, ν = 2, and m = 4. This case is more complicated. First we explain an outline, then we
give an explicit solution. Inside the space of polynomials in the entries of R , S , T , we seek subspaces
realising the representation τ2,(2,4) ⊗ τ2,(2,4) of GL(2) × GL(2). Since (A, B) ∈ GL(2) × GL(2) acts on R ,
S , T by AR t A, B S t B and AT t B , if we denote each degree with respect to entries of R , S or T by a, b,
2c, then, considering degrees in the entries of A and in the entries of B , we have 2a + 2c = 2b + 2c =
nν + m = 8 (hence c is an integer). Hence a = b, and the total degree in the entries of R , S and T is
a + b + 2c = 8. Calculating the characters, we can easily see the following facts. As a representation
space of GL(2) × GL(2), the space of degree a polynomials in the entries of R decomposes into

[a/2]∑
ν=0

τ2,(2ν,2a−4ν) ⊗ τ2,(0,0)

where τ2,(0,0) is the trivial representation of GL(2), and the space of degree a polynomials in the
entries of S decomposes in the same way, where the left and the right of the tensor are transposed.
As a representation space of GL(2) × GL(2), the space of polynomials of degree 2c in the entries of T
decomposes as

c∑
ν=0

τ2,(ν,2c−2ν) ⊗ τ2,(ν,2c−2ν).

The space of homogeneous polynomials of total degree 8 in the entries of R , S and T , with a = b,
is a sum over a + c = 4 of tensor products of these three spaces. The irreducible decomposition of
tensor products of symmetric tensor representations is known by Clebsch–Gordan. So we can easily
count the multiplicity of τ2,(2,4) ⊗ τ2,(2,4) , and it is 15. Now we consider polynomials P (R, S, T , u, v),
homogeneous of total degree 8 in the entries of R , S , T , and homogeneous of degree 4 in u1, u2 and
in u3, u4, where we put u = (u1, u2), v = (u3, u4), such that

P
(

AR t A, B S t B, AT t B, u, v
)
. = det(AB)2 P (R, S, T , u A, v B).
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Then the coefficients of such a P as a polynomial in the ui give a basis of a representation space of
τ2,(2,4) ⊗τ2,(2,4) . So the first task is to give 15 linearly independent such polynomials. The second task
is to find, among their linear combinations, a polynomial pluri-harmonic with respect to each of X1
and X2, which is assured to exist uniquely up to constants. Proceeding along these lines, we define a
polynomial φk−2,(k,4)(S, U ) by

φk−2,(k,4)(S, U ) = 4(d + 6)(d + 8)(d − 2)(d + 3)(d + 4)P0s4 + 4(d + 6)(d + 8)(d + 3)(d + 4)P1s4

+ 8(d + 6)(d + 8)(11d − 12)P2s4 − 8(d + 6)(d + 8)(d − 3)(d + 3)det(T )Q 0s2

− 48(d + 6)(d + 8)(d − 3)Q 1s2 − 8(d + 6)(d + 3)
(
5d2 + 4d − 36

)
P0s2m0

+ (
60d3 + 156d2 − 648d − 576

)
P0m2

0 − 72(d + 6)
(
d2 + 5d − 10

)
P1s2m0

− 48(5d + 6)(d + 6)P2m0s2 + 24(d − 3)(d + 6)(d + 1)det(T )Q 0m0

+ 48(d − 3)(d + 6)Q 2m0 − 48(d + 6)(d + 8)(d − 3)Q 2s2

+ 12
(
5d2 + 15d − 48

)
P1m2

0 + 48(d − 3)(d + 6)Q 1m0 + 72(d + 4)P2m2
0,

where mi (i = 0,1,2) and s are as before and

P0 = P0(R, S, T ) = det(T )2,

P2 = P2(R, S, T ) = det(R S),

P1 = P1(R, S, T ) = −r11t2
21s22 + 2r11t21t22s12 − r11t2

22s11

+ 2r12t21t11s22 − 2r12t21t12s12 − 2r12t22t11s12

+ 2r12t22t12s11 − r22t2
11s22 + 2t11r22t12s12 − r22t2

12s11,

Q r = Q r(R, T , v) = (
r11t2

21 − 2r12t11t21 + r22t2
11

)
u2

3

+ 2
(
r11t21t22 − r12(t11t22 + t12t21) + r22t11t12

)
u3u4

+ (
r11t2

22 − 2r12t12t22 + r22t2
12

)
u2

4,

Q s = Q s(S, T , u) = (
s11t2

12 − 2s12t11t12 + s22t2
11

)
u2

1

+ 2
(
s11t12t22 − s12(t11t22 + t12t21) + s22t11t21

)
u1u2

+ (
s11t2

22 − 2s12t21t22 + s22t2
21

)
u2

2,

Q 1 = Q 1(R, S, T , u, v) = Q rm1 det(S),

Q 2 = Q 2(R, S, T , u, v) = Q sm2 det(R),

Q 0 = Q 0(R, S, T , u, v) = (
u2

1, u1u2, u2
2

)
(qij)1�i, j�3

( u2
3

u3u4
u2

4

)

= q11u2
1u2

3 + q12u2
1u3u4 + q13u2

1u2
4

+ q21u1u2u2
3 + q22u1u2u3u4 + q23u1u2u2

4

+ q31u2
2u2

3 + q32u2
2u3u4 + q33u2

2u2
4,
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where

q11 = 2s11(r11t11t22 + r11t12t21 − 2r12t11t12) − 4t11s12(−t11r12 + r11t21),

q21 = 4s11(r11t21t22 − r22t12t11) − 4s12
(
r11t2

21 − r22t2
11

)
,

q31 = 2s11(2r12t21t22 − r22t11t22 − r22t12t21) − 4s12t21(r12t21 − t11r22),

q12 = 4r11s11t12t22 − 4r12s11t2
12 − 4r11s22t11t21 + 4r12s22t2

11,

q22 = 4r11s11t2
22 − 4r22t2

12s11 − 4r11s22t2
21 + 4r22s22t2

11,

q32 = 4r12s11t2
22 − 4r22s11t12t22 − 4r12s22t2

21 + 4r22s22t11t21,

q13 = 4r11s12t12t22 − 4r12s12t2
12 − 2r11s22t11t22 − 2r11s22t12t21 + 4r12s22t11t12,

q23 = 4r11s12t2
22 − 4r22s12t2

12 − 4r11s22t21t22 + 4r22s22t11t12,

q33 = 4r12s12t2
22 − 4r22s12t12t22 − 4r12s22t21t22 + 2r22s22t11t22 + 2r22s22t12t21.

Here we note that

Pi
(

AR t A, B S t B, AT t B
) = det(AB)2 Pi(R, S, T ),

m0
(

AR t A, B S t B, AT t B, u, v
) = m0(R, S, T , u A, v B),

s
(

AR t A, B S t B, AT t B, u, v
) = s(R, S, T , u A, v B),

Q r
(

AR t A, AT t B, v
) = det(A)2 Q r(R, T , v B),

Q s
(

B S t B, AT t B, u
) = det(B)2 Q s(S, T , u A),

Q 0
(

AR t A, B S t B, AT t B, u, v
) = det(AB)2 Q 0(R, S, T , u A, v B).

So the 15 terms in φk−2,(k,4) give the isobaric components associated with the representation
τ2,(2,4) ⊗τ2,(2,4) of GL(2)×GL(2) with multiplicity 15 (if they are linearly independent). The condition
of pluri-harmonicity determines the coefficients given by the polynomials in d = 2k − 4. Since there
is no ready-made program suitable for this calculation, this part is a fairly elaborate hand calculation
with the aid of Maple.

Then for ν = 0 or 2 put

Φk−ν,(k,4) = φk−ν,(k,4)

(
∂

∂ Z
, U

)∣∣∣∣
Z12=O 2

.

We note that Φk−ν,(k,4) is a polynomial in ∂
∂ Z and U . Then by a direct but long and elaborate calcu-

lation with the aid of Maple we have

Proposition 7.4. Assume that k � 4, and let l = k or k − 2. Define a polynomial Pl,(k,4)(X1, X2) by

Pl,(k,4)(X1, X2) = φl,(k,4)

((
X1

t X1 X1
t X2

X2
t X1 X2

t X2

)
, U

)

for X1, X2 ∈ M2,2l(C). Then Pl,(k,4)(X1, X2) is a polynomial mapping from M2,2l(C) × M2,2l(C) to V (4)
2,1 ⊗

V (4)
2,2 , and satisfies the conditions D-1–D-3 stated above for the representation τ2;k−l,4 . Therefore we have
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Dl,(k,4) = cl,(k,4)Φl,(k,4)

for some non-zero rational number cl,(k,4) .

