
p � �

URL� http���www�elsevier�nl�locate�entcs�volume��html � pages

Linear Types for Higher Order Processes with
First Class Directed Channels

Georg Schied

Institut f�ur Informatik

Universit�at Stuttgart

D������ Stuttgart� Germany

Klaus Barthelmann

Institut f�ur Informatik

Universit�at Mainz

D������ Mainz� Germany

Abstract

We present a small programming language for distributed systems based on mes�

sage passing processes� In contrast to similar languages� channels are one�to�one

connections between a unique sender and a unique receiver process� Process de��

nitions and channels are �rst class values and the topology of process systems can

change dynamically� The operational semantics of the language is de�ned by means

of graph rewriting rules� A static type system based on the notion of linear types

ensures that channels are always used as one�to�one connections�

Keywords	 distributed programming� process algebras� linear types� operational

semantics� graph rewriting

� Introduction

Since the beginning of the eighties� process algebras have been successfully

used for specifying and verifying concurrent systems� In the past years� there
have been several attempts to integrate the concepts of process algebras into

programming languages� mostly extending functional languages� e�g� Facile
������� CML ��� or LCS ���� These languages inherit from process algebras the
notion of parallel processes communicating via channel names� Channels are

undirected communication links� If a process knows a channel name� it can
interact with any other process that knows the same name 	maybe restricted
by some scope constructs
�

Implementing this kind of communication e�ciently on a distributed sys�
tem is rather di�cult� Therefore it is advantageous to use channels as directed

one�to�one communication links between exactly one sender and one receiver

c����� Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Schied and Barthelmann

process� However� we would like to change dynamically the process topol�

ogy� i�e� passing channels from one process to another� How can we ensure

then that a channel is not used by several processes Using runtime checks is

unsatisfactory� Instead� we propose a type system inspired by the notion of

linear types���� that restricts the use of channels in an appropriate way� We

incorporate this idea into a small language called DHOP 	Distributed Higher

Order Processes
 with the following features� Channels are one�to�one con�

nections between process instances� Channel ends and process de�nitions are

�rst class values 	similar to the ��calculus ��� and CHOCS ����� respectively
�

hence they can be sent to other processes� be used as arguments for process

instantiation� or be used as components of data structures� This allows pow�

erful programming techniques similar to the use of higher order functions in

functional languages� DHOP is strongly typed� using some kind of linear types

for channel values� The operational semantics of DHOP is formally de�ned�

Usual methods like the structural operational semantics 	SOS
 technique or

denotational semantics are not well suited to express structural conditions

concerning the topology of process nets� Therefore we use graphs and graph

rewriting systems� that allow to model the connection relation between chan�

nels and processes explicitly� An operational semantics of a precursor of DHOP

has already been presented in ��� but typing aspects have not been addressed

there at all�

Section � contains an introduction to DHOP� Section � presents a type

system for DHOP� In the following section we sketch the operational seman�

tics of DHOP and explain some relations between the typing system and the

operational semantics�

� Distributed Higher Order Processes

DHOP is 	the core of
 a programming language based on processes commu�

nicating by synchronous message passing via channels� Channels are directed

communication links between exactly two processes� This stands in contrast

to most process calculi 	CCS ���� CSP ���� etc�
 and related programming

languages 	e�g� CML ���� Facile ���
� where channels 	sometimes called ports


are just names and every process that knows a channel name can potentially

communicate with every other process that knows the same name�

The syntax of DHOP is depicted in Fig� �� Statements S describe the

behaviour of processes� STOP denotes a process that immediately terminates�

C�S means that the process can execute a communication action C and then

continue according to the statement S� Communication actions are send ac�

tions c�e and receive actions c��x�� � � � � xn�� The statement SELECT C� ��

S� �������Cn �� Sn END corresponds to the external choice operator of process

algebras� Depending on which communication Ci can be performed �rst� the

process continues as speci�ed by the statement Si� C�S is just an abbrevi�

ation for a select statement SELECT C �� S END with only one alternative�

Calls for process de�nitions are written CALL e� e�� Expression e� denotes

�



Schied and Barthelmann

S 		� STOP 
 C � S


 SELECT C� �� S� ����� �� Cn �� Sn END


 CALL e� e� 
 � S� PAR S� �


 CHANNEL x�� x��	t� S 
 IF e THEN S� ELSE S�


 LET p � e� S 
 REC x� � e� ��� xn � en� S

C 		� x�e 
 x�p

e 		� True 
 False 
 n 
 x


 e� op e� 
 �e� ��� en� 
 PROCESS p	t�S

p 		� x 
 �p� ��� pn�

t 		� Bool 
 Int 
 �t� ��� tn�


 PROC t 
 �t 
 �t

Fig� �� Syntax of DHOP

a process de�nition of type PROC t and e� denotes the argument of type t�
The process executing the call statement continues according to the process
de�nition�

Channels and processes can be generated dynamically� CHANNEL x
i
� x

o
�	

t� S creates a new channel transmitting values of type t� The identi�ers xi and
xo are di�erent names for the receiving and the sending end of the channel�
respectively� This allows to model directed communication links� The sending
end xo has type �t and the receiving end xi has type �t� Channel ends are
�rst class values� Hence� the topology of a system can be changed dynamically
passing channel ends between processes� The statement � S� PAR S� � splits
a process into two processes executing S� and S� in parallel�

Local declarations LET p � e� S are used for two purposes� First� they
introduce local identi�ers for values� Second� they provide pattern matching
as a means to extract the components of tuples� A pattern p is either a single
identi�er or tuple of patterns� REC x� � e� � � � xn � en� S enables to
de�ne recursive processes� Here� all expressions e

i
must be process de�nitions�

Process de�nitions PROCESS x	t�S denote values of type PROC t� They are
�rst class values� i�e� they can be sent to other processes or be parameters for
calls of process de�nitions� Last� there is a conditional statement IF e THEN

S� ELSE S��

� Static Semantics of DHOP

In DHOP any channel is connected with a unique sender and a unique receiver
process� On the one hand� we need channel ends as �rst class values� e�g� for
using input�output devices from several processes� On the other hand� we
cannot allow unrestricted use of channel ends as values� In the following
example we suppose out to be a prede�ned channel of type �Int�

LET p� � PROCESS �c�	��Int�� c � ��� STOP�

� CALL p��out� PAR CALL p��out� �

�



Schied and Barthelmann

Here� two instances of the process de�nition p� are generated and the output

channel out would be passed to both instances� Therefore this program has

to be rejected by the compiler�

We use a type system inspired by the notion of linear types ���� to ful�ll

both requirements� Values of linear types can be used only once in contrast to

values of conventional nonlinear types� Channel ends are basic linear values�

If a tuple contains a component of linear type� then the tuple itself must

become linear� Otherwise the following program would erroneously pass the

type check 	we suppose out to be a prede�ned output channel of type �Int
�

LET p� � PROCESS �c n�	��Int Int� ����

LET pair � �out ����

� CALL p��pair� PAR CALL p��pair� �

Process de�nitions with free linear identi�ers might lead to similar di�culties�

LET p� � PROCESS �n�	�Int�� out � n� STOP�

� CALL p����� PAR CALL p������

As out occurs free in the de�nition of p�� both instances of p� would try to

use this output channel at the same time� In order to keep things simple� any

process de�nition must not contain free linear identi�ers� Then all process

de�nitions PROCESS p	t�S can be treated as nonlinear values�

The typing rules for DHOP are shown in Fig� �� An assertion E � e � t

means� given type environment E� expression e has type t� Similarily� E � S

states that statement S is well typed� given type environment E� A type

environment is a multiset 	�
 of pairs� E� � E� denotes the 	disjoint
 union

of multisets� E�x�t� means �rst deleting all pairs with �rst component x from

E and then adding the pair x�t� linear	t
 is the coarsest predicate over types

respecting the following conditions�

	i
 linear	�t
�

	ii
 linear	�t
�

	iii
 linear	t�
 � � � � � linear	tn
� linear	�t� � � � tn�
�

We de�ne nonlinear	t
 � �linear	t
 for types t and nonlinear	E
 � �x�t �

E� nonlinear	t
 for environments E�

An occurrence of a pair x�t in an environment means that identi�er x has

type t and it constitutes one exclusive access right for x� Every occurrence of

x in an expression consumes one access right 	see rule 	�

� Rule 	��
 shows

that rights for nonlinear values can be duplicated and hence identi�ers with

nonlinear types can be used arbitrarily often� Please note that using a channel

for communication does not consume its �access right�	see 	�
� 	�

�

� Operational Semantics of DHOP

The operational semantics of DHOP is de�ned by means of graph rewriting

rules� The state of a system is represented as a con�guration graph and the

�



Schied and Barthelmann

	�
 fg � b � Bool 	�
 fg � n � Int 	�
 fx � tg � x � t

	�

E� � e� � t� E� � e� � t�

E� � E� � e�op e� � t
if op � 	t�� t�
� t

	�

E� � e� � t� � � � En � en � tn

E� � � � �� En � �e� � � � en� � �t� � � � tn�

	�

E�x� � t�� � � � � xn � tn� � S nonlinear	E


E � PROCESS 	x�� � � � � xn
		t�� � � � � tn
�S � PROC 	t�� � � � � tn


	�
 fg � STOP 	�

E � e � t E� � fx��tg � S

E � E� � fx��tg � x�e�S

	�

	E � fx��	t�� � � � � tn
g
�x��t�� � � � � xn�tn� � S

E � fx��	t�� � � � � tn
g � x�	x�� � � � � xn
�S

	��

E � C��S� � � � E � Cn�Sn

E � SELECT C� �� S��� � � � ��Cn �� Sn END

	��

E� � S� E� � S�

E� � E� � � S� PAR S� �
	��


E� � e� � PROC t E� � e� � t

E� � E� � CALL e� e�

	��

E � fx���t� x���tg � S

E � CHANNEL x�� x��	t�S
	��


E � e � Bool E� � S� E� � S�

E � E� � IF e THEN S� ELSE S�

	��

E � e � 	t�� � � � � tn
 E��x��t�� � � � � xn�tn� � S

E � E� � LET �x� � � � xn� � e�S

	��

E � � e� � t� � � � E� � en � tn E� � S

E � REC x� � e�� � � � � xn � en�S

where ti are process types PROC t�
i
and

ei are process de�nitions 	for i � �� � � � � n

E� � E�x��t�� � � � � xn�tn�

	��

E � fx�t� x�tg � S nonlinear	t


E � fx�tg � S
	��


E � S

E � fx�tg � S

Fig� �� Typing rules for DHOP

dynamic evolution is modelled with graph rewriting rules� The graph rewrit�
ing semantics is similar to that given in ���� The only signi�cant di�erence is
that we include typing information into the labels of the con�guration graphs�
Here we omit all the technical details and rely on the readers intuition� A
con�guration graph contains process nodes 	ovals
� that represent process in�
stances and channel nodes 	squares
� that represent communication channels�
The edges of the con�guration graph describe the connection relation between
processes and channels� A channel node is labelled with a channel identi�er

�



Schied and Barthelmann

�

�

�

�

�

�

�

�
SELECT� � ���x��e��S� ��� � �END��� S�� ��

�

�Select�

c�t

�

�

�

�

�

�

�

�

�
SELECT� � ���x��x���S� ��� � �END��� S�� ��

�

�

�

�

�

�

�

�

�

�
CHANNEL x�� x��� t� S� � S� ��

�Chan�

�

c�t

�
�

�

�

�

�
�S� PAR S�	� � �

ci�tic��t� cj �tj
ci��
�ti��

� � � � � � ci�tic��t� cj �tj
ci��
�ti��

� � � � � �

ck�tk
cj��

�tj��

ck �tk
cj��

�tj��

� � �

� � �

ck�tk
cj��

�tj��
cl�tl

ck���

tk��
� � � � � �

�
��

�
�R

�
��

�
��

�
�R

�
�R

�
��

�

�

�

�
S�� �

�

�

�

�
S�� �

�
��

�
�R

�
�R

�
��

�

�

�

�

�

where v � eval�e� ���
out�c� t� � ���x��
in�c� t� � ���x��
fc��t�� � � � � cj�tjg � outchannels�v�
fcj���tj��� � � � � ck�tkg � inchannels�v�
�

�

� � bind�x�� v� ���

where fc��t�� � � � � ci�tig � inchannels�S�� ��
fci���ti��� � � � � cj�tjg � inchannels�S�� ��
fcj���tj��� � � � � ck�tkg � outchannels�S�� ��
fck���tk��� � � � � cl�tlg � outchannels�S�� ��

where c is a new channel identi	er
�

� � bind��x�� x��� �in�c� t�� out�c� t��� ��

cj �tjc��t� � � �

�
�� �

�
�
�I

c�t ck�tk
cj��

�tj��
� � �cj �tjc��t� � � �

�
�
��

�
�
�I

cl�tl
ck���

tk��
� � �

�
�R�

�� i� i � �� j�

j � �� k� k � �� l�

�� i� i � �� j�

j � �� k� k � �� l�

�Par�

�� ��

��

�� ��

�� j� j � �� k� ���� j� j � �� k�

�� ��

�� ��

Fig� �� Operational semantics of DHOP � part I

c and a type t� Process nodes are labelled with a statement S that describes

the future behaviour of the process and a store � � Id � Value that assigns

values to identi�ers� The start graph for the execution of a DHOP program

S consists of one process node that is labelled with the statement S and the

empty value environment� Fig� � and Fig� � depict the graph rewriting rules

describing the execution of DHOP programs�

We can infer from the rewriting rules that there is a unique sender and a

unique receiver process assigned to every channel�

Proposition ��� 	Structural correctness
 All rewriting rules of the opera�

tional semantics preserve the structural condition that any channel node has

�



Schied and Barthelmann

�

�

�

�

�

�

�

�
LET p � e� S� � S� �

��

�Let�

�

�

�

�

�

�

�

�
REC x��e�� 


� xn� en� S� � S� �

��

�Rec�

�

�

�

�

�

�

�

�
CALL e� e�� � S� �

���

�Call�

�

�

�

�

�

�

�

�
IF e THEN S� ELSE S�� � S�� ��

�If
�

�

�

�

�

�

�

�

�
IF e THEN S� ELSE S�� � S�� ��

�If��

where v � eval�e� �� and �
�
� bind�p� v� ��

where E
�
� recbind��x�� � � � � xn�� �e�� � � � � en�� ��

where hPROCESS p � t�S� �
�i � eval�e�� ��

v � eval�e�� ��

�
��
� bind�p� v� �

�
�

if True � eval�e� ��

if False � eval�e� ��

�� ��

�� ��

�� ��

�� ��

�� ��

Fig� 	� Operational semantics of DHOP � part II

exactly one ingoing and one outgoing edge from�to a process node�

Proposition ��� 	Absence of dynamic type errors
 Starting with a statement

S such that fg � S can be derived� no dynamic type errors can occur during

execution of S�

We subsume the following situations under dynamic type errors � 	�
 A process
tries to perform a communication action� but the corresponding channel node
is not correctly connected to the process node� 	�
 Sender and�or receiver
process assume a type of a channel 	stored in the store component of a process
state
 that does not agree with the type of the corresponding channel node�

� Conclusion

Linear types and related concepts like uniqueness types ��� or the single�
threaded lambda calculus ��� have been proposed to support referentially
transparent I�O� e�cient array handling� and mutable data structures in func�
tional programming languages� In this paper we showed another application
of linear types in the context of communicating processes� We considered only
channels as basic linear values� If desired� other linear types or constructors
could be introduced as well� i�e� arrays as linear values in order to allow ef�

�



Schied and Barthelmann

�cient update operations ����� Polymorphism and type inference for higher

order processes with linear types will be considered in a forthcoming paper�

References


�� K� Barthelmann and G� Schied� Graph grammar semantics of a higher�order
programming language for distributed systems� Graph Transformations in

Computer Science� LNCS ��� pages ������ Springer� ���	�


�� B� Berthomieu and T� Le Sergent� Programming with behaviors in an ML
framework � the syntax and semantics of LCS� ESOP
��� LNCS ���� pages
�����	� Springer� ���	�


�� A� Giacalone� P� Mishra� and S� Prasad� Facile� a symmetric integration of
concurrent and functional programming� Int� Journal of Parallel Programming�
������������� �����


	� Juan C� Guzman and Paul Hudak� Single�threaded polymorphic lambda
calculus� In IEEE Symp� Logic in Computer Science� pages �����	�� �����


�� C�A�R� Hoare� Communicating sequential processes� Prentice Hall
International� �����


� R� Milner� A calculus of communicating systems� Lecture Notes in Computer

Science ��� Springer�Verlag� Berlin� �����


�� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes�
Information and Computation ��������� �����


�� John H� Reppy� CML� A higher�order concurrent language� In SIGPLAN
�

Conference on Programming Language Design and Implementation� �����


�� S� Smetsers� E� Barendsen� M� Eekelen� and R� Plasmeijer� Guaranteeing safe
destructive updates through a type system with uniqueness information for
graphs� Graph transformations in computer science� LNCS �� pages ��������
Springer� ���	�


��� B� Thomsen� Plain CHOCS � a second generation calculus for higher order
processes� Acta Informatica� �������� �����


��� B� Thomson� L� Leth� S� Prasad� T��M� Kuo� A� Kamer� F� Knabe� and
A� Giacalone� Facile antigua release programming guide� Technical Report
ECRC������� European Computer�Industry Research Center �ECRC�� Munich�
�����


��� P� Wadler� Linear types can change the world� In Proc� of working conference

on programming concepts and methods� pages ����	��� North Holland� �����

�


