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We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and
non-flat background geometry. We extract the exact differential equations determining the evolution of
the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift
expansion of the dark energy equation of state, we provide the involved parameters as functions of the
current density parameters, of the holographic dark energy constant and of the G-variation.
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1. Introduction

Recent cosmological observations obtained by SNe Ia [1], WMAP
[2], SDSS [3] and X-ray [4] indicate that the universe experiences
an accelerated expansion. Although the simplest way to explain
this behavior is the consideration of a cosmological constant [5],
the two relevant problems (namely the “fine-tuning” and the “co-
incidence” one) led to the dark energy paradigm. The dynamical
nature of dark energy, at least in an effective level, can originate
from various fields, such is a canonical scalar field (quintessence)
[6], a phantom field, that is a scalar field with a negative sign of
the kinetic term [7], or the combination of quintessence and phan-
tom in a unified model named quintom [8].

Although going beyond the above effective description requires
a deeper understanding of the underlying theory of quantum grav-
ity [9] unknown at present, physicists can still make some at-
tempts to probe the nature of dark energy according to some basic
quantum gravitational principles. An example of such a paradigm
is the holographic dark energy scenario, constructed in the light
of the holographic principle [10–13] (although the recent develop-
ments in Horava gravity could offer a dark energy candidate with
perhaps better quantum gravitational foundations [14]). Its frame-
work is the black hole thermodynamics [15] and the connection
(known from AdS/CFT correspondence) of the UV cut-of of a quan-
tum field theory, which gives rise to the vacuum energy, with the
largest distance of the theory [10]. Thus, determining an appropri-

* Corresponding author.
E-mail addresses: mjamil@camp.edu.pk (M. Jamil), msaridak@phys.uoa.gr

(E.N. Saridakis), rezakord@ipm.ir (M.R. Setare).
0370-2693/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2009.07.048
ate quantity L to serve as an IR cut-off, imposing the constraint
that the total vacuum energy in the corresponding maximum vol-
ume must not be greater than the mass of a black hole of the same
size, and saturating the inequality, one identifies the acquired vac-
uum energy as holographic dark energy:

ρΛ = 3c2

8πGL2
, (1)

with G the Newton’s gravitational constant and c a constant. The
holographic dark energy scenario has been tested and constrained
by various astronomical observations [16–20] and it has been ex-
tended to various frameworks [21–23].

Until now, in all the investigated holographic dark energy mod-
els a constant Newton’s “constant” G has been considered. How-
ever, there are significant indications that G can by varying, be-
ing a function of time or equivalently of the scale factor [24].
In particular, observations of Hulse–Taylor binary pulsar [25,26],
helio-seismological data [27], Type Ia supernova observations [1]
and astereoseismological data from the pulsating white dwarf star
G117-B15A [29] lead to |Ġ/G| � 4.10 × 10−11 yr−1, for z � 3.5
[30]. Additionally, a varying G has some theoretical advantages
too, alleviating the dark matter problem [31], the cosmic coin-
cidence problem [32] and the discrepancies in Hubble parameter
value [33].

There have been many proposals in the literature attempting
to theoretically justified a varying gravitational constant, despite
the lack of a full, underlying quantum gravity theory. Starting with
the simple but pioneering work of Dirac [34], the varying behavior
in Kaluza–Klein theory was associated with a scalar field appear-
ing in the metric component corresponding to the 5-th dimension
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[35] and its size variation [36]. An alternative approach arises from
Brans–Dicke framework [37], where the gravitational constant is
replaced by a scalar field coupling to gravity through a new pa-
rameter, and it has been generalized to various forms of scalar-
tensor theories [38], leading to a considerably broader range of
variable-G theories. In addition, justification of a varying Newton’s
constant has been established with the use of conformal invari-
ance and its induced local transformations [39]. Finally, a varying
G can arise perturbatively through a semiclassical treatment of
Hilbert–Einstein action [40], non-perturbatively through quantum-
gravitational approaches within the “Hilbert–Einstein truncation”
[41], or through gravitational holography [42,43].

In this work we are interested in investigating the holographic
dark energy paradigm allowing for a varying gravitational constant,
and extracting the corresponding corrections to the dark energy
equation-of-state parameter. In order to remain general and ex-
plore the pure varying-G effects in a model-independent way, we
do not use explicitly any additional, geometrical or quintessence-
like, scalar field, considering just the Hilbert–Einstein action in
an affective level, as it arises from gravitational holography [42,
43]. In other words, we effectively focus on the dark energy and
dark matter sectors without examining explicitly the mechanism
of G-variation, which value is considered as an input fixed by ob-
servations. Additionally, generality requires to perform our study
in flat and non-flat FRW universe. The plan of the work is as
follows: In Section 2 we construct the holographic dark energy
scenario with a varying Newton’s constant and we extract the dif-
ferential equations that determine the evolution of dark energy
density-parameter. In Section 3 we use these expressions in order
to calculate the corrections to the dark energy equation-of-state
parameter at low redshifts. Finally, in Section 4 we summarize our
results.

2. Holographic dark energy with varying gravitational constant

2.1. Flat FRW geometry

Let us construct holographic dark energy scenario allowing for
a varying Newton’s constant G . The space–time geometry will be
a flat Robertson–Walker:

ds2 = −dt2 + a(t)2(dr2 + r2 dΩ2), (2)

with a(t) the scale factor and t the comoving time. As usual, the
first Friedmann equation reads:

H2 = 8πG

3
(ρm + ρΛ), (3)

with H the Hubble parameter, ρm = ρm0
a3 , where ρm and ρΛ stand

respectively for matter and dark energy densities and the index 0
marks the present value of a quantity. Furthermore, we will use
the density parameter ΩΛ ≡ 8πG

3H2 ρΛ , which, imposing explicitly
the holographic nature of dark energy according to relation (1),
becomes

ΩΛ = c2

H2L2
. (4)

Finally, in the case of a flat universe, the best choice for the defi-
nition of L is to identify it with the future event horizon [12,13,43,
44], that is L ≡ Rh(a) with

Rh(a) = a

∞∫
dt′

a(t′)
= a

∞∫
da′

Ha′2
. (5)
t a
In the following we will use ln a as an independent variable.
Thus, denoting by dot the time-derivative and by prime the deriva-
tive with respect to ln a, for every quantity F we acquire Ḟ = F ′H .
Differentiating (4) using (5), and observing that Ṙh = H Rh − 1, we
obtain:

Ω ′
Λ

Ω2
Λ

= 2

ΩΛ

[
−1 − Ḣ

H2
+

√
ΩΛ

c

]
. (6)

Until now, the varying behavior of G has not become manifested.
However, the next step is to eliminate Ḣ . This can be obtained by
differentiating Friedman equation (3), leading to

2
Ḣ

H2
= −3 + ΩΛ

(
1 + 2

√
ΩΛ

c

)
+ G ′

G
(1 − ΩΛ), (7)

where G is considered to be a function of ln a. In the extraction of
this relation we have additionally used the auxiliary expression

ρ ′
Λ = ρΛ

(
− G ′

G
− 2 + 2

√
ΩΛ

c

)
, (8)

which arises from differentiation of (1). Therefore, substituting (7)
into (6) we finally obtain:

Ω ′
Λ = ΩΛ(1 − ΩΛ)

[
1 + 2

√
ΩΛ

c

]
− ΩΛ(1 − ΩΛ)

G ′

G
. (9)

The first term is the usual holographic dark energy differential
equation [13]. The second term is the correction arising from the
varying nature of G . Note that G ′/G is a pure number as expected.

Finally, for completeness, we present the general solution for
arbitrary c and G ′/G ≡ �G , which in an implicit form reads

ln a

c
+ x0

= lnΩΛ

c(1 − �G)
− ln(1 − √

ΩΛ )

2 + c(1 − �G)

+ ln(1 + √
ΩΛ )

2 + c(�G − 1)
− 8 ln[c(1 − �G) + 2

√
ΩΛ ]

c(�G − 1)[c2(�G − 1)2 − 4] . (10)

The constant x0 can be straightforwardly calculated if we deter-
mine a0 and Ω0

Λ today (for example choosing a0 = 1 x0 is equal to
the left-hand side with ΩΛ replaced by Ω0

Λ). Clearly, for �G = 0
and c = 1, expression (10) coincides with that of [13].