Now we shall consider the prime factors of cl,(k,4) more precisely.

Lemma 7.5. Let u = (u1, u2) and v = (u3, u4) be vectors of independent variables, and W = (zi j)1�i�2,3� j�4
be a 2 × 2 matrix with entries in variables.

(1) Define the differential operators | ∂
∂W | and E as

∣∣∣∣ ∂

∂W

∣∣∣∣ = det

(
1

2

∂

∂zi j

)
1�i�2,3� j�4

,

and

E = 1

2

2∑
i=1

4∑
j=3

zi j
∂

∂zi j
.

Then we have

∣∣∣∣ ∂

∂W

∣∣∣∣((uW t v
)m

(det W )σ
) = σ(σ + m + 1)

4

(
uW t v

)m
(det W )σ−1

and

E
((

uW t v
)m

(det W )σ−1) = 2σ + m − 2

2

(
uW t v

)m
(det W )σ−1

for any non-negative integer m and positive integer σ .
(2) We have D̃ − D̃↑ − D̃↓ = u( ∂

∂zi j
)1�i�2,3� j�4

t v and

(D̃ − D̃↑ − D̃↓)
((

uW t v
)m) = m

(
uW t v

)m−1〈u, u〉〈v, v〉,

and

(D̃↑ D̃↓)
((

uW t v
)m) = 0,

for any non-negative integer m, where 〈u, u〉 = u2
1 + u2

2, 〈v, v〉 = u2
3 + u2

4 .

Proof. The assertions can be proved directly from the definitions of the differential operators in ques-
tion. �
Corollary 7.6. Let W = ( z13 z14

z23 z24

)
, and u = (u1, u2), v = (u3, u4).

(1) We have

D̃ν
α

((
uW t v

)m
(det W )σ

) = dα,(α+ν,m),σ

(
uW t v

)m
(det W )σ−ν
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for any positive integers α and ν and non-negative integers σ and m, where

dα,(α+ν,m),σ =
∏ν−1

i=0 (σ − i)(σ − i + m + 1)(σ + i + 2α − 4)(σ + i + m + 2α − 3)

24ν
∏ν−1

i=0 C2(α + i − 3/2)
.

(2) We have

L̃k,m((
uW t v

)m) = 1

(k)m
〈u, u〉m〈v, v〉m

for any positive integer k and non-negative integer m.

Proof. By definition we have

D̃α = C2(α − 3/2)−1
2∑

r=0

(
2

r

)
Cr(α − 3/2)

(
1[r]

2 � z[2−r]
2 ∂

[2−r]
3

)
det ∂2 + F

(
Z ,

∂

∂ Z

)
,

where F (Z , ∂
∂ Z ) is a polynomial in Z and ∂

∂ Z whose degree with respect to ∂1 and ∂4 is greater than
or equal to 1 and hence acts as zero. Thus we have

D̃α

((
uW t v

)m
(det W )σ

) = C2(α − 3/2)−1

×
2∑

r=0

(
2

r

)
Cr(α − 3/2)

(
1[r]

2 � z[2−r]
2 ∂

[2−r]
3

)
det ∂2

((
uW t v

)m
(det W )σ

)
.

Using the definitions in [Bö], we have

2∑
r=0

(
2

r

)
Cr(α − 3/2)

(
1[r]

2 � z[2−r]
2 ∂

[2−r]
3

)
det ∂2

((
uW t v

)m
(det W )σ

)

=
(

det W

∣∣∣∣ ∂

∂W

∣∣∣∣
2

+ (α − 3/2)E
∣∣∣∣ ∂

∂W

∣∣∣∣ + (α − 3/2)(α − 1)

∣∣∣∣ ∂

∂W

∣∣∣∣
)((

uW t v
)m

(det W )σ
)
,

and by (1) of Lemma 7.5 we have

D̃α

((
uW t v

)m
(det W )σ

) = dα,(α+1,m),σ

(
uW t v

)m
(det W )σ−1.

