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Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflam-
matory cytokines and prostaglandin production (PGE2) at the blood–brain barrier. Despite numerous
studies, the exact biological pathways that give rise to these changes remains elusive. This study inves-
tigated the mechanisms underlying immune-to-brain communication following systemic inflammation
using various anti-inflammatory agents.

Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhib-
itors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in
body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels
of inflammatory mediators measured in serum and brain.

LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6,
IL-1b and TNF-a, as well as PGE2 in serum and brain. Indomethacin and ibuprofen reversed the effect of
LPS on behaviour without changing peripheral or central IL-6, IL-1b and TNF-a mRNA levels. In contrast,
dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine
production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide,
reversed the LPS-induced behavioural changes without affecting IL-6, IL-1b and TNF-a protein expression
levels in the periphery or mRNA levels in the hippocampus.

Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on
COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1b and TNF-a
synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies
to treat or prevent neurological diseases with an inflammatory component.

� 2009 Elsevier Inc. Open access under CC BY license.
1. Introduction

Humans and animals are constantly exposed to the risk of infec-
tion by bacterial and viral pathogens, and sub-clinical, low grade
infections are reported to account for up to 35% of all general prac-
titioner consultations in the UK (Fleming et al., 2002). These infec-
tions can initiate a set of immune, physiological, metabolic, and
behavioural responses, characterised by fever, reduced activity, re-
duced appetite, impaired cognitive function, anxiety and depres-
sion (Hart, 1988), also known as sickness behaviour. These
behavioural changes are believed to be largely triggered by pro-
inflammatory mediators that are produced by activated immune
cells (Konsman et al., 2002) or by COX-2 mediated prostaglandin
(PG) production in endothelial cells (Yamagata et al., 2001). More
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specifically, it is believed that the pro-inflammatory cytokines IL-
1b (Bluthe et al., 2000a), IL-6 (Bluthe et al., 2000b; Cartmell
et al., 2000) and TNF-a (Bluthe et al., 2000a) have a pivotal role
in the onset of LPS-induced behavioural symptoms. These cyto-
kines communicate with the brain by different mechanisms (Ek
et al., 1998; Konsman et al., 2000), each resulting in de novo
expression of cytokines within CNS tissues and widespread activa-
tion of resident immune-competent cells within the brain, the
microglia. Cytokines are not the sole factors responsible for behav-
ioural changes induced by systemic inflammation. For example,
indomethacin, which interferes with the cyclo-oxygenase path-
way, also reduces IL-1b-induced behavioural changes in mice and
rats (Crestani et al., 1991; Plata-Salaman, 1991). We previously
showed that a sub-pyrogenic dose of LPS (1 lg/kg), is sufficient
to induce a marked reduction in burrowing behaviour (Teeling
et al., 2007). Under these conditions of low grade inflammation,
we showed that indomethacin completely reversed LPS-induced
behavioural changes. In this model, neutralisation of peripheral
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IL-6, IL-1b or TNF-a did not alter the effect of LPS, suggesting an
important role for PGs, and not blood-borne cytokines, in the onset
of LPS-induced behavioural changes following systemic
inflammation.

Increasing evidence suggests that systemic infection and
inflammation impacts on various neurological diseases with an
inflammatory component, including Alzheimer’s disease (AD)
and stroke (Teeling and Perry, 2009). We and others have shown
that the onset and progression of neurodegenerative diseases is
exacerbated by systemic infection in both animal models and
humans (Cunningham et al., 2009; Holmes et al., 2009, 2003),
with clear evidence of increased neuronal damage and central
cytokine production (Cunningham et al., 2009, 2005). The under-
lying pathways by which systemic infections alter brain function
under diseased conditions are not known. Epidemiological stud-
ies suggested that long term use of non-steroidal anti-inflamma-
tory drugs (NSAIDs) has a protective effect in progression to AD,
but recent large randomized clinical trials, using predominantly
COX-2 selective drugs, have been largely disappointing and have
not shown any improvement in memory function of AD patients
(Aisen, 2002). Better understanding of the biological pathways
by which systemic inflammation influences brain function in
health and disease may lead to novel or improve therapeutic
strategies. Therefore, the aim of the present study was to further
investigate the role of PGs and cytokines in immune-to-brain
communication and the induction of LPS-induced behavioural
changes. We show that COX-1 inhibition is crucial for reversing
the effect of LPS on burrowing and open-field activity, while
modulation of cytokine or COX-2 mediated PGE2 production does
not affect LPS-induced changes in burrowing and open-field
activity.
2. Materials and methods

2.1. Mice

Adult female C57/BL6 mice (>8 weeks, Harlan, UK) were used in
all experiments, and were housed in groups of 5–10 on arrival, in
plastic cages with sawdust bedding, for at least a week before test-
ing. Food and water were available ad libitum. The holding room
was temperature controlled (19–23 �C) with a 12:12 h light–dark
cycle (light on at 0700 h). Females were used as they can be
group-housed without the risk of outbreaks of aggression, and to
conform to most of our previous work. All procedures were per-
formed under the authority of a UK Home Office License in accor-
dance with the UK animals (Scientific Procedures) Act 1986, and
after Local Ethical approval by the University of Southampton.

