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Abstract Astrocytes are generated from neuroepithelial cells
after neurons during brain development. However, the mecha-
nism of this sequential generation is not fully understood. Here,
we show that a particular cytosine residue in the promoter of the
gene encoding the immature astrocyte marker, S100b, becomes
demethylated, correlating with the time when the S100b expres-
sion commences at embryonic day (E) 14. In addition, astrocyte-
inducing cytokine, BMP2, increased histone acetylation around
the CpG site in neuroepithelial cells at E14 but not E11 when
S100b expressing astrocytes are absent. Furthermore, binding of
a methyl DNA binding protein, MeCP2, to the S100b gene
promoter in neuroepithelial cells was reduced at E14 compared
to E11. Thus, demethylation of specific CpG site is suggested to
be a critical determinant in regulating astrocyte differentiation in
the developing brain.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

During the development of the central nervous system

(CNS), neurons and astrocytes are generated from common

precursor cells present in the neuroepithelium [1–3]. In the

mammalian CNS, neurons are generated primarily during the

embryonic period [4]. For example, in the mouse cerebral

cortex, neurogenesis commences around embryonic day 11

(E11), peaks at about E15, and finishes around birth [5,6].

While transient radial glia are present during the early stages

of development, macroglial production in the cortex is delayed

until mid-gestation and only occurs at low levels. While cor-

tical astrocytes are first apparent at E16 and oligodendrocytes

around birth, the vast majority of both cell types are produced

during early neonatal development [7]. Although the separate

timing of neurogenesis and gliogenesis in the CNS has been

known for many years, the molecular mechanisms underlying

these processes remain largely unknown.

The specification of cell lineages in the developing brain is

thought to be regulated by cell-external cues and cell-intrinsic
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programs. Cell-intrinsic programs include epigenetic modifi-

cation such as chromatin remodeling and DNA methylation.

The cytosine in CpG dinucleotides of vertebrate genomes is

prone to modification into 5-methylcytosine. This methylation

has been proposed as a means of transcriptional silencing [8,9].

The establishment of normally regulated DNA methylation is

essential for development [10], and abnormalities in regulating

DNA methylation are frequently associated with tumorigene-

sis [11] and cell aging [12].

Glial fibrillary acidic protein (GFAP) and S100b are two

proteins often used to monitor astrocyte differentiation and

maturation. GFAP is considered the major component of glial

fibrils and provides a viable index of astrocyte maturation,

while S100b is a soluble calcium-binding protein synthesized in

astrocytes and is known as a marker for immature astrocytes

[13]. During brain development, GFAP expression in neural

precursor cells is dependent on the activation of the tran-

scription factor, signal transducer and activator of transcrip-

tion 3 (STAT3) [14–16]. We have previously shown that a CpG

dinucleotide within a STAT3 binding element in the GFAP

promoter is highly methylated in E11.5 neuroepithelial cells,

post-mitotic neurons, and cells outside the nervous system, but

is demethylated in cells that exhibit STAT3-induced expression

of GFAP [17]. Based on this finding, we proposed that DNA

methylation is a pivotal event in regulating astrocyte differ-

entiation during brain development. However, it remains

unclear whether this developmental stage-dependent demeth-

ylation is confined to the GFAP gene promoter or is more

widespread in astrocyte-specific gene promoters in the fetal

brain. S100b is also known as an astrocytic marker and ex-

pressed during earlier stages of astrocytic development than

GFAP. We thus determined the methylation status of the

promoter for the S100b gene and profiled S100b gene expres-

sion during brain development.
2. Materials and methods

2.1. Animals and cell preparation
Time-pregnant ICR mice were used to prepare neuroepithelial cells.

Mice were treated in accordance with the guidelines of Kumamoto
University Center for Animal Resources and Development. Neuro-
epithelial cells were prepared from telencephalons of E11.5 or E14.5
mice and cultured as described previously [18]. Briefly, the telenceph-
alons were triturated in Hank’s balanced salt solution (HBSS) by mild
pipetting with a 1 ml pipette tip (Gilson). Dissociated cells were cul-
tured for four days in N2-supplemented Dulbecco’s Modified Eagle’s
Medium with F12 (Gibco) containing 10 ng/ml basic FGF (R&D
blished by Elsevier B.V. All rights reserved.
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Systems) (N2/DMEM/F12/bFGF) on culture dishes pre-coated with
poly-LL-ornithine (Sigma) and fibronectin (Life Technologies).
2.2. Immunohistochemistry
Mouse embryos were fixed in a 4% paraformaldehyde PBS solution