Thus the assertion (1) can be proved by repeated application of this formula. The assertion (2) follows
directly from (2) of Lemma 7.5. �
Proposition 7.7. Assume that k � 4, and let l = k or k − 2. Let cl,(k,4) be as in Proposition 7.4. Then cl,(k,4) is a
p-unit for any prime number p > 2k − 1.

Proof. We note that both the operators Dl,(k,4) and Φl,(k,4) are polynomials in ∂
∂ Z and they can be also

regarded as maps from C∞(H4, V (8)
4 ) to C∞(H2, V (8)

2,1)⊗ C∞(H2, V (8)
2,2). Thus to prove the assertion we
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apply these two differential operators to the function (uW t v)4(det W )k−l , where W = ( z13 z14
z23 z24

)
and

u = (u1, u2), v = (u3, u4). By Corollary 7.6 we have

Dl,(k,4)

((
uW t v

)4
(det W )k−l) = dl,(k,4),k−l

(k)4
〈u, u〉4〈v, v〉4.

Now we apply Φl,(k,4) to (uW t v)4(det W )k−l . First write the polynomial φk,(k,4)(S, U ) as

φk,(k,4)(S, U ) = 2k(k − 1)(k + 1)(k + 2)s4

3
+ ψ(S, U ).

Then it is easily seen that

ψ

(
∂

∂ Z
, U

)((
uW t v

)4)∣∣
H2×H2

= 0.

Thus we have

Φk,(k,4)

((
uW t v

)4) = 2k(k − 1)(k + 1)(k + 2)

3

(
u

(
1

2

∂

∂zi j

)
i=1,2, j=3,4

t v

)4((
uW t v

)4)∣∣
H2×H2

= 2k(k − 1)(k + 1)(k + 2)

3

4!
24

〈u, u〉4〈v, v〉4

by repeated application of (2) of Lemma 7.5, and hence ck,(k,4) = ((k − 1)k2(k + 1)2(k + 2)2(k + 3))−1

is p-unit for any prime number p > 2k − 1 if k � 4. Similarly the terms except for those coming from
P0s4 act as zero on (uW t v)4(det W )2, so we have

Φk−2,(k,4)

((
uW t v

)4
(det W )2) = 23 · 32 · 7k(k + 1)(k + 2)(k − 3)(2k − 1)〈u, u〉4〈v, v〉4.

We also have

Dk−2,(k,4)

((
uW t v

)4(
det(W )2)) = dk−2,(k,4),2

(k)4
〈u, u〉4〈v, v〉4

= 21

4

2k − 1

(k + 1)(k + 2)(k + 3)(2k − 7)
〈u, u〉4〈v, v〉4.

Hence ck−2,(k,4) = (96(2k−7)(k−2)(k−3)k(k+1)2(k+2)2(k+3))−1 is a p-unit for any prime number
p > 2k − 1, if k � 4. �

To get exact standard L-values of Siegel modular forms, we need an explicit formula for the
Fourier coefficients of E4,l . Let A be an element of Hm(Z)>0 with m even. We then denote by ξA

the Kronecker character corresponding to the extension Q(
√

(−1)m/2 det A)/Q. Let A = ( a11 a12/2
a12/2 a22

) ∈
H2(Z)�0. First assume rank(A) = 1. Then we define

F (1)
p (A, X) =

ordp(cont A)∑
i=0

(p X)i .

Next assume A > 0. Then we can write D A = dAf2
A with dA a fundamental discriminant and fA ∈ Z>0.

Then we define
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F (2)
p (A, X) =

ordp(cont A)∑
i=0

(
p2 X

)i
ordp(fA)−i∑

j=0

(
p3 X2) j

− ξA(p)p X

ordp(cont A)∑
i=0

(
p2 X

)i
ordp(fA)−i−1∑

j=0

(
p3 X2) j

.

For a positive semi-definite symmetric matrix A with entries in Q of degree 2 and of rank l such
that 2A is p-integral, take a positive integer m coprime to p such that mA ∈ H2(Z)�0, and we define

F (l)
p (A, X) by F (l)

p (A, X) = F (l)
p (mA, X). This does not depend on the choice of m. Then we have the

following (cf. [Ka2]).