2.2. LPS treatment and administration of NSAIDs

Mice received LPS derived from Salmonella abortus equi (L5886,
Sigma, Poole, UK) at a dose of 100 lg/kg, via intra-peritoneal injec-
tion, unless stated otherwise. This dose of LPS reduces burrowing,
open-field activity, changes core body temperature and gives a
reproducible cytokine response in the brain (Teeling et al., 2007).
Anti-inflammatory drugs were given 30–60 min prior to LPS injec-
tion as indicated in Table 1.

2.3. Burrowing

Burrowing was assessed as described previously (Deacon et al.,
2002, 2001; Deacon, 2006; Teeling et al., 2007). Mice received
appropriate pre-treatment followed by an intra-peritoneal injec-
tion of LPS or saline. Burrowing was measured between 1 and
3 h post treatment.
2.4. Open field

Open-field activity in mice was assessed using a Med Associ-
ates Activity Monitor (Med Associates Inc., Vermont). The open
field consisted of an aluminium base (27 � 27 cm) enclosed on
four sides with 0.7-cm thick acrylic sheet, surrounded by an
opaque screen. Each mouse was placed in the middle of the
open field and observed for 3 min. Measurement was made of
total distance travelled (cm) and the total number of rears in
the observation period (Felton et al., 2005). The open-field
activity was measured between 3.5 and 4 h after LPS or saline
injection.

2.5. Body temperature

Body temperature was measured using a rectal probe (Physi-
temp, Thermalerte TH5) that gave a rapid stabilization of the mea-
sured temperature. The mice were pre-adapted to measurements
of rectal temperature for two days prior to the intra-peritoneal
challenges to minimise stress effects. Body temperature was mea-
sured 4.5 h after LPS or saline treatment.

2.6. RNA isolation

Mice were terminally anaesthetized and transcardially perfused
with heparinised saline. Brains were rapidly removed, and a thick
coronal section (2 mm) taken (at approximately �2.7 to �3.7 from
Bregma). The dorsal hippocampus was then punched out from this
section, rapidly frozen in liquid nitrogen and kept at �80 �C until
further use. Total RNA was extracted using RNeasy mini columns
(Qiagen) according to the manufacturer’s instructions. Contami-
nating genomic DNA was degraded during extraction by use of
DNase I enzyme (Qiagen). RNA samples were stored at �80 �C until
assay.

2.7. Quantitative PCR

All equipment and reagents were supplied by Applied Biosys-
tems Ltd. (Warrington, UK) unless stated otherwise. cDNA was
generated from total RNA by the use of Taqman Gold RT reagents.
The housekeeping gene glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was measured in each sample by use of a rodent
GAPDH Taqman kit. Assays for IL-1b, IL-6, TNF-a, COX-2 mRNA
were performed as previously described (Cunningham et al.,
2005). Primers used for COX-1 measurement were as follows: for-
ward: 50-CCA GAA CCA GGG TGT CTG TGT-30, reverse: 50-GTA GCC
CGT GCG AGT ACA ATC-30, probe: FAM – CGC TTT GGC CTC GAC
AAC TAC CAG TG – TAMRA. As a positive control for cytokine pro-
duction, RAW 294 cells were stimulated with LPS (100 ng/ml)
in vitro and RNA isolated from the cells collected 24 h later. As a
positive control for COX-2, LPS (2.5 lg) was stereotaxically injected
into the mouse striatum and RNA was isolated 6 h later. To com-
pare the expression of inflammatory mediators in the different
experimental groups the amount of mRNA was estimated as the ra-
tio of GAPDH.

2.8. Serum cytokine measurement

Blood samples (�500 ll) were taken by cardiac puncture in ter-
minally anaesthetized mice and collected in microfuge tubes. Sam-
ples were spun down and serum kept at �20 �C until further use.
IL-1b, IL-6 and TNF-a serum levels were assessed with a sand-
wich-type ELISAs using a matched antibody pair (duoset ELISA
development assay, R&D) according to the manufacturer’s instruc-
tions with minor modification.



Table 1
Anti-inflammatory drugs used in this study.

Dose (mg/kg) Resuspended/dissolved Supplied Target

Indomethacin 15 0.2 M Tris–HCl, pH 8 Sigma COX-1/2
Ibuprofen 30 Saline Sigma COX-1/2
Dexamethasone 2 Saline Sigma NFjB
Paracetamol
(acetaminophen) 20 Saline Sigma COX
Ozagrel 5 Saline Sigma TBX synthase
Picotamide 85 10% DMSO/saline Sigma TBX synthase
BM 567 5 10% DMSO/saline Cayman TBX synthase
Furegrelate 10 Saline Cayman TBX receptor
Ciglitazone 10 10% DMSO/saline Cayman PPAR-c
Piroxicam 10 0.2 M Tris–HCl, pH 8 Sigma COX-1
Nimesulide 10 0.2 M Tris–HCl, pH 8 Sigma COX-2
Niflumic acid 10 0.2 M Tris–HCl, pH 8 Sigma COX-2
Sulindac 10 0.2 M Tris–HCl, pH 8 Sigma COX-1

Mice were pre-treated with anti-inflammatory drugs at the dose indicated by intra-peritoneal injection, 30–60 min prior to LPS administration. A minimum of n = 3 per group
was used.
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2.9. Serum and brain PGE2 measurement

Serum levels of prostaglandin E metabolites were measured
according manufacture’s instruction (Cayman, USA). Brain levels
of prostaglandin E2 (PGE2) were measured according manufactures
instruction (Assay designs, USA), with minor modification. Briefly,
serum samples (50 ll) were diluted 1:10 in assay buffer provided
by the manufacturer. Samples and standard were derivatized by
adding 150 ll of carbonate buffer followed by overnight incubation
at 37 �C. Samples and standards were then analysed according to
manufactures’ instructions. Brain tissue was homogenized in
100 ll PBS and mixed with 1 ml 100% ethanol. After centrifugation
at 3000 rpm for 10 min at 4 �C, supernatant was transferred to an
empty tube and ethanol evaporated under a stream of nitrogen.
Samples were resuspended in 500 ll of assay buffer and PGE2 lev-
els measured according to manufacturer’s instructions.
2.10. Statistical analysis

Burrowing and open-field activity were analysed by one-way
analysis of variance (ANOVA) followed, if significant, by Dunnett’s
post-test versus controls. Data were analysed for normality using
the Kolmogorov–Smirnov test and for equal variances using the
Bartlett’s test. Changes in body temperature were assessed by
paired Student’s t-test. The intervention studies were analysed by
A
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Fig. 1. Effect of anti-inflammatory drugs on LPS-induced behavioural changes. Burrowin
dexamethasone (2 mg/kg) or paracetamol (20 mg/kg) given by intra-peritoneal (i.p.) inj
assayed over 2–4 h. Results were compared to baseline levels, which were obtained 24 h
alone. Data were analysed by one-way ANOVA followed by Dunnett’s test versus saline c
ibuprofen (15 mg/kg), dexamethasone (2 mg/kg) or paracetamol (20 mg/kg) given by
administered and open-field activity measured between 3.5 and 4 h. Results were comp
were analysed by one-way ANOVA followed by Dunnett’s test versus saline control. The
n = 5 per group.
one-way analysis of variance (ANOVA) or two-way ANOVA, fol-
lowed, if significant, by Bonferroni’s post-test using Graphpad
Prism software. Values were expressed as mean ± SEM. A p-value
<0.05 was considered to indicate statistical significant difference.
3. Results

3.1. The effect of different anti-inflammatory drugs on LPS-induced
sickness behaviour

We previously showed that pre-treatment of mice with indo-
methacin is sufficient to inhibit LPS-induced changes in burrowing
activity (Teeling et al., 2007). In the present study, we aimed to fur-
ther investigate these observations. We tested various well known
anti-inflammatory drugs, including: indomethacin, ibuprofen,
acetaminophen (paracetamol) and dexamethasone (Table 1), and
measured their effect on LPS-induced changes in body tempera-
ture, burrowing and open-field activity, and production of inflam-
matory mediators. Mice were habituated to burrowing prior to the
experiment. On the day of the experiments, mice received an intra-
peritoneal injection of NSAID or saline, followed 30–60 min later
by an intra-peritoneal injection of LPS or saline. Burrowing was as-
sessed 1 and 3 h after injection of LPS, followed by measurement of
open-field activity and body temperature. After the analysis of
behavioural changes, mice were sacrificed and tissue collected
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before the start of the experiment. Values are mean ± SEM. ***p < 0.001 versus LPS

ontrol. Open-field activity: (B) Mice were pre-treated with indomethacin (15 mg/kg),
intra-peritoneal (i.p.) injection. Thirty minutes later, LPS (500 lg/kg, i.p.) was

ared to baseline levels. Values are mean ± SEM. ***p < 0.001 versus LPS alone. Data
total number of mice was n = 40 with LPS n = 20 and INDO, IBU, DEX and PARA each
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for analysis of inflammatory mediators in serum and brain. All
mice showed a similar baseline of burrowing and, as expected, sys-
temic injection of LPS resulted in a marked suppression of burrow-
ing (Fig. 1A, F(4,39) = 40.99, p < 0.001). This behavioural change was
significantly inhibited by pre-treatment with indomethacin
(15 mg/kg, p < 0.001) and ibuprofen (30 mg/kg, p < 0.001), while
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Fig. 2. Effect of NSAIDs on PGE2 production and fever response to LPS. (A) Effect of in
expression levels measured in punches taken through the hypothalamus taken from bra
ANOVA followed by Dunnett’s post-test. The total number of mice used in this experi
significantly different. (B) Effect of indomethacin, ibuprofen and dexamethasone pre-tre
measured using a rectal probe as described in Section 2. Baseline temperature was recor
Values are mean ± SEM. Data were analysed by paired Student’s t-test, n = 5 mice pe
significantly different. (C) Effect of indomethacin and dexamethasone pre-treatment on c
cytokines by ELISA as described in Section 2. Values are mean ± SEM. Data were analyse
LPS-only treated mice, n = 5 for NSAIDs. LPS was given at a dose of 500 lg/kg, after pre-t
kg), ibuprofen (IBU, 15 mg/kg), dexamethasone (DEX, 2 mg/kg), or saline as control.
pre-treatment with acetaminophen (20 or 100 mg/kg (data not
shown)) or dexamethasone (2 mg/kg) had no effect.

