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Abstract 

It is shown that a compact /c-metrizable space with a dense monotonically normal subspace is 
metrizable. It is deduced that if a Banach space, in its weak topology, is stratifiable, then it is 
metrizable. Also, it is shown that C,(X) is stratifiable if and only if X is countable. 0 1998 
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1. Introduction 

It is a highly convenient property of metrizable locally convex topological vector 

spaces that every closed convex subspace is a retract. However, closed convex subspaces 

of non-metrizable locally convex topological vector spaces frequently fail to be retracts. 

Happily, there is a topological property, called stratifiability (originally defined in [4], 

and intensively studied subsequently, see the survey articles [ 161 and [19]), weaker than 

metrizability, such that closed convex subspaces of stratifiable locally convex topolog- 

ical vector spaces are retracts [2]. Since stratifiable spaces share many other properties 

with metrizable spaces (they are indeed, probably the most successful of the so called 

generalized metric properties) it is not surprising that various authors have asked when 

specific types of locally convex topological vector spaces are stratifiable. For example, 

Wheeler [20] asked if a separable Banach space in its weak topology is stratifiable; while 

Arhangelskii [I] asked when C,(X), the space of continuous real-valued functions on 

X with the topology of pointwise convergence, is stratifiable. 

In this paper we show that for both C,(X) and Banach spaces in their weak topology, 

stratifiability implies metrizability. Indeed we show that any stratifiable locally convex 

topological vector space in its weak topology is metrizable. (Independently, Yashenko [21] 
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has shown that X is countable if C,(X) is stratifiable.) For comparison it is important to 

note that there are many examples of stratifiable non-metrizable locally convex topologi- 

cal vector spaces (see [9,16,18]). In the interests of fuller generality it will be convenient 

to examine monotonically normal spaces. A space X is monotonically normal if there is 

an operator V(. , .) assigning to pairs of points, x, and open neighborhoods, U, an open 

neighbourhood V(x, U) of x contained in U so that whenever V(z, U) fl V(x’, U’) # 0, 

we have either z E U’ or x’ E U. Monotonically normal spaces are of considerable 

interest in their own right, but for our purposes it is necessary to know that stratifiable 

spaces are monotonically normal. In the context of locally convex topological vector 

spaces we observe that the converse is true. 

Lemma 0. Let L be a locally convex topological vector space. Then L is strat$able if 

and only if it is monotonically normal. 

Proof. To see this, let L be a locally convex topological vector space. As L is locally 

convex there is a nontrivial linear functional, f say, on L. Hence L can be factored 

into L’ x R, where L’ = ker(f). Since L’ x IR = L is monotonically normal, and lR 

contains convergent sequences, L’ is stratifiable. Thus L, as the product of two stratifiable 

spaces, is stratifiable. (For details about the product theory of monotonically normal and 

stratifiable spaces, see [ 13,161.) •I 

There are examples (see [S]) of monotonically normal topological vector spaces which 

are not stratifiable (or even K-stratifiable for some cardinal K). (The reader is referred 

to the survey articles [lo,1 l] by Gruenhage for further information on stratifiable and 

monotonically normal spaces.) 

In the next section we prove the key theorem. Then Section 3 is devoted to applying 

this to general topological groups. A question of Heath is answered. The final section 

turns to locally convex topological vector spaces, and the solutions to the problems of 

Arhangelskii and Wheeler given. 

2. The key theorem 

First some definitions and related basic facts. A subspace Y of a space X is said to 

be K, embedded if there is a map Ic from TY, the topology on Y, to TX, the topology 

on X, such that: (1) k(U) I? Y = U and (2) k(U) f’ k(V) # 8 implies U n V # 8, for 

any U, V E 7Y. Dense subspaces are always Ki embedded. It is also easy to check that 

if a subspace is a retract, then it is Ki embedded. Every subspace of a monotonically 

normal space is Ki embedded (see [7,10], where monotone normality is characterized in 

terms of Ki embeddings). 

A space X has calibre (~1, w, w) if every point finite collection of open sets is count- 

able. A space X has the countable chain condition (ccc) if every family of pairwise 

disjoint open sets is countable. Every monotonically normal space with the countable 
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chain condition has calibre (WI, w, w) (see [7]). It is known that any product of separable 

metrizable spaces has calibre (WI , w, w). 