for 24 h, and serially submerged in PBS containing 10% and 20% su-
crose at 4 �C for 24 h. The tissue was cut into 15 lm thick sections
using a cryostat. The sections were then stained with one of the fol-
lowing primary antibodies: mouse monoclonal antibodies specific for
S100b (Sigma) and polyclonal antibodies for MAP2 (Chemicon). The
following secondary antibodies were used: Cy3-conjugated anti-mouse
IgG (Jackson Laboratory), FITC-conjugated anti-rabbit (Chemicon).
Nuclei were stained with bisbenzimide H33258 fluorochrome trihy-
drochloride (Nakaraitesque).

2.3. Immunocytochemistry
Cells were cultured on chamber slides (Nunc) either with or without

BMP2 (80 ng/ml, Yamanouchi Pharmaceutical) for 4 days, washed
with PBS, fixed in 4% paraformaldehyde in PBS, and stained with one
of the following primary antibodies: anti-S100b (Sigma), anti-MAP2
(Chemicon). The following secondary antibodies were used: Cy3-
conjugated anti-mouse IgG (Jackson Laboratory), FITC-conjugated
anti-rabbit (Chemicon). Nuclei were stained with bisbenzimide H33258
fluorochrome trihydrochloride (Nakaraitesque).
2.4. RT-PCR
Total RNA was isolated from E11.5 or E14.5 neuroepithelial cells

cultured either with or without BMP2 (80 ng/ml) for 4 days. Reverse
transcriptions were performed using the RNA as a template and Su-
perscript II reverse transcriptase (GibcoBRL). PCRs were performed
using AmpliTaq Gold (Perkin–Elmer) with the following settings: 95
�C for 9 min; 28 cycles at 94 �C for 20 s, at 60 �C for 20 s, at 72 �C for
30 s; one cycle at 72 �C for 5 min. The following primers were used:
S100b S, 50-AGAGGACTCCAGCAGCAAAGG-30; S100b AS, 50-
AGAGAGCTCAGCTCCTTCGAG.

2.5. Bisulfite sequencing
Sodium bisulfite treatment of genomic DNA was performed essen-

tially as described previously [19]. Briefly, 5 lg of genomic DNA was
digested with SacI, denatured with 0.3 M NaOH at 37 �C for 15 min
and incubated with 3.1 M sodium bisulfite and 0.5 mM hydroquinone
at 55 �C for 16 h. The samples were purified using a desalting column
(Promega) in accordance with the manufacturer’s instructions and
eluted in 50 ll of H2O. 3 M NaOH (5.5 ll) was added and the samples
were incubated at 37 �C for 15 min. The samples were first neutralized
by the addition of 3 M ammonium acetate, then ethanol precipitated,
and dissolved in H2O. There are four CpG sites at positions )818,
)318, )207, and )64 relative to the transcription start site. Two DNA
fragments containing the former one and the latter three were ampli-
fied, respectively, by PCR using the following sets of primers:
S100818MS, 50-GTTGTTGGGAATTGAATTTAGGATTTTTGG-30;
and S100818MAS, 50-ATCTTAAAACTCTCTCTCCCTACCC-
TAATC-30; and S100MS, 50-AAGTTGGTAGATAAGTAAGATG-
TTTAAGAG-30; and S100MAS, 50-ATCACCTTTACTACTAAAA-
TCCTCTCTAAC-30. The PCR products were cloned into pT7Blue
and 11–13 clones were randomly chosen from each of the three inde-
pendent PCRs and sequenced.