The open-field activity showed a similar effect; all mice showed
a similar baseline and injection of LPS resulted in a marked sup-
pression of the number of rears (data not shown) and the total dis-
tance travelled in an open field (Fig. 1B, F(4,39) = 23.57, p < 0.001).
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Pre-treatment with indomethacin (p < 0.001) and, albeit to a lesser
degree, ibuprofen (p < 0.001) reversed the effect of LPS on open-
field activity, while pre-treatment with acetaminophen or dexa-
methasone did not. To confirm the biological activity of the anti-
inflammatory drugs used in our model, we measured PGE2 levels
in the hypothalamus, body temperature and the circulating cyto-
kine production. Fig. 2 shows that LPS-induced PGE2 levels in the
hypothalamus were completely blocked by indomethacin and sig-
nificantly reduced by dexamethasone (Fig. 2A, F(3,24) = 10.92,
p = 0.02). Although not statistically significant, ibuprofen also
markedly reduced the LPS-induced PGE2 production in the brain.
Fig. 2B shows that the LPS-induced hypothermia was completely
blocked by dexamethasone and reduced by all other anti-inflam-
matory drugs tested. Fig. 2C shows the effect of two of the anti-
inflammatory agents, indomethacin and dexamethasone, on sys-
temic IL-6, IL-1b and TNF-a production. Indomethacin had no sig-
nificant effect on LPS-induced cytokine production and even
increased levels of circulating TNF-a were observed. Dexametha-
sone, on the other hand, completely abolished LPS-induced IL-1b,
IL-6 and TNF-a production. These data suggest that, while all drugs
tested were biologically active in our model, acute LPS-induced
behavioural changes can only be inhibited by a subset of anti-
inflammatory drugs, indomethacin and ibuprofen, and the changes
in behaviour appear to be independent of blood-borne IL-6, IL-1b
and TNF-a.
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Fig. 3. Kinetics of cytokine production in response to systemic immune challenge with L
serum samples taken at different time points following intra-peritoneal injection of LP
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(B), IL-6 (C) or IL-1b (D). Relative mRNA levels were measured in punches through the
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Arbitrary Units (ARB units). n = 5 mice per group; *p < 0.05 with one-way ANOVA followin
PGE2 metabolites measured in serum samples taken at different time points following in
***p < 0.001, versus saline control (t = 0) with one-way ANOVA followed by Dunnett’s
expression levels of COX-1 (F) or COX-2 (G). Relative mRNA levels were measured in pun
intra-peritoneal injection of LPS. mRNA expression levels were measured by Taqman real
(ARB units). n = 5 mice per group; *p < 0.05 with one-way ANOVA following Dunnett’s p
3.2. Kinetics of inflammatory mediators during systemic inflammation

We next compared the kinetics of inflammatory mediator pro-
duction in both the periphery and brain (Fig. 3). For circulating
cytokines, we restricted our measurement to IL-6 since we previ-
ously showed that, in our model, this cytokine is reliably increased
after LPS. Serum levels of IL-6 significantly increased at 2 h,
(Fig. 3A, F(1,27) = 47.29, p < 0.0001), and declined sharply to return
to baseline levels by 6 h. Comparable kinetics were found for brain
IL-6 production in the brain. Brain IL-6 mRNA levels increased after
systemic LPS challenge (Fig. 3C, F(5,24) = 6.381, p = 0.0007) showing
a significant increase at 2 h and then returned to baseline by 4 h.
Brain TNF-a mRNA levels increased significantly after systemic
LPS challenge (Fig. 3B, F(5,24) = 5.144, p = 0.0026), peaking at 2 h,
after which the cytokine mRNA levels declined sharply and re-
turned to baseline levels by 6 h. No significant changes in brain
IL-1b levels were observed (Fig. 3D, F(5,19) = 0.2683), although a
trend toward increased levels was seen at 30 min.

Circulating PGE2 metabolite levels increased significantly after
systemic LPS challenge (Fig. 3E, F(1,27) = 14.25, p < 0.0001) starting
at 30 min, and levels remained high for 2 h. At 6 h, PGE2 metabolite
levels returned to baseline levels. We measured the hippocampal
levels of COX-1 and COX-2 mRNA, the genes that encode the key
enzymes responsible for the formation of prostanoids. All NSAIDs
inhibited PGE2 levels in the hypothalamus (Fig. 2) and since
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behavioural changes were inhibited by indomethacin and ibupro-
fen only, we assessed the hippocampus for COX and cytokine
expression levels. COX-1, changed modestly after systemic LPS
challenge (Fig. 3F, F(5,22) = 2.865, p = 0.0134), however, no statisti-
cally significant changes were found between t = 0 and any other
time point after LPS. In contrast, the levels of COX-2 mRNA in-
creased after systemic LPS challenge (Fig. 3G, F(5,22) = 2.865,
p = 0.0386). A small, non-significant increase was found 1 h after
LPS injection and a second significant increase was observed 6 h
post LPS challenge. These data suggest that PGE2 levels in the ser-
um precede IL-6 production and that cytokine levels in the brain
peak at 2 h.

