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a b s t r a c t

This paper gives some closed-form formulas for computing themaximal andminimal ranks
and inertias of P − X with respect to X , where P ∈ Cn

H is given, and X is a Hermitian least
squares solution to thematrix equation AXB = C . We derive, as applications, necessary and
sufficient conditions for X > (6, >,<)P in the Löwner partial ordering. In addition, we
give necessary and sufficient conditions for the existence of a Hermitian positive (negative,
nonpositive, nonnegative) definite least squares solution to AXB = C .

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, Cm×n and Cm
H stand for the sets of allm × n complex matrices and allm × m complex Hermitian

matrices, respectively; the symbols A∗, r(A) and R(A) stand for the conjugate transpose, rank and range (column space) of
a matrix A ∈ Cm×n, respectively; Im denotes the identity matrix of orderm; [ A, B ] denotes a row block matrix consisting of
A and B. We write A > 0 (A > 0) if A is Hermitian positive (nonnegative) definite. Two Hermitian matrices A and B of the
same size are said to satisfy the inequality A > B (A > B) in the Löwner partial ordering if A − B is positive (nonnegative)
definite. The Moore–Penrose inverse of a matrix A ∈ Cm× n, denoted by AĎ, is defined to be the unique matrix X ∈ Cn×m

satisfying the following four matrix equations:

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

Further, define EA = Im−AAĎ and FA = In−AĎA. The ranks of EA and FA are given by r(EA) = m−r(A) and r(FA) = n−r(A). The
inertia of a Hermitian matrix A is defined to be the triplet In(A) = {i+(A), i−(A), i0(A)}, where i+(A), i−(A) and i0(A) are the
numbers of the positive, negative and zero eigenvalues of A countedwithmultiplicities, respectively. The two numbers i+(A)
and i−(A) are usually called the partial inertias of A. For amatrix A ∈ Cm

H , we have r(A) = i+(A)+ i−(A) and i0(A) = m−r(A).
Linear matrix equations play a very important role in matrix theory and other disciplines, such as statistics and control

theory. For a given matrix equation, one always wants to know the consistency condition, the general solution or least
squares solution, the properties of (least squares) solutions and so on. For a linear matrix equation

AXB = C, (1.1)
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where X ∈ Cn× p is an unknownmatrix, and A ∈ Cm× n, B ∈ Cp× q and C ∈ Cm× q are three given matrices, there have been
many results given in the literature; see, e.g., [1–8]. For nonnegative and positive definite solutions, many specialists and
researchers have discussed the problems concerning symmetrical linearmatrix equations. For instance, Khatri andMitra [1],
Gross [9] and Zhang and Zhang [10] studied nonnegative and positive definite solutions to the matrix equation AXA∗

= B,
respectively. Dai and Lancaster [11] presented a condition for the existence of a symmetric, positive definite, nonnegative
definite real solution and derived a formula for the general solution of the matrix equation AXA∗

= B. Zhang [12] deduced
a necessary and sufficient condition for the matrix equation AXA∗

= BB∗ and CXC∗
= DD∗ to have a common Hermitian

nonnegative definite solution and observed its applications in statistics. Aleksandar [13] investigated the existence question
of nonnegative definite solutions of the matrix equation AX + XA = B where A is a given positive definite matrix and B is
nonnegative definite.

For Hermitian, nonnegative and positive definite solutions of a non-symmetrical matrix equation, there have relatively
few results in the literature. Guo and Huang [8] studied extremal ranks of the matrix expression C − AXB with respect to
Hermitian matrix X , and then we can obtain necessary and sufficient conditions for the existence of a Hermitian solution to
AXB = C . Mitra [6] and Navarra et al. [7] provided conditions for the existence of a Hermitian solution and a representation
of equation AXB = C . Tian [5] deduced a necessary and sufficient condition for AXB = C to have a Hermitian solution and
presented a general Hermitian solution expression. Khatri and Mitra [1] derived conditions for the existence of a Hermitian
solutions of the equations AX = B, AXB = C and (AX, XB) = (E, F) using generalized inverses.

The purpose of this paper is to consider a Hermitian least square solution to (1.1) subject to inequality restrictions. In
particular, necessary and sufficient conditions for the existence of a Hermitian positive (negative, nonpositive, nonnegative)
definite least squares solution to (1.1) are derived. As far as we are aware, there has been no report concerning this problem
up to the present.