Proposition 7.8. Let A = ( A1 R/2
t R/2 A2

)
be an element of H4(Z)�0 of rank m with A1, A2 ∈ H2(Z)>0 , R ∈

M2(Z). Fix a prime number p0 . Assume that 2A1 ∈ GL2(Zp) for any prime number p �= p0 , and 2A2 ∈
GL2(Zp0 ). Then we have m � 3 and the A-th Fourier coefficient c4,l(A) of E4,l is given by

c4,l(A) = 22 F (m−2)
p0

(
A1 − 1

4
R A−1

2
t R, ξA2(p0)pl−m

0

)

×
∏

p �=p0

F (m−2)
p

(
A2 − 1

4
t R A−1

1 R, ξA1(p)pl−m
)

×
{

L(3 − l, ξA) if m = 4,

ζ(5 − 2l) if m = 3.

Now put Gl,(k,4)(Z1, Z2) = Φl,(k,4)(E4,l)
(( Z1 O

O Z2

))
. Assume that Gl,(k,4)(Z1, Z2) belongs to Sk,4(Γ2)⊗

Sk,4(Γ2). Then, by the remark before Proposition 7.3, Gl,(k,4)(Z1, Z2) can be written as

Gl,(k,4)(Z1, Z2) =
∑

A,B∈H2(Z)>0

εl,(k,4)(A1, A2; U )exp
(
2π i tr(A1 Z1 + A2 Z2)

)
,

where

εl,(k,4)(A1, A2; U ) =
∑

R∈M2(Z)

c4,l

((
A1 R/2

t R/2 A2

))
φl,(k,4)

((
A1 R/2

t R/2 A2

)
, U

)
.

Now we have computed εl,(k,4) exactly in some cases with Mathematica.

Theorem 7.9. With the above notation, we have

ε8,(10,4)(A2,12; U ) = 10 391 040
(
u2

1 + u1u2 + u2
2

)2 ⊗ (
u4

3 − 9u2
3u2

4 + u4
4

)
and

ε10,(10,4)(A2,12; U ) = −17−1 · 10 886 400
(
u2

1 + u1u2 + u2
2

)2 ⊗ (
u4

3 − 9u2
3u2

4 + u4
4

)
,

where A2 = ( 1 1/2 )
and 12 = ( 1 0 )

.
1/2 1 0 1
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Now we note that dim M10,4(Γ2) = dim S10,4(Γ2) = 1. Fix a Hecke eigenform F of S10,4(Γ2). Then
by Propositions 7.1 and 7.4, for l = 8,10, we have

Gl,(10,4)(Z1, Z2) = c−1
l,(10,4)

Λ(F , l − 2,St)
(

F (−Z1) ⊗ F (Z2)
)
.

Thus we have

Corollary 7.10. We have

Λ(F ,6,St) = 10 391 040 c8,(10,4) and Λ(F ,8,St) = −17−1 · 10 886 400 c10,(10,4).

We note that we have

10 391 040/
(
17−1 · 10 886 400

) = 2 · 3−3 · 5−1 · 7−1 · 11 · 17 · 41.

Thus by Proposition 7.7 we have

Theorem 7.11. With the above notation, we have

ord41
(
Λ(F ,6,St)/Λ(F ,8,St)

) = 1.

We note that

Λ(F ,6,St)/Λ(F ,8,St) = −ρ10,2/ρ10,026π6L(F ,6,St)/L(F ,8,St).

Thus we have

Corollary 7.12. We have

ord41
(
π6L(F ,6,St)/L(F ,8,St)

) = 1.

8. Computational support for Conjecture 5.4: k = 11, m = 10, � = 97

The method of the following calculation is the same as we outlined in the last section. First, letting
d = 2k − 2, we define a polynomial φk−1,(k,10)(S, U ) as

φk−1,(k,10)(S, U ) = (−2(d + 10)(d + 8)(d + 18)(d + 16)(d + 14)(d + 12)s10

+ 20(d + 16)(d + 14)(5d + 36)(d + 12)(d + 10)s8m0

− 540(d + 14)(d + 12)(d + 10)(3d + 20)s6m2
0

+ 5040(d + 10)(2d + 13)(d + 12)s4m3
0

− 3150(d + 10)(7d + 48)s2m4
0 + 11 340(d + 8)m5

0

)
det(T )