3.3. The effect of specific inhibitors on LPS-induced behaviour, cytokine
and prostaglandin production

To further investigate the biological mechanisms underlying the
inhibitory effects of indomethacin and ibuprofen on LPS-induced
behavioural changes, we used a series of selective inhibitors,
including inhibitors of thromboxane, COX-1, COX-2 and a PPAR-c
agonist. Brain and serum samples were collected 3 h after LPS
injection, immediately after the burrowing task when expression
of most inflammatory mediators is still increased. Fig. 4 shows
the results of pre-treatment with the thromboxane synthase inhib-
itors, ozagrel, picotamide, furegrelate, and the thromboxane recep-
tor antagonist BM 567 on LPS-induced changes in burrowing. The
selective inhibitors only modestly affected the LPS-induced
changes in burrowing, and none of these changes were signifi-
cantly different from mice treated with LPS alone (all p > 0.05).
These data suggest that increased production of thromboxane can-
not explain the effects of LPS on behavioural changes. Pre-treat-
ment of mice with the potent and selective PPAR-c ligand
ciglitazone had no effect on LPS-induced behavioural changes
(p > 0.05). These data suggest that direct activation of PPAR-c does
not play a role in the inhibitory effects of indomethacin on LPS-in-
duced behavioural changes.
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Fig. 4. Role of thromboxane and PPAR-c in LPS-induced behavioural changes. Mice
were pre-treatment with an intra-peritoneal injection of furegrelate, picotamide,
BM 567, ozagrel, ciglitazone or saline as described in Section 2, followed by a intra-
peritoneal injection of LPS (100 lg/kg). Burrowing was assessed 1–3 h following LPS
as described in Section 2. Values are mean ± SEM. **p < 0.01. One-way ANOVA
followed by Dunnett’s post-test was used to analyse if behavioural changes were
different from saline-treated mice. A total of 36 mice was used in this experiment:
saline n = 8, LPS alone n = 8, furegrelate + LPS n = 5, ozagrel + LPS n = 4, picota-
mide + LPS n = 3, BM 567 + LPS n = 4, ciglitazone + LPS n = 4 per group.
3.4. Role of COX-1 and COX-2

Thus far, our data suggest a role for COX in LPS-induced changes
in burrowing and open-field activity. To investigate the role of the
different isoforms of COX we next compared the effect of selective
COX-1 and COX-2 inhibitors on LPS-induced behaviour changes.
Fig. 5 shows the changes in burrowing tested 1–3 h after injection
of LPS. Administration of LPS alone significantly decreased burrow-
ing (Fig. 5, F(5,25) = 4.851, p = 0.0046) and mice pre-treated with the
COX-1 selective inhibitors piroxicam and sulindac no longer dif-
fered from saline-treated mice. In contrast, pre-treatment with
the selective COX-2 inhibitor nimesulide or niflumic acid had no
effect and mice were still significantly impaired in the burrowing
task.

We next tested the effect of the inhibitors at various time points
after injection of LPS to investigate the possibility that LPS-induced
burrowing and open-field activity are differentially regulated over
time as was previously reported for other behaviours (Swiergiel
and Dunn, 2002). Fig. 6 shows the effect of LPS on burrowing and
open-field activity at 2–4, 5–7 and 24 h after injection of LPS in
mice pre-treated with the COX-1 specific inhibitor piroxicam or
the COX-2 specific inhibitor nimesulide. The anti-inflammatory
drugs were suspended in the same vehicle and given 30 min prior
to LPS. Administration of LPS significantly reduced burrowing at all
time points tested. Piroxicam significantly reversed the effect of
LPS on burrowing when tested between 2 and 4 h (Fig. 6,
F(1,12) = 36.91, p < 0.0001). At later time points piroxicam was no
longer protective, which may be explained by the short half life
of drug in mice (T1/2 = 1.7 h) (Milne and Twomey, 1980). Nimesu-
lide (T1/2 = 2–3 h) (Hull et al., 2005) did not significantly reverse
the LPS-induced changes in burrowing at any time point tested
(Fig. 6). Similar results were observed for open-field activity: a
clear trend towards protection of piroxicam at 2–4 h which disap-
peared at later time points. Pre-treatment with the drugs alone did
not have an effect on burrowing or open-field activity. Interest-
ingly, mice pre-treated with the COX-2 inhibitor appeared to re-
cover better 24 h after LPS injection, compared to LPS-treated
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Fig. 6. Kinetics of COX-1 and COX-2 in LPS-induced behavioural changes. Effect of the selective COX-1 inhibitor piroxicam (10 mg/kg), or the selective COX-2 inhibitor
nimesulide (10 mg/kg) on burrowing and open-field activity measured 1–3, 4–6 and 24 h following intra-peritoneal injection of LPS. COX inhibitors were given 30 min prior
to LPS by intra-peritoneal administration. Values are expressed as percentage of base line ± SEM, n = 5 mice per group. ***p < 0.0001. Data were analysed by two-way ANOVA
followed by Bonferroni post-test. A total of 30 mice were used in this experiment.
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only or piroxicam pre-treated mice. The changes did not, however,
reach significance. These results suggest that LPS-induced changes
in burrowing and open-field activity between 2 and 4 h are largely
mediated by COX-1 activity and show a minimal role for COX-2.
3.5. Cytokines and prostaglandin production