Let X be a space, and let 2 be a point in X. A collection P of pairs of subsets of X 

is said to be a local pairbase at x if whenever U is an open neighbourhood of x there 

is a P = (PI, P2) E P such that PI is open and x E PI C P2 C U. A local pairbase 

at a point x is a-cushioned if we can write P = UnEu Pn where for every n E w and 

P’ C P,, we have 

um: (PI, P2) E P’} c up2: (PI, P2) E P’}. 
A point in a space which has a a-cushioned local pairbase is called a u-m3 point. It can 

easily be shown that every point of a monotonically normal space is a a-m3 point. (See 

[3] for more information about g-m3 points.) 

A compact space X is said to be t+metrizable if it can be KI embedded in some 

Tychonoff cube I”. (This is not the original definition but was shown to be equivalent 

to it by Shirokov [ 171.) From this it easily follows that compact metrizable spaces are 

n-metrizable, and that an arbitrary product of compact K-metrizable spaces is again K- 

metrizable. It is also known that a regular closed subspace of a ,+metrizable space is 

/c-metrizable. (This follows immediately from the original definition of K-metrizability.) 

For further information on compact K-metrizable spaces, and related spaces, the reader 

is referred to Section 7 of Shakmatov’s excellent survey article in [16]. 

Theorem la. Let K be a compact r;-metrizable space, and let X be a K1 embedded 

subspace of K which has calibre (WI. w, w). Then every cr-m3 point of X is a point of 

first countability. 

Proof. As X is K1 embedded in K, and K is K1 embedded in some Tychonoff cube, 

we may suppose our space X is a subspace of Is (for some set S), and there is a K1 

operator Ic : TX + 71’. Recall that a basic neighbourhood of a point x in Is is of the 

form 

B(Z,F,E) = (2’: Ix(s) - z’(s)1 < E, s E F}, 

where F is a finite subset of S, and E > 0. 

Let 5 be point of X, and let P is a local pairbase at x, where P = Urn_ P,, and 

each Pm is cushioned. Suppose, for a contradiction, that the character of z in X is 

uncountable. 

We may suppose, for each P E P, that P2 is closed in X. For each P E P pick F(P) 2 

S and n(P) 3 1 such that B(x, F(P), l/n(P)) C_ k(P,). By transfinite induction we 

may find {P”} CYEW, C P such that 

WC<<w,*P~#Pf and B(x, F(Pa), l/n(P”)) n X g Pf. (*) 

Consider { F( Pa)}cuEw,. By the Pigeon Hole Principle, there are m, n E w and A, C 

WI such that IA, 1 = WI, and V’a E A, (n(P”) = n and P” E P,). Applying the 

A-system lemma, there is a & 2 Ai and finite R c S, such that IA21 = wI and 

F(P”) n F(P’) = R for distinct GE, P E AZ. 
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Define U, = (B(z, R, l/n)nX)n(X\P,*). Clearly U, is open in X, and for distinct 

cy and /3, U, # Uo. Note that Up = 0 if and only if B(z, R, l/n) n X C P!. However, 

for any cx E A*, 

B(z, F(P”), l/n) n X & B(z, R, l/n) n X. 

Thus by (*), there is a A3 & AZ such that 1 As) = WI and U, # 0 for all Q E As. 

As X has calibre (WI, w, w), there is an infinite A4 2 A3 and z $ ncuEn4 U,. Observe 

that z q! P;, for all o E A4. Take any basic neighbourhood of z in X, say B(z, F, E) nX 
(we may assume R C F). Pick a basic B(z, F, i) $& Ic(B(z, F, E) nX). As Aa is infinite, 

and {F(P”) \ R: (Y E A,} is a pairwise disjoint family, there is a oo in A4 such that 

(F(P”“) \ R) n (p \ R) = 0. 

Then, B(z, F(P*O), l/n) n B(z, 2, ^) E is open and nonempty. Thus k(P,@) n 
W(z, J’, E)) # 0, an d so Pp” n B(z, F,E) n X # 0. Therefore, z q! U{P;: Q E A,}, 

but z E U{P? Q: E A4}-contradicting P, cushioned. 0 

Theorem lb. A compact K-metrizable space, K, with a dense monotonically normal 

subspace, X say, is metrizable. 

Proof. Tychonoff cubes have the countable chain condition, and it is easy to check that 

a K1 embedded subspace of a ccc space also has the countable chain condition. Thus X 

has the countable chain condition. As X is monotonically normal it follows that X has 

calibre (WI, w, w), and also that every point of X is a (~-7723 point. From Theorem la we 

deduce that X is first countable. But a compact n-metrizable with a dense first countable 

subspace is metrizable [20] (see also [16]). 0 

We observe that in the above result we can not weaken ‘monotonically normal’ to 

‘hereditarily normal’ or even ‘hereditarily Lindelof’ because 2”’ has a countable dense 

subspace. The author conjectures that the result will hold if we replace ‘K-metrizable’ 

with ‘dyadic’ (that is to say, the continuous image of 2n for some cardinal K) or even 

their common generalization ‘Shirokov’ (see [16] for the definition). 

3. Topological groups 

The link between topological groups and K-metrizable spaces is that every compact 

topological group is n-metrizable. In fact it is known that a compact space K is K- 

metrizable if (and only if) it can be KI embedded in some topological group [15]. 

Theorem 2a. Let G be a monotonically normal topological group, and let X be a locally 

compact subspace of G. Then X is metrizable. 

Proof. As G is monotonically normal, every subspace is KI embedded. In particular, 

every compact subspace is KI embedded, and hence is K-metrizable. From Theorem 

lb we deduce that every compact subspace of G is metrizable. It is shown in [16] 
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that monotonically normal topological groups are hereditarily paracompact. The claim 

now follows from the well known fact that paracompact locally metrizable spaces are 

metrizable. q 

A subset, S, of a topological group, G, is said to be totally bounded if for any 

neighbourhood, U, of the identity, there is a finite subset So of S so that SaU > S. It 

is well known that the completion, G, of a topological group, G, with a totally bounded 

open neighbourhood of the identity, is locally compact. Given this, the following result 

is evidently a variation on Theorem 2a. 

Theorem 2b. Let G be a topological group with a totally bounded open neighbourhood 

of the identity which is monotonically normal. Then G is metrizable. 

Proof. As G is a locally compact group, it is homeomorphic to IIP x K x D, where 

n E w, K is a compact subgroup of G and D is discrete [5]. Compact groups and 

compact metric spaces are compact K-metrizable, as are their regular closed subspaces. 

Hence the identity of 6 has an open neighbourhood basis of sets whose closures are 

compact and K-metrizable. 

From the given conditions on G, we can find one of these neighborhoods with a 

dense monotonically normal subspace. Now from Theorem lb we deduce that (? is first 

countable, and thus G^ (and, a fortiori G) is metrizable. 0 

Heath, attempting to construct monotonically normal non-metrizable subgroups of 2” 

(with coordinatewise multiplication), was only able to show their non-existence in certain 

cases, and left the problem (as stated in [18]) open in general. Example 3 provides a 

complete solution to his question. 

Example 3. Let @ be any compatible group operation on 2” (some cardinal K), and let 

G be a monotonically normal subgroup of (2”, a). Then G is metrizable. 

Proof. Consider the closure, ??, of G in (2”) @I), This is a compact topological group, and 

hence is n-metrizable, with a dense monotonically normal subgroup. That G is metrizable 

follows from Theorem lb. 0 

The final result of this section shows that our assumption in Theorem la about calibre 

(~1 ,w,w) is necessary. The example is also of interest for a quite different reason. 

Elsewhere [ 161, the author has shown that a separable topological group any (hence all) 

of whose points are c-m3 is stratifiable. The example demonstrates that ‘separable’ can 

not be weakened to ‘countable chain condition’. 

Example 4. There is a ccc dense subgroup of a compact topological group (hence K- 

metrizable), all of whose points are c-m3 but do not have countable character. 

Proof. Let G = {Z E 2w’ : ( { a: cc(a) = 1}1 < w} be considered as a topological 

subgroup of 2”’ (with its standard Tychonoff topology and coordinatewise multiplication). 



138 PM. Gartside / Topology and its Applications 86 (1998) 133-140 

Then G is dense in 2”‘) and so is ccc; and nowhere in G is there a point of first 

countability. 

It remains to show that each point of G is 097~3. Since G is a topological group, 

taking translations if necessary, it is sufficient to show that the identity is a a-m3 point. 

A basic neighbourhood of z in G is B(z,F) = {y E G: y(a) = Z(Q), ‘d’cw E F} 

where F is a finite subset of wi. Define P = ((B(0, F), B(0, F)): finite F C WI}. 
We show that P is cushioned. To do this take any family F of finite subsets of wt 

(corresponding to a subcollection of P), and any point z in G with x $ UFEF B(0, F). 

Let F, = {a E WI: X(Q) = 1). Then B(x,F,) n B(0, F) = 0 for all F in 3. 0 

4. Locally convex topological vector spaces 

Let L be a vector space over a topological field F. A topological vector space topology 

r on L is said to be a weak topology on L if it is the same topology as that induced 

by the set L* of all continuous linear functionals on (L, 7). Evidently, a Banach space 

with its weak topology has a weak topology, in the sense just defined. But a vector 

space may admit many compatible weak topologies. To help identify which topological 

vector space topologies are weak topologies, and to assist in the proof of Theorem 6a, we 

have the following lemma. (This lemma is probably folklore, at least for locally convex 

topological vector spaces. Unfortunately, the author has been unable to find a suitable 

reference.) 

Lemma 5. Let (L, r) be a topological vector space over F. Then the following are 

equivalent: 

(1) 7 is a weak topology, 
(2) (L, r) can be embedded as a dense linear subspace of FxH, where 7-l is a Hamel 

basis for L’, 
(3) (L, r) can be embedded as a linear subspace of a power of F. 

Theorem 6a. Let L be a topological vector space over a separable metrizable topolog- 

icaljeld F, with a weak topology. Then the following are equivalent: 
(1) L is monotonically normal, 
(2) L is stratifiable, 

(3) L is metrizable, and 
(4) L* has countable (algebraic) dimension. 

Proof. It clearly suffices to show that (4) implies (3), and (1) implies (4). 

(4) implies (3). Let ti be a countable Hamel basis for L*. Then, by Lemma 5, L can 

be embedded in FN. So L is metrizable. 

(1) implies (4). Let L be monotonically normal, and let 7-f be a Hamel basis for L*. 
Then, by Lemma 5, L is a dense subspace of F %. As F is separable metrizable, it has 

a metrizable compactification, K say. Compact metrizable spaces are K-metrizable, as 

are arbitrary products of compact K-metrizable spaces. Thus L is a dense monotonically 
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normal subspace of the compact K-metrizable space KW’, and so the claim follows from 

Theorem lb. 0 

Similarly to the proof of (1) implies (4) above, but using Theorem la in place of 

Theorem lb, we may deduce a related result. 

Theorem 6b. If a monotonically normal space can be KI embedded (in particular if 

it is a retract) in a topological vector space, over a separable metrizable field, with a 

weak topology, then it is metrizable. 

Now we consider particular cases. Evidently we can answer Wheeler’s question, but 

we can also give a parallel result for the dual of a Banach space in its weak* topology. 

To be clear, let B be a Banach space. Write B, for B with the weak topology induced 

by the dual space B*. Additionally to the usual weak topology on the Banach space B* 

(induced by B**), B” is a locally convex topological vector space when considered as 

a linear subspace of IRB, in which case it is denoted B$ (this topology is called the 

weak* topology). By Lemma 5, B$ has a weak topology. It is known that metrizability 

of either a Banach space in its weak topology, or of the dual in the weak* topology 

forces the Banach space to be finite-dimensional. 

Theorem 7. Let B be a Banach space. Then the following are equivalent: 

(1) B, is monotonically normal, 

(2) B, is metrizable, and 

(3) B is finite dimensional. 

Theorem 8. Let B be a Banach space. Then the following are equivalent: 

(1) B:* is monotonically normal, 

(2) B;* is metrizable, and 

(3) B* (= B) is finite dimensional. 

The dual of C, (X) is customarily written, &(X), and regarded as a linear subspace 

of IR’P(~). The spaces C,(X) and &(X) are locally convex topological vector spaces. 

The natural copy of X in L,(X), . IS a Hamel basis; while &(X) is metrizable if and 

only if X is finite. Thus we resolve Arhangelskii’s problem. 

Theorem 9. Let X be a space. Then the following are equivalent: 

( 1) C,(X) is monotonically normal, 

(2) C,(X) is metrizable, and 

(3) X is countable. 

Theorem 10. Let X be a space. Then the following are equivalent: 

(1) &(X) is monotonically normal, 

(2) LP(X) is metrizable, and 

(3) X is jnite. 
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Uspenskii (who relayed Arhangelskii’s question to the author) specifically asked 

whether C,(R) is stratifiable. From Theorem 9 it follows that it is not. This can be 

improved. Let QP be the set of all polynomials with rational coefficients. Then QP is 

a countable topological subgroup of C,(R), and is a topological vector space over the 

rationals. As !& is dense in C,(R), by Theorem 6a, it cannot be monotonically normal. 
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