+ (
5(d + 10)(d + 14)(d + 18)(d + 12)(d + 16)s8

− 180(d + 10)(d + 14)(d + 12)(d + 16)s6m0

+ 1890(d + 10)(d + 14)(d + 12)s4m2
0 − 6300(d + 12)(d + 10)s2m3

0

+ 4725(d + 10)m4
0

)
Q 0.
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Next, letting now d = 2k − 6, we define a polynomial φk−3,(k,10)(S, U ) by

φk−3,(k,10)(S, U ) =
51∑

ν=1

wν fν,

where

w1 = 4725(d + 14)(d + 21)
(
11d2 + 143d + 18

)
,

w2 = −18 900(d + 14)(d + 21)
(
3d2 + 45d + 20

)
(d + 16),

w3 = 13 230(d + 14)(d + 21)
(
d2 + 17d + 18

)
(d + 18)(d + 16),

w4 = −180(d + 14)(d + 20)(d + 21)
(
5d2 + 95d + 216

)
(d + 18)(d + 16),

w5 = 15(d + 14)(20 + d)(d + 11)(d + 10)(d + 22)(d + 21)(d + 18)(d + 16),

w6 = 198 450(d + 14)(d + 10)(d + 21),

w7 = −37 800(d + 14)(d + 21)(9d + 64)(d + 16),

w8 = 3780(d + 14)(37d + 162)(d + 21)(d + 18)(d + 16),

w9 = −1080(d + 14)(20 + d)(d + 21)(17d + 40)(d + 18)(d + 16),

w10 = 30(d + 14)(20 + d)(23d + 22)(d + 22)(d + 21)(d + 18)(d + 16),

w11 = 37 800(d + 14)(d + 21)(d + 16)(d − 3),

w12 = −37 800(d + 14)(d + 21)(d + 18)(d − 3)(d + 16),

w13 = 7560(d + 14)(20 + d)(d − 3)(d + 21)(d + 18)(d + 16),

w14 = −360(d + 14)(20 + d)(d + 22)(d + 21)(d − 3)(d + 18)(d + 16),

w15 = 37 800(d + 14)(d + 21)(d + 16)(d − 3),

w16 = −37 800(d + 14)(d + 21)(d + 18)(d − 3)(d + 16),

w17 = 7560(d + 14)(20 + d)(d − 3)(d + 21)(d + 18)(d + 16),

w18 = −360(d + 14)(20 + d)(d + 22)(d + 21)(d − 3)(d + 18)(d + 16),

w19 = 3780(d + 21)
(
44d3 + 957d2 + 4993d − 210

)
,

w20 = −9450(d + 14)(d + 21)
(
39d3 + 831d2 + 3614d − 1720

)
,

w21 = 52 920(d + 14)(d + 21)
(
3d3 + 70d2 + 317d − 258

)
(d + 16),

w22 = −180(d + 14)
(
115d3 + 3015d2 + 16 034d − 11 184

)
(d + 21)(d + 18)(d + 16),

w23 = 420(d + 14)(20 + d)(d + 10)(d + 21)
(
2d2 + 39d + 7

)
(d + 18)(d + 16),

w24 = −6(d + 14)(20 + d)(d + 11)(d + 10)(d + 12)(d + 21)(d + 22)(d + 18)(d + 16),

w25 = 476 280(d + 10)(d + 12)(d + 21),

w26 = −132 300(d + 21)(d + 14)(9d + 70)(d + 10),
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w27 = 211 680(d + 14)(d + 21)(4d + 27)(d + 6)(d + 16),