Having established a key role of COX-1 in LPS-induced changes
in burrowing and open-field activity, we next investigated the ef-
fect of piroxicam and nimesulide on cytokine and PG production.
LPS increased serum IL-6 levels measured 3 h post challenge
(Fig. 7A, F(3,16) = 5.893, p = 0.0091). Pre-treatment with piroxicam
or nimesulide did not affect the serum levels of IL-6. In contrast,
circulating PGE2 levels, which were significantly increased 3 h after
LPS (Fig. 7B, F(3,17) = 7.885, p = 0.0025), were completely inhibited
by pre-treatment with piroxicam (p < 0.05). Selective COX-2 inhi-
bition had no effect on circulating PGE2 levels. Next, we measured
cytokine mRNA levels in the brain. TNF-a mRNA was significantly
increased 3 h after LPS challenge (Fig. 7C, F(5,25) = 3.723,
p = 0.0035). Pre-treatment with piroxicam did not change the
mRNA levels of TNF-a in the brain, while, pre-treatment with
nimesulide significantly inhibited TNF-a mRNA expression. IL-6
mRNA levels were also increased after LPS challenge (Fig. 7D,
F(3,17) = 6.263, p = 0.0064), and like TNF-a, only inhibited by
nimesulide pre-treatment. Finally, we measured COX-2 mRNA lev-
els, which were significantly up-regulated 3 h post LPS challenge
(Fig. 7E, F(3,18) = 4.674, p = 0.0017). Both piroxicam and nimesulide
equally reduced COX-2 mRNA expression and were no longer dif-
ferent from saline-treated mice. The mechanism to explain these
unexpected changes in COX-2 remain unknown, but it is possible
that measurement at 3 h is too early to detect effects of the anti-
inflammatory drugs tested. These data suggest that LPS-induced
behavioural changes arise independent of cytokine production,
and depend on COX-1 mediated peripheral and/or central PGE2

production. Furthermore, it suggests that cytokine synthesis in
the brain, after intra-peritoneal challenge with LPS, largely depend
on COX-2 signalling, and not on COX-1.
4. Discussion

Communication between the peripheral immune system and
the brain is a well described phenomenon and underpins the met-
abolic and behavioural consequences of systemic infection and
inflammatory diseases (Dantzer et al., 1999, 1998; Hart, 1988). De-
spite numerous studies, the biological mechanism(s) underlying
these behavioural changes are still not fully understood. Previ-
ously, we showed a key role for PGs, and not the blood-borne cyto-
kines IL-1b, IL-6 or TNF-a, in generating LPS-induced behavioural
changes (Teeling et al., 2007). To further study the mechanisms
underlying these observations, we pre-treated mice with a selec-
tion of widely-used anti-inflammatory drugs and assayed the
behavioural changes and inflammatory mediator production fol-
lowing a systemic challenge with LPS. Pharmacological inhibition
of cyclo-oxygenase enzymes COX-1 and COX-2, using indometha-
cin or ibuprofen, effectively attenuated the burrowing and open
field response to systemic LPS-induced inflammation, while
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Fig. 7. Role of COX-1 and COX-2 in LPS-induced behavioural changes and inflammatory mediator production. Effect of the selective COX-1 inhibitor piroxicam (10 mg/kg), or
the selective COX-2 inhibitor nimesulide (10 mg/kg) pre-treatment on expression levels of (A) circulating IL-6 measured in serum samples taken at 3 h following intra-
peritoneal injection of LPS, (B) circulating PGE2 metabolites measured in serum samples taken at 3 h following intra-peritoneal injection of LPS, (E) relative levels of TNF-a
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following intra-peritoneal injection of LPS. Values of circulating inflammatory mediators are expressed as mean pg/ml ± SEM, n = 4–5 mice per group. *p < 0.05 one-way
ANOVA followed by Dunnett’s test compared to saline. mRNA expression levels were quantified by quantitative PCR using 40 amplification cycles. Values are relative to
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acetaminophen (paracetamol) or dexamethasone had no effect.
Selective COX-1 inhibitors, piroxicam or sulindac, showed similar
effects to indomethacin and ibuprofen and inhibited LPS-induced
changes in burrowing and open-field activity. This effect was inde-
pendent of IL-1b, IL-6 and TNF-a, generated either in the periphery
or in the brain. Our findings therefore suggest a key role for COX-1,
and not COX-2, in selected LPS-induced behavioural changes in
normal, healthy mice.