2.6. ChIP assay
Chromatin immunoprecipitation was performed as previously de-

scribed [20] with some minor modifications. Cells were exposed to
formaldehyde at a final concentration of 1% added directly to the
tissue culture medium. Cells were centrifuged into a pellet after 10 min
of formaldehyde exposure, lysed in lysis buffer (1% SDS, 10 mM
EDTA, and 50 mM Tris–HCl, pH 8.1) containing protease and
phosphatase inhibitors [3 mM pAPMSF, 5 mg/ml aprotinine, 1 mg/ml
pepstatin A (Wako Chemicals), and 2 mM sodium orthovanadate] and
then incubated for 5 min on ice. Cell lysate was sonicated using a
microtip until the DNA fragments were 600–1000 base pairs in length.
Chromatin samples were diluted 1:10 with dilution buffer (0.01% SDS,
1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris–HCl, pH 8.1, and
167 mM NaCl). 1% of the total volume was stored as input at )20 �C
for later use. After the samples were pre-cleared with protein A
Sepharose beads (Amersham) containing 5 lg of sonicated phage
lambda DNA (Toyobo), immunoprecipitation was performed over-
night at 4 �C with 1 lg of the antibody for either acetylated H3, H4 or
MeCP2 (Upstate Biotechnology). Immune complexes were collected
by protein A–Sepharose beads and washed with the following buffers:
low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
Tris–HCl, pH 8.1, and 150 mM NaCl), high salt buffer (0.1% SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris–HCl, pH 8.1, and 500 mM
NaCl), LiCl buffer (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 mM
EDTA, and 10 mM Tris–HCl, pH 8.1) and TE buffer (10 mM Tris–
HCl and 1 mM EDTA, pH 8.0). Immune complexes were disrupted
with elution buffer (1% SDS and 50 mM NaHCO3) and the covalent
links between the immunoprecipitates and input chromatin were re-
versed by incubation with 300 mM NaCl at 65 �C for 4 h. DNA was
further incubated with proteinase K, purified by phenol extraction,
and then ethanol-precipitated. DNA pellets were dissolved in 50 ll of
H2O and used as a template for PCR with the following set of primers.
Primers for the proximal promoter region of S100b gene were as fol-
lows: S100b promS, 50-TCCAGCACTCAGCATGAGAAG-30; S100b
promAS, 50-GTCAGTGGCTTTCTCACCTCC-30. Primers for the
)318 CpG site of the 100b promoter region were as follows:
S100b318S, 50-TTACTGCATGCTGGTCCCTG-30; S100b318AS, 50-
TAGAGTCAGCTTCTCTGCACC-30.
3. Results

E11.5 or E14.5 mouse brains were fixed and sections

stained for S100b and MAP2 proteins using immunohisto-

chemistry. S100b positive cells were detected in the subven-

tricular layer of the telencephalic cortex of E14.5 brains

(Fig. 1F), but not in the E11.5 brain, except for non-neural

tissues such as the brain meninges (Fig. 1B). MAP2 positive

cells were observed in the E11.5 preplate and E14.5 cortical

plate (Fig. 1A and E). No GFAP positive cells were observed

in these sections (data not shown). These results demonstrate

developmental stage dependent expression of S100b in the

fetal mouse brain.

We have previously shown that cells expressing S100b de-

velop from E14.5 mouse neuroepithelial cells after being cul-

tured with BMP2 for 2 days [21]. This suggests that BMP2

plays an important role in the development of S100b positive

cells from neural progenitors. To determine whether the re-

sponsiveness of neural progenitors to BMP2 is dependent on

the developmental stage, neuroepithelial cells were acutely

dissociated from E11.5 and E14.5 telencephalons and cultured

either with or without BMP2 for 4 days, and S100b and MAP2

proteins were labeled using immunohistochemistry and S100b
mRNA levels analyzed by RT-PCR.