We shall use the following results on ranks and inertias of matrices in the latter part of this paper.

Lemma 1.1 ([3]). Let S be a set consisting of matrices over Cm×n, and let H be a set consisting of Hermitian matrices over Cm
H .

Then:

(a) For m = n, S has a nonsingular matrix if and only if maxX∈S r(X) = m.
(b) For m = n, all X ∈ S are nonsingular if and only if minX∈S r(X) = m.
(c) 0 ∈ S if and only if minX∈S r(X) = 0.
(d) H has a matrix X > 0 (X < 0) if and only if maxX∈H i+(X) = m (maxX∈H i−(X) = m) .
(e) H has a matrix X > 0 (X 6 0) if and only if minX∈H i−(X) = 0 (minX∈H i+(X) = 0) .

Lemma 1.2 ([14]). Let A ∈ Cm× n, B ∈ Cm× k, C ∈ Cl× n,D ∈ Cl× k. Then,

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.2)

r

A
C


= r(A) + r(CFA) = r(C) + r(AFC ), (1.3)

r

A B
C 0


= r(B) + r(C) + r(EBAFC ). (1.4)

The following formulas follow from (1.2) to (1.4):

r


A BFP
EQC 0


= r

A B 0
C 0 Q
0 P 0


− r(P) − r(Q ), (1.5)

r

M N
EPA EPB


= r


M N 0
A B P


− r(P), (1.6)

r

M AFP
N BFP


= r

M A
N B
0 P


− r(P). (1.7)

The following results are well-known.

Lemma 1.3. Let A ∈ Cm
H , B ∈ Cn

H ,Q ∈ Cm×n. Then,

i±


A 0
0 B


= i±(A) + i±(B), (1.8)

i±


0 Q
Q ∗ 0


= r(Q ). (1.9)
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Lemma 1.4 ([3]). Let A ∈ Cm
H , B ∈ Cm× n,D ∈ Cm× n, and define

U =


A B
B∗ 0


, V =


A B
B∗ D


.

Then,

i±(U) = r(B) + i±(EBAEB), (1.10)

i±(V ) = i±(A) + i±


0 EAB

B∗EA D − B∗AĎB


. (1.11)

The following formula follows from (1.10) and (1.11):

i±


A BFP

FPB∗ 0


= i±

 A B 0
B∗ 0 P∗

0 P 0


− r(P). (1.12)

Concerning the consistency and general solutions of AXB = C , the following result is well-known; see, e.g., [1–3].

Lemma 1.5. Let A ∈ Cm× n, B ∈ Cp× q, and C ∈ Cm× q be given. Then, the matrix equation (1.1) has a solution for X ∈ Cn×p

if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗). In this case, the general solution to (1.1) can be written in the following
parametric form:

X = AĎCBĎ + FAV1 + V2EB, (1.13)

where V1, V2 ∈ Cn× p are arbitrary.

The necessary and sufficient conditions for (1.1) to have a Hermitian solution and the general Hermitian solution
expression are as follows.

Lemma 1.6 ([5–7]). Given A ∈ Cm× n, B ∈ Cn× p, and C ∈ Cm× p, and assuming that the matrix equation AXB = C is solvable
for X ∈ Cn×n, the following statements are equivalent.

(a) The matrix equation AXB = C has a Hermitian solution for X.
(b)

R(C) ⊆ R(A), R(C∗) ⊆ R(B∗), r

C 0 A
0 −C∗ B∗

B A∗ 0


= 2r[ A∗, B ]. (1.14)

(c) The pair of matrix equations

AYB = C and B∗YA∗
= C∗ (1.15)

have a common solution for Y .
In this case, the general Hermitian solution to AXB = C can be written as

X =
1
2
(Y + Y ∗) (1.16)

where Y is the common solution to (1.16), or equivalently,

X =
1
2
(Y0 + Y ∗

0 ) + EGU1 + (EGU1)
∗
+ FAU2FA + EBU3EB, (1.17)

where Y0 is a special common solution to (1.16), G = [ A∗, B ] and the three matrices U1 ∈ Cn×n,U2,U3 ∈ Cn
H are arbitrary.

The following results are related to ranks and inertias of some matrix expressions.