4.1. The role of COX-1 in LPS-induced sickness behaviour

A systemic challenge of LPS not only results in cytokine produc-
tion, but also in increased production of lipophilic molecules
including prostaglandins (PGE2), leukotrienes, and thromboxanes,
which can all contribute to behavioural changes. Apart from neu-
tralising COX activity, it has been described that indomethacin
and ibuprofen are potent inhibitors of thromboxanes (Higgs
et al., 1986), while paracetamol or dexamethasone are not (Swier-
kosz et al., 2002). Furthermore, indomethacin and ibuprofen can
directly bind and activate PPAR-c that leads to an anti-inflamma-
tory response that is independent of COX (Lehmann et al., 1997).
The use of thromboxane inhibitors and a potent PPAR-c agonist,
however, ruled out that the LPS-induced behavioural changes in
our model are mediated by these pathways and suggest a pivotal
role for COX and subsequent PGE2 production as key players in
the communication between periphery and brain. Indomethacin
and ibuprofen have a much higher potency for the inhibition of
COX-1 than COX-2, as demonstrated by their IC50 value, with indo-
methacin being more potent than ibuprofen (Botting, 2006; Gierse
et al., 1999). We observed that indomethacin is a more potent
inhibitor of LPS-induced behavioural changes and PGE2 production
in the brain, suggesting a more important role for COX-1. In addi-
tion, nimesulide which selectively inhibits COX-2, and the steroid
dexamethasone, which is known to repress transcription of
NFjB-regulated genes such as cytokines and COX-2 (Adcock
et al., 1999) had no effect on LPS-induced behavioural changes de-
spite efficient blockade of peripheral IL-6, IL-1b and TNF-a
production.

COX catalyses the conversion of the lipid metabolites arachi-
donic acid to PGs, and plays a key role in several physiological
and pathological processes. The different isoforms of COX have
been described as each having a distinct function in homeostasis
and inflammation (Chandrasekharan et al., 2002; DeWitt and
Smith, 1988). COX-1 is constitutively expressed in many cell types
(Funk et al., 1991), and responsible for the production of PGs that
are necessary for the regulation of physiological functions (Crof-
ford, 1997). COX-2 is induced by diverse inflammatory stimuli (Du-
Bois et al., 1997; Mitchell et al., 1994; O’Sullivan et al., 1992) and is
responsible for the production of PGs in inflammation (Vane,
1994). It is generally believed that LPS, or cytokines produced by
LPS, induce COX-2 and mPGES-1 expression in cerebral endothelial
cells, with subsequent PGE2 production in the CNS leading to both
fever and behavioural changes. (DuBois et al., 1997; Ek et al., 2001;
Engblom et al., 2002; Mitchell et al., 1994; O’Sullivan et al., 1992;
Yamagata et al., 2001). In this study, we show that changes in bur-
rowing and open-field activity induced by a systemic LPS challenge
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are largely dependent on COX-1 activity and correlate with sys-
temic production of PGE2, not cytokines.

There are a number of studies that suggest a role for COX-1 in
regulating brain inflammatory responses. Firstly, transcriptional
regulation of COX-2 and mPGES-1 needs at least 90 min (Cao
et al., 2001; Elmquist et al., 1997), and therefore cannot explain
the behavioural responses to LPS challenge observed 30 min after
administration (Swiergiel and Dunn, 2002). Secondly, selective
inhibition of COX-2 only partially reduces the level of PGE2 during
acute and chronic inflammation, while indomethacin reduces PGE2

to undetectable levels (Langenbach et al., 1995): COX-1 may there-
fore contribute significantly to the local pool of PGE2 at the site of
inflammation. Recent evidence also suggests that COX-1 and COX-
2 have different functions in the brain as compared to the periph-
ery. COX-1 is constitutively expressed in the brain, predominantly
in microglia, and can be induced in endothelium during brain in-
jury (Schwab et al., 2000). Both genetic ablation and pharmacolog-
ical inhibition indicate an inflammatory role of COX-1 in the brain:
this was elegantly demonstrated in COX-1 deficient mice that
showed a less robust inflammatory response as compared to
wild-type mice after intracerebral injection of LPS (Choi et al.,
2008). Interestingly, COX-1 positive microglia are observed in var-
ious neurological diseases, including Alzheimer’s disease, Creutz-
feldt Jacob disease and HIV associated with dementia, and
correlate with disease severity and tissue damage (Choi et al.,
2009). COX-2 is also constitutively expressed in the brain, and in
particular in the hippocampus and cortical glutaminergic neurons
(Choi et al., 2009). Despite the well-described direct neurotoxic ef-
fects, COX-2 has a potent anti-inflammatory function: intracere-
bral injection of LPS in COX-2 deficient mice results in a stronger
inflammatory response and neuronal damage as compared to
wild-type mice (Aid et al., 2008). It is well known that a systemic
LPS challenge impacts on microglia in the healthy brain without
evidence of irreversible neuronal damage (Cunningham et al.,
2005; Dantzer and Kelley, 2007). Therefore, the behavioural
changes observed in our model, which were already observed
30 min after injection of LPS, may be explained by activation of
constitutive COX-1 expressed by microglia.