w28 = −1080(d + 14)(d + 21)
(
209d2 + 2020d + 3252

)
(d + 18)(d + 16),

w29 = 120(d + 14)(20 + d)(d + 21)
(
187d2 + 1614d − 64

)
(d + 18)(d + 16),

w30 = −36(d + 14)(20 + d)(d + 10)(19d − 22)(d + 22)(d + 21)(d + 18)(d + 16),

w31 = 132 300(d + 21)(d + 10)(d + 14)(d − 3),

w32 = −151 200(d + 14)(d + 21)(2d + 15)(d − 3)(d + 16),

w33 = 7560(d + 14)(d + 21)(17d + 130)(d + 18)(d − 3)(d + 16),

w34 = −1440(d + 14)(11d + 95)(d − 3)(20 + d)(d + 21)(d + 18)(d + 16),

w35 = 540(d + 14)(20 + d)(d + 22)(d + 10)(d − 3)(d + 21)(d + 18)(d + 16),

w36 = 132 300(d + 21)(d + 10)(d + 14)(d − 3),

w37 = −151 200(d + 14)(d + 21)(2d + 15)(d − 3)(d + 16),

w38 = 7560(d + 14)(d + 21)(17d + 130)(d + 18)(d − 3)(d + 16),

w39 = −1440(d + 14)(11d + 95)(d − 3)(20 + d)(d + 21)(d + 18)(d + 16),

w40 = 540(d + 14)(20 + d)(d + 22)(d + 10)(d − 3)(d + 21)(d + 18)(d + 16),

w41 = 14 175(d + 14)(d + 21)
(
d3 + 3d2 + 4d + 116

)
,

w42 = −18 900(d + 14)(d + 21)
(
d3 + 7d2 + 8d + 68

)
(d + 16),

w43 = 5670(d + 14)(d + 21)
(
d3 + 11d2 + 20d − 4

)
(d + 18)(d + 16),

w44 = −540(d + 14)(20 + d)(d + 10)(d + 21)
(
d2 + 5d − 10

)
(d + 18)(d + 16),

w45 = 15(d + 14)(20 + d)(d + 11)(d + 10)(d + 22)(d + 21)(d − 2)(d + 18)(d + 16),

w46 = 3780(d + 21)
(
8d4 + 129d3 + 361d2 + 1530d + 12 600

)
,

w47 = −9450(d + 14)(d + 21)
(
5d4 + 101d3 + 530d2 + 1288d + 5888

)
,

w48 = 17 640(d + 14)(d + 21)
(
d4 + 24d3 + 173d2 + 426d + 648

)
(d + 16),

w49 = −180(d + 14)(d + 10)(d + 21)
(
13d3 + 227d2 + 876d + 144

)
(d + 18)(d + 16),

w50 = 60(d + 14)(20 + d)(d + 11)(d + 10)
(
2d2 + 19d − 4

)
(d + 21)(d + 18)(d + 16),

w51 = −2(d + 14)(20 + d)(d + 11)(d + 10)d(d + 12)(d + 21)(d + 22)(d + 18)(d + 16)

and

f1 = Q 0 P1m4
0, f2 = Q 0 P1m3

0s2, f3 = Q 0 P1m2
0s4, f4 = Q 0 P1m0s6, f5 = Q 0 P1s8,

f6 = Q 0 P2m4
0, f7 = Q 0 P2m3

0s2, f8 = Q 0 P2m2
0s4, f9 = Q 0 P2m0s6, f10 = Q 0 P2s8,

f11 = Q 0 Q 1m3
0, f12 = Q 0 Q 1m2

0s2, f13 = Q 0 Q 1m0s4, f14 = Q 0 Q 1s6,

f15 = Q 0 Q 2m3
0, f16 = Q 0 Q 2m2

0s2, f17 = Q 0 Q 2m0s4, f18 = Q 0 Q 2s6,

f19 = det(T )P1m5
0, f20 = det(T )P1m4

0s2, f21 = det(T )P1m3
0s4, f22 = det(T )P1m2

0s6,
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f23 = det(T )P1m0s8, f24 = det(T )P1s10, f25 = det(T )P2m5
0, f26 = det(T )P2m4

0s2,

f27 = det(T )P2m3
0s4, f28 = det(T )P2m2

0s6, f29 = det(T )P2m0s8, f30 = det(T )P2s10,

f31 = det(T )Q 1m4
0, f32 = det(T )Q 1m3

0s2, f33 = det(T )Q 1m2
0s4, f34 = det(T )Q 1m0s6,

f35 = det(T )Q 1s8, f36 = det(T )Q 2m4
0, f37 = det(T )Q 2m3

0s2, f38 = det(T )Q 2m2
0s4,

f39 = det(T )Q 2m0s6, f40 = det(T )Q 2s8, f41 = det(T )2 Q 0m4
0, f42 = det(T )2 Q 0m3

0s2,

f43 = det(T )2 Q 0m2
0s4, f44 = det(T )2 Q 0m0s6, f45 = det(T )2 Q 0s8,

f46 = det(T )3m5
0, f47 = det(T )3m4

0s2, f48 = det(T )3m3
0s4,

f49 = det(T )3m2
0s6, f50 = det(T )3m0s8, f51 = det(T )3s10.