2.2. Non-flat FRW geometry

In this subsection we generalize the aforementioned analysis in
the case of a general FRW universe with line element

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dΩ2

)
(11)

in comoving coordinates (t, r, θ,ϕ), where k denotes the spacial
curvature with k = −1,0,1 corresponding to open, flat and closed
universe, respectively. In this case, the first Friedmann equation
writes:

H2 + k

a2
= 8πG

3
(ρm + ρΛ). (12)

According to the formulation of holographic dark energy in
non-flat geometry, the cosmological length L in (4) is considered
to be [21]:

L ≡ a(t)√|k| sinn

(√|k|Rh

a(t)

)
, (13)
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where

1√|k| sinn
(√|k|y

) =
{ sin y k = +1,

y k = 0,

sinh y k = −1.

(14)

A straightforward calculation leads to

L̇ = H L − cosn

(√|k|Rh

a

)
, (15)

where

cosn
(√|k|y

) =
{ cos y k = +1,

1 k = 0,

cosh y k = −1.

(16)

Repeating the procedure of the previous sub-section and differ-
entiating (4) using (13) and (15) we obtain:

Ω ′
Λ

Ω2
Λ

= 2

ΩΛ

(
−1 − Ḣ

H2
+

√
ΩΛ

c
cosn

(√|k|y
))

. (17)

On the other hand, differentiating Friedmann equation (12) we fi-
nally obtain

2
Ḣ

H2
= −3 − Ωk + ΩΛ + 2

Ω
3/2
Λ

c
cosn

(√|k|Rh

a

)

+ (1 + Ωk − ΩΛ)
G ′

G
, (18)

where we have introduced the curvature density parameter Ωk ≡
k

(aH)2 . Therefore, substituting (18) into (17) we result to

Ω ′
Λ = ΩΛ

[
1 + Ωk − ΩΛ + 2

√
ΩΛ

c
cosn

(√|k|Rh

a

)
(1 − ΩΛ)

]

− ΩΛ(1 + Ωk − ΩΛ)
G ′

G
. (19)

Expression (19) provides the correction to holographic dark energy
differential in non-flat universe, due to the varying nature of G .
Clearly, for k = 0 (and thus Ωk = 0) it leads to (9).

3. Cosmological implications

Since we have extracted the expressions for Ω ′
Λ , we can calcu-

late w(z) for small redshifts z, performing the standard expansions
of the literature. In particular, since ρΛ ∼ a−3(1+w) we acquire

lnρΛ = lnρ0
Λ + d lnρΛ

d ln a
ln a + 1

2

d2 lnρΛ

d(ln a)2
(ln a)2 + · · · , (20)

where the derivatives are taken at the present time a0 = 1 (and
thus at ΩΛ = Ω0

Λ). Then, w(ln a) is given as

w(ln a) = −1 − 1

3

[
d lnρΛ

d ln a
+ 1

2

d2 lnρΛ

d(ln a)2
ln a

]
, (21)

up to second order. Since ρΛ = 3H2ΩΛ/(8πG) = ΩΛρm/Ωm =
ρm0ΩΛ/(1 +Ωk −ΩΛ)a−3, the derivatives are easily computed us-
ing the obtained expressions for Ω ′

Λ . In addition, we can straight-
forwardly calculate w(z), replacing ln a = − ln(1 + z) � −z, which
is valid for small redshifts, defining

w(z) = −1 − 1

3

(
d lnρΛ

d ln a

)
+ 1

6

[
d2 lnρΛ

d(ln a)2

]
z ≡ w0 + w1z. (22)

The role of G-variation will be expressed through the pure
number G ′/G ≡ �G , which will be extracted from observations. In
particular, observations of Hulse–Taylor binary pulsar B1913 + 16
lead to the estimation Ġ/G ∼ 2 ± 4 × 10−12 yr−1 [25,26], while
helio-seismological data provide the bound −1.6 × 10−12 yr−1 <

Ġ/G < 0 [27]. Similarly, Type Ia supernova observations [1] give
the best upper bound of the variation of G as −10−11 yr−1 �
Ġ/G < 0 at redshifts z � 0.5 [28], while astereoseismological data
from the pulsating white dwarf star G117-B15A lead to |Ġ/G| �
4.10 × 10−11 yr−1 [29]. See also [30] for various bounds on Ġ/G
from observational data, noting that all these measurements are
valid at relatively low redshifts, i.e. z � 3.5.