4.2. The role of kinetics in LPS-induced behavioural changes

COX-2 inhibitors did not significantly reverse deficits in bur-
rowing and open-field activity tested 3, 6 or 24 h after injection
of LPS, while COX-1 inhibition reversed deficits in these behav-
ioural responses at 3 h. Both piroximide and nimesulide have a
short half life in mice, but based on their IC50 value, a dose of
10 mg/kg is expected to be functional at 6 h after injection (Hull
et al., 2005; Park et al., 2007). Our results are different from
Swiergiel and Dunn who demonstrated that COX-1 plays an impor-
tant role in the early changes in sickness behaviour, while COX-2 is
more important at later time points, coinciding with the onset of a
fever response (Swiergiel and Dunn, 2002). The latter study used a
different behavioural test, i.e., sweetened milk intake, therefore,
alternative explanations for the lack of effect of COX-2 specific
inhibition in our study might be that different phases of behav-
ioural changes and different types of behaviour (e.g., exploratory,
anxiety, sickness) are regulated by different mediators.

4.3. Are different behaviours regulated by different pathways?

We show that the drugs tested in our study all reduced the hypo-
thermic response to a systemic challenge of LPS, inhibited COX-2
expression in the hippocampus and inhibited PGE2 levels in the
hypothalamus. Furthermore, COX-2 selective inhibitors potently in-
hibit LPS-induced IL-1b, IL-6 and TNF-a levels in the brain. These re-
sults are in accordance with well-accepted studies using selective
pharmacological inhibitors and knockout mice that proved that
the febrile response and behavioural changes induced by IL-1b, de-
pend on COX-2 (Blatteis, 2007; Romanovsky et al., 2005; Zhang
and Rivest, 2001). There are also studies showing that pharmacolog-
ical cytokine inhibitors, for example dexamethasone are less effec-
tive against LPS-induced behavioural changes as compared to IL-
1b-induced changes (Dunn and Swiergiel, 2000), and mPGES-1 defi-
cient mice are not different to wild-type mice when challenged with
LPS, while protected from IL-1b-induced anorexia (Pecchi et al.,
2006). These studies strongly suggest that, cytokines and PGE2 have
different effects on brain functions and/or act on different regions in
the brain. Interestingly, Zhang et al. found a differential role for COX-
1 and COX-2 in inducing fever and c-Fos expression, a marker for
neuronal activity (Zhang et al., 2006, 2003). The COX-2 inhibitor
SC-236 attenuated LPS-induced neuronal activity in specific fore-
brain sites including the ventromedial preoptic nucleus (VMPO)
and the hypothalamic paraventricular nucleus (PVN), but not in
brainstem sites such as the ventrolateral medulla (VLM), parabran-
chial nucleus (PB) and the nucleus of the solitary tract (NTS). The
COX-1 inhibitor SC-560 showed the opposite effect, and blocked
LPS-induced neuronal activity in the PVN, PB, NTS and VLM, without
affecting the VMPO. The effects of systemic inflammation on brain
activity are therefore not entirely dependent on COX-2 and certain
responses may be regulated by COX-1. Based on these and our own
results, we hypothesize that COX-2 and cytokine-mediated behav-
iour changes are functionally linked, while COX-1 mediated behav-
ioural changes may occur independent of cytokines. It is worth
mentioning that although dexamethasone-treated mice appeared
normal and healthy, burrowing and open field were impaired after
LPS challenge. These observations suggest that dexamethasone pro-
tects against classic sickness behaviours, but not behaviours associ-
ated with exploration and anxiety.

In conclusion, using a mouse model for acute systemic inflam-
mation in otherwise healthy mice, we have shown that pharmaco-
logic blockade of COX-1 activity results in a complete reversal of
LPS-induced deficits in burrowing and open-field activity. Blockade
of cytokine production, or COX-2 activity, does not alter these
behavioural changes. We hypothesize that the effect of LPS in
healthy, adult mice in reducing burrowing and open-field activity
is largely mediated by COX-1 mediated PGE2 production by
microglia. This study did not address the question whether COX-
1 activity might have a similar protective role in LPS-induced
behavioural changes in mice with an ongoing neurodegenerative
disease. The scientific and commercial interest in modulating dis-
ease onset and progression in Alzheimer’s diseases using NSAIDs
has been under scrutiny since clinical trials using predominantly
COX-2 inhibitors, have produced disappointing results and failed
to demonstrate clinical efficacy (Martin et al., 2008). A recent re-
port compared long-term treatment of a wide range of NSAIDs
and found that COX-1 inhibitors (ibuprofen, indomethacin, piroxi-
cam) showed protective effect against the onset or progression of
Alzheimer’s disease (Vlad et al., 2008). In the same study, COX-2
selective inhibitors and non-acetylated NSAIDs (salicylates) had
no effect. These clinical studies emphasise the possible importance
of COX-1 in neuroinflammation.
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