For ν = 1,3 put

Φk−ν,(k,10) = φk−ν,(k,10)

(
∂

∂ Z
, U

)∣∣∣∣
Z12=O 2

.

Then by a more elaborate calculation than that in the previous section, we can show the following.

Proposition 8.1. Assume that k � 4, and let l = k − 1 or k − 3. Define a polynomial Pl,(k,10)(X1, X2) by

Pl,(k,10)(X1, X2) = φl,(k,10)

((
X1

t X1 X1
t X2

X2
t X1 X2

t X2

)
, U

)

for X1, X2 ∈ M2,2l(C). Then Pl,(k,10)(X1, X2) is a polynomial mapping from M2,2l(C) × M2,2l(C) to V (10)
2,1 ⊗

V (10)
2,2 , and satisfies the conditions D-1–D-3 stated above for the representation τ2;k−l,10 .

We can calculate cl,(k,10) similarly as before and we have

ck−1,(k,10) = − 23

10! × 1

(k − 2)(k + 4)5(k)10
,

ck−3,(k,10) = − 2

10! × 1

(2k − 9)(2k + 15)(k − 4)3(k + 4)5(k)10
.

Thus similarly to Proposition 7.7 we have

Proposition 8.2. Assume that k � 4, and let l = k − 1 or k − 3. Then we have

Dl,(k,10) = cl,(k,10)Φl,(k,10)

with a non-zero rational number cl,(k,10) , and in particular cl,(k,10) is a p-unit for a prime number p > 2k+15.

Now for l = k − 1,k − 3, put Gl,(k,10)(Z1, Z2) = Φl,(k,10)

(
E4,l

(( Z1 O
O Z2

)))
. Then, similarly to Section 7,

Gk,l,m(Z1, Z2) can be written as

Gl,(k,10)(Z1, Z2) =
∑
A,B

εl,(k,10)(A1, A2; U )exp
(
2π i tr(A1 Z1 + A2 Z2)

)
,
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where

εl,(k,10)(A1, A2; U ) =
∑

R∈M2(Z)

c4,l

((
A1 R/2

t R/2 A2

))

× φl,(k,10)

((
A1 R/2

t R/2 A2

)
, U

)
.

Then similarly to Theorem 7.9, we have

Theorem 8.3. Let the notation be as in Theorem 7.9. Then

ε8,(11,10)(A2,12; U ) = 61 498 907 532 000u1u2
(
u2

1 − u2
2

)
(2u1 + u2)(u1 + 2u2)

(
u2

1 + u1u2 + u2
2

)2

⊗ u3u4
(
u4

3 − u4
4

)(
5u4

3 − 8u2
3u2

4 + 5u4
4

)
,

and

ε10,(11,10)(A2,12; U ) = −276 449 241 600u1u2
(
u2

1 − u2
2

)
(2u1 + u2)(u1 + 2u2)

(
u2

1 + u1u2 + u2
2

)2

⊗ u3u4
(
u4

3 − u4
4

)(
5u4

3 − 8u2
3u2

4 + 5u4
4

)
.

Note that dim S11,10(Γ2) = 1. Fix a Hecke eigenform G of S11,10(Γ2). Then by Propositions 7.1
and 7.4, for l = 8,10, we have

Gl,(11,10)(Z1, Z2) = c−1
l,(11,10)

Λ(G, l − 2,St)
(
G(−Z1) ⊗ F (Z2)

)
.

Thus we have

Corollary 8.4.

Λ(G,6,St) = 61 498 907 532 000 c8,(11,10) and Λ(G,8,St) = −276 449 241 600 c10,(11,10).

Note that

61 498 907 532 000/276 449 241 600 = 2−4 · 5 · 7−1 · 172 · 37 · 61 · 97 · 12 697−1.

Thus we have

Theorem 8.5. With the above notation,

ord97
(
Λ(G,6,St)/Λ(G,8,St)

) = 1.

Corollary 8.6.

ord97
(
π6L(G,6,St)/L(G,8,St)

) = 1.
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