Since the limits in G-variation are given for Ġ/G in units
yr−1, and since Ġ/G = HG ′/G , we can estimate �G substituting
the value of H in yr−1. In the following we will use |Ġ/G| �
4.10 × 10−11 yr−1. Thus, inserting an average estimation for the
Hubble parameter H ≈ 〈H〉 ≈ 6 × 10−11 yr−1 [45], we obtain that
0 < |�G | � 0.07. Clearly, this estimation is valid at low redshifts,
since only in this range the measurements of Ġ/G and the estima-
tion of the average 〈H〉 are valid. However, the restriction to this
range is consistent with the z-expansion of w considered above.

3.1. Flat FRW geometry

In this case Ω ′
Λ is given by (9), and the aforementioned proce-

dure leads to

w0 = −1

3
− 2

3c

√
Ω0

Λ + �G

3
, (23)

w1 = 1

6c

√
Ω0

Λ

(
1 − Ω0

Λ

)(
1 + 2

c

√
Ω0

Λ

)

−
(1 − Ω0

Λ)

√
Ω0

Λ

6c
�G . (24)

These expressions provide w0 and w1, for the holographic dark
energy with varying G , in a flat universe. Obviously, when �G = 0,
they coincide with those of [13].

In general, apart from the relevant uncertainty in Ω0
Λ measure-

ments, we face the problem of the uncertainty in the constant c.
In particular, observational data from type Ia supernovae give the
best-fit value c = 0.21 within 1-σ error range [16], while those
from the X-ray gas mass fraction of galaxy clusters lead to c = 0.61
within 1-σ [17]. Similarly, combining data from type Ia super-
novae, Cosmic Microwave Background radiation and large scale
structure give the best-fit value c = 0.91 within 1-σ [18], while
combining data from type Ia supernovae, X-ray gas and Baryon
Acoustic Oscillation lead to c = 0.73 as a best-fit value within 1-σ
[19]. However, expressions (23), (24) provide the pure change due
to the variation of gravitational constant for given c and Ω0

Λ . For
example, and in order to compare with the corresponding result
of [13], imposing Ω0

Λ ≈ 0.73 and c = 1, and using 0 < |�G | < 0.07
we obtain:

w0 = −0.903+0.023
−0.023,

w1 = 0.1041+0.0025
−0.0025, (25)

where we have neglected uncertainties other than G-variation. Fi-
nally, note that the w0-variation due to �G is absolute, that is it
does not depend on c and Ω0

Λ , while that of w1 does depend on
these parameters. However, the relative variations of w0, w1 do
depend on the c-value, and they are smaller for smaller c.

3.2. Non-flat FRW geometry

In this case Ω ′
Λ is given by (19), and the aforementioned pro-

cedure leads to
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w0 = −1

3
− 2

3c

√
Ω0

Λ cosn

√|k|Rh0

a0
+ �G

3
, (26)

w1 =
√

Ω0
Λ

6c

[
1 + Ω0

k − Ω0
Λ

+
2
√

Ω0
Λ

c
cosn

(√|k|Rh0

a0

)(
1 − Ω0

Λ

)]

× cosn

(√|k|Rh0

a0

)
+ Ω0

Λ

3c2
q

(√|k|Rh0

a0

)

−
√

Ω0
Λ

6c

(
1 + Ω0

k − Ω0
Λ

)
cosn

(√|k|Rh0

a0

)
�G . (27)

In these expressions, Ω0
k is the present day value of the curvature

density parameter, and we have defined

q(
√|k|y) =

⎧⎨
⎩

sin2 y k = +1,

0 k = 0,

− sinh2 y k = −1.

(28)

Finally, Rh0 and a0 are the present values of the corresponding
quantities. Clearly, for k = 0, that is for a flat geometry, (26), (27)
coincide with (23), (24), respectively.

As we observe, expressions (26), (27), apart from the present
values of the parameters Ω0

Λ , Ω0
k contain a0 and the value of Rh0

at present. This last term is present in a non-flat universe, and it
is a “non-local” quantity which has to be calculated by an inte-
gration (see relations (13) and (5)). However, making use of the
holographic nature of dark energy, we can overcome this difficulty.