Lemma 1.7 ([3]). Given A ∈ Cm
H , B ∈ Cm×n, C ∈ Cm×p and D ∈ Cm×q, define

M =

 A B C D
B∗ 0 0 0
C∗ 0 0 0
D∗ 0 0 0

 , N =


A B C D
B∗ 0 0 0


.
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Then,

max
X∈Cn×m,Y∈Cp

H ,Z∈Cq
H

r[ A − BX − (BX)∗ − CYC∗
− DZD∗

] = min {m, r(N)} , (1.18)

min
X∈Cn×m,Y∈Cp

H ,Z∈Cq
H

r[ A − BX − (BX)∗ − CYC∗
− DZD∗

] = 2r(N) − r(M) − 2r(B), (1.19)

max
X∈Cn×m,Y∈Cp

H ,Z∈Cq
H

i±[ A − BX − (BX)∗ − CYC∗
− DZD∗

] = i±(M), (1.20)

min
X∈Cn×m,Y∈Cp

H ,Z∈Cq
H

r[ A − BX − (BX)∗ − CYC∗
− DZD∗

] = r(N) − i∓(M) − r(B). (1.21)

Lemma 1.8 ([15,3]).

(a) Let A1, A2, B1, B2, C1, C2 and D be matrices such that the expression D − C1A
Ď
1B1 − C2A

Ď
2B2 is defined. Then

r(D − C1A
Ď
1B1 − C2A

Ď
2B2) = r

A∗

1A1A∗

1 0 A∗

1B1
0 A∗

2A2A∗

2 A∗

2B2
C1A∗

1 C2A∗

2 D


− r(A1) − r(A2). (1.22)

(b) Let A, B, C,D and P,Q be matrices such that expression D − CPĎAQ ĎB is defined. Then

r(D − CPĎAQ ĎB) = r

P∗AQ ∗ P∗PP∗ 0
Q ∗QQ ∗ 0 Q ∗B

0 CP∗
−D


− r(P) − r(Q ). (1.23)

(c) Let A ∈ Cm
H , B ∈ Cq×n, P ∈ Cq×m and D ∈ Cn

H . Then

i±(D − B∗(PĎ)∗APĎB) = i±


−PAP∗ PP∗P 0
P∗PP∗ 0 P∗B

0 B∗P D


− r(P). (1.24)

2. The Hermitian least square solution of the matrix equation AXB = C subject to inequality restrictions

Let A ∈ Cm×n, B ∈ Cn×q and C ∈ Cm×q be given. It is well-known that the least squares solution to (1.1) is the solution of
its normal equation and the normal equation corresponding to

min
X∈Cn

H

∥AXB − C∥ (2.1)

is

A∗AXBB∗
= A∗CB∗. (2.2)

Obviously, R(A∗CB∗) ⊆ R(A∗) = R(A∗A), R(BC∗A) ⊆ R(B) = R(BB∗), i.e. (2.2) is consistent. Assuming that

r

A∗CB∗ 0 A∗A
0 −BC∗A BB∗

BB∗ A∗A 0


= 2r(G), (2.3)

from Lemma 1.6, we know that (2.2) has a Hermitian solution, and its general Hermitian solution can be written as

X =
1
2
(Y0 + Y ∗

0 ) + EGU1 + (EGU1)
∗
+ FAU2FA + EBU3EB, (2.4)

where G = [ A∗A, BB∗
], Y0 is a special common solution to

A∗AYBB∗
= A∗CB∗ and BB∗YA∗A = BC∗A, (2.5)

and the three matrices U1 ∈ Cn×n,U2,U3 ∈ Cn
H are arbitrary.

Lemma 2.1. Let A, B, C,D and P,Q be matrices such that the expression D − CPĎAQ ĎB − (CPĎAQ ĎB)∗ is defined, and D is
Hermitian. Define

S =


0 −P∗AQ ∗ 0 P∗PP∗ 0

−QA∗P 0 QQ ∗Q 0 0
0 Q ∗QQ ∗ 0 0 Q ∗B

PP∗P 0 0 0 PC∗

0 0 B∗Q CP∗ D

 .
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Then

i±(D − CPĎAQ ĎB − (CPĎAQ ĎB)∗) = i±(S) − r(P) − r(Q ). (2.6)