As shown in Fig. 1J, S100b positive cells were induced by

BMP2 in a culture of acutely prepared E14.5 neuroepithelial

cells. S100b mRNA was also induced in the same culture

(Fig. 1M, lane 2). These results suggest that E14.5 neuroepi-

thelial cells express S100b following exposure to BMP2. In

contrast, no S100b immunoreactivity (Fig. 1L) and mRNA

were detected in E11.5 neuroepithelial cells cultured under the

same conditions (Fig. 1M, lane 4). These results indicate that

the responsiveness of neural progenitors to BMP2 is depen-

dent on the developmental stage. BMP receptor expression in

E11.5 neuroepithelial cells was confirmed by RT-PCR

analysis (data not shown). The lack of S100b expression in

BMP2-stimulated E11.5 neuroepithelial cells may be due to

inactivation of the promoter region of the S100b gene. Using

bisulfite genomic sequencing analysis of acutely prepared or

4-day cultured neuroepithelial cells from either E11.5 or E14.5

telencephalons, we determined the methylation status of the
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Fig. 2. Specific CpG site in a promoter region of S100b is demethylated
during development. (A) CpG sites of the S100b gene promoter. Po-
tential methylation sites are shown by arrowheads. Numbering begins
with the transcription initiation site as +1. (B)–(D) The frequency of
methylation at each potential methylation site in the S100b promoter
gene was investigated using the bisulfite sequencing method. In this
assay, either freshly prepared or 4-day cultured neuroepithelial cells
from E11.5 or E14.5 mouse telencephalon were used.

Fig. 1. S100b expression and its responsiveness to BMP signal are
controlled by the developmental stage of the embryonic mouse brain.
(A)–(H) Double immunofluorescence labeling of the proteins S100b (B
and F, red) and MAP2 (A and E, green) in the cortex of E11.5 or E14.5
mouse brains. MAP2 immunoreactivity was detected in the cortex of
both E11.5 and E14.5 mice. S100b immunoreactivity was only detected
in the intermediate zone of the cortex in E14.5 mice. Superimposed
views of A and B are shown in C, and superimposed views of E and F
are shown in G. DAPI staining indicates nuclei (D, H). V indicates the
ventricle. Bar¼ 50 lm. (I–L) Neuroepithelial cells prepared from E14.5
or E11.5 mouse telencephalons were cultured in the presence (J, L) or
absence (I, K) of BMP2 (80 ng/ml) for 4 days. Cells were stained with
antibodies for the astrocytic marker S100b (red) or the neuronal
marker MAP2 (green). No S100b-positive astrocytes were induced by
BMP2 in cultured E11.5 neuroepithelial cells (L), but were induced in
E14.5 neuroepithelial cells under the same conditions (J). Bar¼ 50 lm.
(M) Total RNA was extracted from E11.5 or E14.5 neuroepithelial
cells cultured in either the presence or absence of BMP2 (80 ng/ml) for
4 days, and was analyzed by RT-PCR using specific primer for S100b
and G3PDH.
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four CpG dinucleotides present in an 860 base pair region of

the S100b gene promoter just upstream of the transcriptional

start site.

An 860 base pair-region within the mouse S100b promoter

was analyzed. There are four CpG sites at )818, )318, )207,
and )64 bases relative to the transcriptional start site

(Fig. 2A). Methylation in each cell group was determined by

sequencing 11 to 13 clones prepared from bisulfite-treated

genomic DNA. The experiments were performed three times

and the methylation frequency was calculated from the tripli-

cate cell preparation. As shown in Fig. 2B-E, all four of the

CpG sites were highly methylated in both acutely prepared and

4-day cultured E11.5 neuroepithelial cells, which express nei-

ther S100b in vivo nor S100b in vitro following exposure to

BMP2. It is notable that the methylation frequency at the )318
CpG site was significantly reduced in E14.5 neuroepithelial

cells (Fig. 2C), which normally express S100b in vivo and

S100b in vitro after exposure to BMP2. In contrast, the

methylation frequency remained high at the other three CpG

sites. Hence, the methylation status of the CpG dinucleotide at

)318 correlates with S100b expression levels in neuroepithelial
cells in vivo and S100b expression in cultured neuroepithelial

cells following stimulation by BMP2.