Indeed, from (4) we obtain that L0 = c/(H0

√
Ω0

Λ ), with H0 the
present value of the Hubble parameter. On the other hand, from
(13) we acquire Rh0/a0 = 1√|k| sinn−1(

√|k|L0/a0). Therefore, we

conclude that

Rh0

a0
= 1√|k| sinn−1

(
c
√|k|

a0 H0

√
Ω0

Λ

)

= 1√|k| sinn−1
( c

√
|Ω0

k |√
Ω0

Λ

)
, (29)

a relation which proves very useful. Substituting into (26), (27) we
finally obtain the simple expressions:

w0 = −1

3
− 2

3c

√
Ω0

Λ − c2Ω0
k + �G

3
, (30)

w1 = Ω0
k

3
+ 1

6c

√
Ω0

Λ − c2Ω0
k

[
1 + Ω0

k − Ω0
Λ

+ 2

c
(1 − ΩΛ)

√
Ω0

Λ − c2Ω0
k

]

− 1

6c

√
Ω0

Λ − c2Ω0
k

(
1 + Ω0

k − Ω0
Λ

)
�G . (31)

Note that w0, w1 depend eventually only on Ω0
Λ , Ω0

k , c and of
course �G . Similarly to the previous subsection, in order to give
a representative estimation and neglecting uncertainties of other
quantities apart from G-variation, we use c = 1, Ω0

Λ ≈ 0.73, Ω0
k ≈

0.02, 0 < |�G | < 0.07, obtaining:

w0 = −0.895+0.023
−0.023,

w1 = 0.111+0.003. (32)
−0.003
Finally, we mention that the relative variations of w0, w1 depend
on the c-value, and they are smaller for smaller c.

4. Conclusions

In this work we have investigated the holographic dark energy
scenario with a varying gravitational constant, going beyond the
simple scenarios of [46]. Imposing flat and non-flat background ge-
ometry we have extracted the exact differential equations that de-
termine the evolution of the dark energy density-parameter, where
the G-variation appears as a coefficient in additional terms. Thus,
performing a low-redshift expansion of the dark energy equation-
of-state parameter w(z) ≈ w0 + w1z, we provide w0, w1 as func-
tions of Ω0

Λ , Ω0
k , of the holographic dark energy constant c, and of

the G-variation �G (expressions (30), (31)). As expected, the vari-
ation of the gravitational constant increases the variation of w(z).

In the aforementioned analysis, the G-variation has been con-
sidered as a constant quantity at the cosmological epoch of inter-
est, that is at low redshifts, as it is measured in observations with
satisfactory accuracy [25–30]. A step forward would be to consider
possible G(z)-parametrizations [47,48] and extract their effect on
w(z). However, such parametrizations have a significant amount of
arbitrariness, since the present observational data do not allow for
such a resolution, and thus we have not performed this extension
in the present work.

Finally, we mention that in general, the possible uncertainty
of the constant c can have a larger effect on w(z) than that of
G-variation. In the above investigation we have just provided the
complete expressions, including the correction terms due to the
variation of the gravitational constant. One could proceed to a
combined observational constraint analysis, allowing for variations
and uncertainties in all parameters, as it was partially performed
in the specific Brans–Dicke framework in [47]. This extended ex-
amination, with not-guaranteed results due to complexity, is under
current investigation and it is left for a future publication.
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C. Espana-Bonet, P. Ruiz-Lapuente, I.L. Shapiro, J. Sola, JCAP 0402 (2004) 006.

[41] M. Reuter, Phys. Rev. D 57 (1998) 971;
A. Bonnano, M. Reuter, Phys. Rev. D 65 (2002) 043508.

[42] R. Horvat, Phys. Rev. D 70 (2004) 087301.
[43] B. Guberina, R. Horvat, H. Nikolic, Phys. Rev. D 72 (2005) 125011.
[44] Y. Gong, Phys. Rev. D 70 (2004) 064029;

M.R. Setare, JCAP 0701 (2007) 023.
[45] Q.J. Zhang, Y.L. Wu, arXiv:0905.1234 [astro-ph.CO].
[46] B. Guberina, R. Horvat, H. Štefančić, JCAP 0505 (2005) 001;
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