Proof. Applying Lemma 1.8(c),

i±(D − CPĎAQ ĎB − (CPĎAQ ĎB)∗)

= i±


D − [ C, B∗

]


0 Q ∗

P 0

Ď 
0 A∗

A 0

 
0 P∗

Q 0

Ď 
C∗

B



= i±


−


0 P∗

Q 0

 
0 A∗

A 0

 
0 Q ∗

P 0

 
0 P∗

Q 0

 
0 Q ∗

P 0

 
0 P∗

Q 0


0

0 Q ∗

P 0

 
0 P∗

Q 0

 
0 Q ∗

P 0


0


0 Q ∗

P 0

 
C∗

B


0 [ C, B∗

]


0 P∗

Q 0


D


− r


0 P∗

Q 0


= i±(S) − r(P) − r(Q ). � (2.7)

Theorem 2.2. Let A ∈ Cm×n, B ∈ Cn×q, C ∈ Cm×q and P ∈ Cn
H be given. Assume that (2.3) holds, an X is a Hermitian least

squares solution to (1.1). Define

T1 =

BB∗ 0 0 BC∗A 0
0 A∗A 0 0 A∗CB∗

0 A −A 0 APBB∗

B∗ 0 B∗ B∗PA∗A 0

 ,

T2 =



0 −
1
2
BC∗A 0 −

1
2
BB∗PA∗

−BB∗

−
1
2
A∗CB∗ 0 A∗A 0 0
0 A∗A 0 A∗ 0

−
1
2
APBB∗ 0 A 0 −A

−BB∗ 0 0 −A∗ 0


.

Then,

max
min∥AXB−C∥,X∈Cn

H

r(P − X) = min {n, 2n + r(T1) − 2r(A) − 2r(B) − r(G)} , (2.8)

min
min∥AXB−C∥,X∈Cn

H

r(P − X) = 2r(T1) − r(T2) − 2r(B), (2.9)

max
min∥AXB−C∥,X∈Cn

H

i±(P − X) = n + i±(T2) − 2r(A) − r(B), (2.10)

min
min∥AXB−C∥,X∈Cn

H

i±(P − X) = r(T1) − i∓(T2) − r(B). (2.11)

Proof. Substituting (2.4) into P − X yields

P − X = P −
1
2
(Y0 + Y ∗

0 ) − EGU1 − (EGU1)
∗
− FAU2FA − EBU3EB. (2.12)

Define

M =


P −

1
2
(Y0 + Y ∗

0 ) EG FA EB
EG 0 0 0
FA 0 0 0
EB 0 0 0

 , N =


P −

1
2
(Y0 + Y ∗

0 ) EG FA EB
EG 0 0 0


.
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Applying (1.19)–(1.22) to (2.12) yields

max
min ∥AXB−C∥,X∈Cn

H

r(P − X) = max
U1∈Cn×n,U2,U3∈Cn

H

r

P −

1
2
(Y0 + Y ∗

0 ) − EGU1 − (EGU1)
∗
− FAU2FA − EBU3EB


= min {n, r(N)} , (2.13)

min
min ∥AXB−C∥,X∈Cn

H

r(P − X) = min
U1∈Cn×n,U2,U3∈Cn

H

r

P −

1
2
(Y0 + Y ∗

0 ) − EGU1 − (EGU1)
∗
− FAU2FA − EBU3EB


= 2r(N) − r(M) − 2r(EG), (2.14)

max
min ∥AXB−C∥,X∈Cn

H

i±(P − X) = max
U1∈Cn×n,U2,U3∈Cn

H

i±


P −

1
2
(Y0 + Y ∗

0 ) − EGU1 − (EGU1)
∗
− FAU2FA − EBU3EB


= i±(M), (2.15)

min
min ∥AXB−C∥,X∈Cn

H

i±(P − X) = min
U1∈Cn×n,U2,U3∈Cn

H

i±


P −

1
2
(Y0 + Y ∗

0 ) − EGU1 − (EGU1)
∗
− FAU2FA − EBU3EB


= r(N) − i∓(M) − r(EG), (2.16)

We will simplify r(N) and i±(M) by applying three types of elementary block matrix operation, elementary block
congruence matrix operations and (1.6) and (1.13).