It is known that DNA methylation contributes to tran-

scriptional silencing of gene expression both by interfering

with the accessibility of transcription factors to their target

DNA and by recruiting methyl DNA binding domain-con-

taining proteins, which trigger the formation of inactive

chromatin structures [8]. Since we did not detect any of the

previously reported Smad-binding consensus sequences [22–

24] around the )318 CpG site in the S100b gene promoter,

methylation of this site in E11.5 neuroepithelial cells may

contribute to the formation of inactive chromatin structures

to inhibit transcriptional activation of the S100b gene. Among

the many proteins that bind to methylated DNA, MeCP2

characteristically binds to single, symmetrical methylated

CpG pairs in any sequence context and is linked to gene si-

lencing by recruiting histone deacetylases (HDACs) and co-

repressors, including mSin3A [25–27]. We thus investigated

whether MeCP2 participates in the regulation of S100b gene

repression.

ChIP was performed with E11.5- or E14.5-telencephalon-

derived neuroepithelial cells using an anti-MeCP2 antibody

and PCR primers to detect a DNA fragment spanning

)550 and )250 in the S100b gene promoter. As shown in Fig. 3A

and B, a significant level of MeCP2 binding to the )318 CpG-

containing part of the S100b gene promoter was detected in

E11.5-telencephalon-derived cells, but was less apparent in

E14.5 cells. Downregulation of MeCP2 binding to this part of

the promoter in E14.5 cells appears to be in accordance with

the reduction in methylation frequency at the )318 CpG site.

This result suggests that the binding of MeCP2 to the methy-

lated )318 CpG site within the S100b gene promoter in E11.5

cells inactivates the gene.



Fig. 3. The inactive status of the chromatin structure of the S100b
promoter region in E11.5 neuroepithelial cells. (A and B) The abun-
dant binding of MeCP2 to the methylated )318 CpG site within the
S100b gene promoter region in E11.5 cells. (A) Results of an ChIP
assay performed with an antibody for MeCP2 in E11.5 or E14.5
neuroepithelial cells cultured with bFGF for 4 days. (B) Quantification
of MeCP2 ChIP PCR results. The results were scanned and analyzed
by NIH Image. The signal intensity of each PCR band was measured
and normalized by the Input. The signal intensity of the band detected
in E11.5 cells was arbitrarily chosen as 1.0 and the MeCP2 binding
levels of each ChIP product were referred to as a multiple of that value.
(C and D) The chromatin structure of the S100b gene promoter in
E11.5 neuroepithelial cells was in the inactivated state for interference
with histone acetylation following stimulation with BMP2. (C) Chro-
matin immunoprecipitation assay performed using formaldehyde
cross-linked moderately sonicated chromatin from non-stimulated or
BMP2-stimulated (80 ng/ml) neuroepithelial cells. The DNA fragments
of the S100b promoter were immunoprecipitated using an antibody for
acetylated H3 and H4, and detected using PCR. (D) Quantification of
the PCR products from chromatin preparation. The results of three
experiments were scanned and analyzed by NIH Image. The intensity
of each PCR band was measured and normalized by the Input. The
signal of the band detected in CTRL (open bar) of E11.5 or E14.5 cells
was arbitrarily chosen as 1.0 and the acetylation levels of the ChIP
products of BMP2 stimuli (closed bar) were referred to as a multiple of
that value.
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To provide an indication of gene activation, we analyzed the

S100b gene promoter in E11.5 and E14.5 neuroepithelial cells

cultured for 4 days either with or without BMP2 for histone

acetylation. ChIP assays were performed using an antibody

specific to the acetylated histones H3 or H4, and a set of PCR

primers to detect the promoter fragment spanning )362 and

+11. BMP2 stimulation failed to induce acetylation of histones
H3 or H4 at the S100b gene promoter in E11.5-derived cells