We can prove R(EG) ⊆ R(EB) easily, then

r(N) = r


P −

1
2
(Y0 + Y ∗

0 ) FA EB
EG 0 0



= r


P −

1
2
(Y0 + Y ∗

0 ) In In 0
In 0 0 G
0 A 0 0
0 0 B∗ 0

− r(A) − r(B) − r(G)

= r


P −

1
2
(Y0 + Y ∗

0 ) In In 0 0
In 0 0 A∗A BB∗

0 A 0 0 0
0 0 B∗ 0 0

− r(A) − r(B) − r(G)

= n + r

 In 0 A∗A BB∗

−AP +
1
2
AY0 +

1
2
AY ∗

0 −A 0 0
0 B∗ 0 0

− r(A) − r(B) − r(G)

= 2n + r


−A APA∗A −

1
2
AY0A∗A −

1
2
AY ∗

0 A
∗A APBB∗

−
1
2
AY0BB∗

−
1
2
AY ∗

0 BB
∗

B∗ 0 0


− r(A) − r(B) − r(G)

= 2n + r

−A 0 APBB∗

− (AĎ)∗A∗CB∗

B∗ B∗PA∗A − BĎBC∗A 0


− r(A) − r(B) − r(G), (2.17)

r

−A 0 APBB∗

− (AĎ)∗A∗CB∗

B∗ B∗PA∗A − BĎBC∗A 0


= r


−A 0 APBB∗

B∗ B∗PA∗A 0


−


0
Iq


BĎ[ 0, BC∗A, 0 ] −


Im
0


(A∗)Ď[ 0, 0, A∗CB∗, ]



=

B∗BB∗ 0 0 B∗BC∗A 0
0 AA∗A 0 0 AA∗CB∗

0 A −A 0 APBB∗

B∗ 0 B∗ B∗PA∗A 0

− r(A) − r(B)

= r(T1) − r(A) − r(B). (2.18)

Substituting (2.18) into (2.17) yields

r(N) = 2n − 2r(A) − 2r(B) − r(G) + r(T1) (2.19)
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i±(M) = i±

P −
1
2
(Y0 + Y ∗

0 ) FA EB
FA 0 0
EB 0 0



= i±


P −

1
2
(Y0 + Y ∗

0 ) In In 0 0
In 0 0 A∗ 0
In 0 0 0 B
0 A 0 0 0
0 0 B∗ 0 0

− r(A) − r(B)

= n + i±


0 −A∗ B

−A 0
1
2
APB −

1
4
AY0B −

1
4
AY ∗

0 B

B∗
1
2
B∗PA∗

−
1
4
B∗Y ∗

0 A
∗
−

1
4
B∗Y0A∗ 0

− r(A) − r(B)

= n + i±


0 −A∗ B

−A 0
1
2
APB −

1
2
(AĎ)∗A∗CB∗(BĎ)∗

B∗
1
2
B∗PA∗

−
1
2
BĎBC∗AAĎ 0

− r(A) − r(B), (2.20)

i±


0 −A∗ B

−A 0
1
2
APB −

1
2
(AĎ)∗A∗CB∗(BĎ)∗

B∗
1
2
B∗PA∗

−
1
2
BĎBC∗AAĎ 0



= i±




0 −A∗ B

−A 0
1
2
APB

B∗
1
2
B∗PA∗ 0

−
1
2

0
0
Iq


BĎBC∗AAĎ[ 0, Im, 0 ] −

1
2

 0
Im
0


(A∗)ĎA∗CB∗(B∗)Ď[ 0, 0, Iq ]



= i±



0 −
1
2
B∗BC∗AA∗ 0 B∗BB∗ 0 0 0

−
1
2
AA∗CB∗B 0 AA∗A 0 0 0 0
0 A∗AA∗ 0 0 0 A∗ 0

BB∗B 0 0 0 0 0 B
0 0 0 0 −A∗ B

0 0 A 0 −A 0
1
2
APB

0 0 0 B∗ B∗
1
2
B∗PA∗ 0


− r(A) − r(B)

= i±(T2) − r(A). (2.21)

Substituting (2.21) into (2.20) yields

i±(M) = n + i±(T2) − 2r(A) − r(B). (2.22)

We can also obtain

r(M) = 2n + r(T2) − 4r(A) − 2r(B). (2.23)

Substituting (2.19), (2.22) and (2.23) into (2.13)–(2.16) yields (2.8)–(2.11).
From Theorem 2.2 and Lemma 1.1, we have proved the result. �

Theorem 2.3. Let AXB = C and G, P, T1, T2, T3 be stated as in Theorem 2.2. Then:

(a) There exist X > P such that X is a Hermitian least squares solution to AXB = C if and only if

r(T1) = i−(T2) + r(B).

(b) There exist X 6 P such that X is a Hermitian least squares solution to AXB = C if and only if

r(T1) = i+(T2) + r(B).
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(c) There exist X > P such that X is a Hermitian least squares solution to AXB = C if and only if

i−(T2) = 2r(A) + r(B).

(d) There exist X < P such that X is a Hermitian least squares solution to AXB = C if and only if

i+(T2) = 2r(A) + r(B).

(e) There exists a nonsingular matrix P − X such that X is a Hermitian least squares solution to AXB = C if and only if

n + r(T1) > 2r(A) + 2r(B) + r(G).

(f) P is a Hermitian least squares solution to AXB = C if and only if

2r(T1) = r(T2) + 2r(B).

If P is the zero matrix in Theorem 2.3, we have the following conclusions.

Corollary 2.4. Let AXB = C be stated as in Theorem 2.2. Define

S1 =

BB∗ 0 0 BC∗A 0
0 A∗A 0 0 A∗CB∗

0 A −A 0 0
B∗ 0 B∗ 0 0

 , S2 =


0 −

1
2
BC∗A 0 0 −BB∗

−
1
2
A∗CB∗ 0 A∗A 0 0
0 A∗A 0 A∗ 0
0 0 A 0 −A

−BB∗ 0 0 −A∗ 0

 .

Then:

(a) AXB = C has a Hermitian nonnegative definite least squares solution if and only if

r(S1) = i−(S2) + r(B).

(b) AXB = C has a Hermitian nonpositive definite least squares solution if and only if

r(S1) = i+(S2) + r(B).

(c) AXB = C has a Hermitian negative definite least squares solution if and only if

i+(S2) = 2r(A) + r(B).

(d) AXB = C has a Hermitian positive definite least squares solution if and only if

i−(S2) = 2r(A) + r(B).

(e) AXB = C has a nonsingular Hermitian least squares solution if and only if

n + r(S1) > 2r(A) + 2r(B) + r(G).

(f) 0 is a least squares solution of AXB = C if and only if

2r(S1) = 2r(B) + r(S2).

(g) All Hermitian least squares solutions of AXB = C are nonsingular if and only if

2r(S1) = n + 2r(B) + r(S2).

Finally, we will present a numerical example to verify our conclusion.

Numerical example. Let A =


1 −1
1 0
0 1


, B =


−1 0
1 1


and C =


1 −1

−5 −1
6 3


. Then

G =


2 −1 1 −1

−1 2 −1 2


, F =

A∗CB∗ 0 A∗A
0 −BC ∗ A BB∗

BB∗ A∗A 0


=


4 −6 0 0 2 −1

−5 9 0 0 −1 2
0 0 −4 6 1 −1
0 0 5 −9 −1 2
1 −1 2 −1 0 0

−1 2 −1 2 0 0

 ,
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S2 =



0 0 − 2 2.5 0 0 0 0 0 −1 1
0 0 3 −4.5 0 0 0 0 0 1 −2

−2 3 0 0 2 −1 0 0 0 0 0
2.5 −4.5 0 0 −1 2 0 0 0 0 0
0 0 2 −1 0 0 1 1 0 0 0
0 0 −1 2 0 0 −1 0 1 0 0
0 0 0 0 1 −1 0 0 0 −1 1
0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 −1

−1 1 0 0 0 0 −1 −1 0 0 0
1 −2 0 0 0 0 1 0 −1 0 0


,

and we can compute r(A), r(B), r(G), r(F) and i−(S2) by using Matlab, obtaining results as follows:

r(A) = 2, r(B) = 2, r(G) = 2, r(F) = 4, i−(S2) = 6,

and

r(F) = 2r(G), i−(S2) = 2r(A) + r(B).

From Corollary 2.4(d), we know that there exist Hermitian positive definite least squares solution to the equation AXB = C .
In fact, we can verify that X =


1 0
0 2


is a Hermitian positive definite least squares solution to AXB = C .
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