(Fig. 3C and D, left-hand panels). This result suggests that in

E11.5 neuroepithelial cells, the chromatin structure of the

S100b gene promoter is in the inactivated state and cannot be

modified by BMP2 stimulation. In marked contrast, exposure

of E14.5-derived neuroepithelial cells to BMP2 for 4 days re-

sulted in a significant increase in acetylation of histones H3,

and to a lesser extent, H4 in the S100b gene promoter com-

pared with non-treated cells (Fig. 3C and D, right-hand pan-

els). TGF-b proteins activate transcription through both a

physical and functional interaction of DNA binding Smads

with other sequence-specific transcription factors as well as the

coactivators CBP and p300. These coactivators possess (and

can also recruit proteins with) histone acetyltransferase activity

and acetylation of histones loosens the chromatin structure

facilitating gene transcription. Thus, these coactivators may

contribute to acetylation of histones in the S100b gene pro-

moter following BMP2 stimulation and lead to sufficient

transcriptional activation. The mechanism underlying BMP2-

induced acetylation of histones in the S100b gene promoter in

E14.5 neuroepithelial cells remains to be elucidated. Methyl-

ation of the )318 CpG site may keep a transcription factor

complex away from the S100b gene promoter in E11.5 neu-

roepithelial cells due to the inactive status of the chromatin

structure. Taken together, our results suggest that site-specific

DNA demethylation of the S100b gene promoter during em-

bryogenesis is required for S100b expression throughout brain

development.
4. Discussion

In the mammalian brain, the majority of neurons are born

before glia cells develop [4]. A major question is therefore how

neural progenitors in the neuroepithelium show such develop-

mental stage dependent changes in the preference of cell-fate

determination, i.e., from neurogenesis in the earlier stages to

gliogenesis in later stages. In the present study, we show that

CpG dinucleotides in the promoter region of the gene for im-

mature astrocyte-specific protein S100b in E11.5 neuroepithe-

lial cells, which express S100b neither in vivo nor in vitro after

exposure to BMP2, are highly methylated and the chromatin

structure in the S100b promoter region is in the inactive state.

At the later developmental stage of E14.5, only one of the four

CpG dinucleotides examined is substantially demethylated, and

most likely facilitates BMP2-mediated induction of S100b ex-

pression. These results indicate that DNA demethylation of the

specific CpG dinucleotide in the S100b gene promoter coincides

with its expression in neural progenitors. Although we detected

acetylation of histones H3 and H4 in the S100b gene promoter

of 4-day cultured E11.5 cells not stimulated by BMP2, S100b
expression was not detected in the E11.5 cells. This result

suggests that negative regulators of astrocyte differentiation

such as Olig2 [28] or neurogenin1 [29] may also contribute to

the inhibition of astrocyte-specific S100b expression in E11.5

neuroepithelial cells through different mechanisms from the

methylation of specific gene promoters.

In the present study, we show that S100b expression, which

is known to be an early marker for astrocyte differentiation, is

efficiently induced in E14.5 neuroepithelial cells by BMP2 and

that S100b positive cells are present in the subventricular layer

of the telencephalic cortex in the E14.5 brain, but no GFAP
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positive cells are present. Previous studies have shown that

GFAP expression in neural precursor cells is dependent on the

activation of STAT3 [14–16]. Furthermore, we have shown

that the CpG dinucleotide within a particular STAT3 binding

element in the GFAP promoter is highly methylated in E11.5

neuroepithelial cells, post-mitotic neurons and cells outside the

nervous system, but is demethylated in cells where STAT3

induces the expression of GFAP [17]. GFAP is known as an

index of astrocyte maturation [13]. Our data on the S100b gene

promoter support the idea that DNA demethylation of as-

trocyte specific gene promoters in neural progenitors is a key

event during mid-gestation as part of a cell-intrinsic program

for astrogenesis. Thereafter, cell-external cues such as BMP2

may help neural progenitors to switch from neurogenesis to

astrogenesis and result in STAT3 activation signals promoting

maturation of astrocytes in the last stage of CNS development.

In this paper, we show that MeCP2 binds to the specific

methylated CpG site within the S100b gene promoter and

suggest that the binding of MeCP2 inactivates the gene in

E11.5 neuroepithelial cells. It has been reported that regulation

of the interaction between MeCP2 and methylated DNA is

critical for neurogenesis during Xenopus development and for

neuronal activity-dependent recent BDNF expression [30–32].

Thus, it is becoming increasingly apparent that MeCP2-bind-

ing to the methylated CpG site in a specific promoter plays a

key role in the development of CNS and in the establishment

of functional neural network. More studies are needed to fully

explain how methylation or demethylation of specific gene

promoters is regulated.

In conclusion, taken together with our previous report on

the GFAP gene promoter [17], methylation of cell type-specific

gene promoters may be a pivotal event in regulating lineage

specification during brain development.
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