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SUMMARY

Inactivation of Gli3, a key component of Hedgehog
signaling in vertebrates, results in formation of addi-
tional digits (polydactyly) during limb bud develop-
ment. The analysis of mouse embryos constitutively
lackingGli3 has revealed the essential GLI3 functions
in specifying the anteroposterior (AP) limb axis and
digit identities. We conditionally inactivated Gli3
during mouse hand plate development, which un-
coupled the resulting preaxial polydactyly from
known GLI3 functions in establishing AP and digit
identities. Our analysis revealed that GLI3 directly
restricts the expression of regulators of the G1–S
cell-cycle transition such as Cdk6 and constrains S
phase entry of digit progenitors in the anterior hand
plate. Furthermore, GLI3 promotes the exit of
proliferating progenitors toward BMP-dependent
chondrogenic differentiation by spatiotemporally
restricting and terminating the expression of the
BMP antagonist Gremlin1. Thus, Gli3 is a negative
regulator of the proliferative expansion of digit pro-
genitors and acts as a gatekeeper for the exit to
chondrogenic differentiation.

INTRODUCTION

Hedgehog signaling is a major regulator of organogenesis in

both vertebrate and invertebrate embryos (Jiang and Hui,

2008; Varjosalo et al., 2006). Analysis of Sonic Hedgehog

(SHH) signaling has provided insights into howSHHorchestrates

vertebrate limb bud development (Chiang et al., 2001; Harfe

et al., 2004; Riddle et al., 1993; Zeller et al., 2009). In the posterior

mesenchyme, SHH is produced by the polarizing region (ZPA) to
Deve
control anteroposterior (AP) axis specification and proliferative

expansion of mesenchymal progenitors together with FGF and

Wnt signals (ten Berge et al., 2008; Towers et al., 2008; Zhu

et al., 2008). All three types of signals stimulate the expression

ofMycn, which appears to be a key regulator of limb budmesen-

chymal cell proliferation because its inactivation decreases

proliferation, resulting in smaller limb skeletal elements and

syndactyly (Ota et al., 2007).

SHH is part of a self-regulatory system that interlinks the ZPA

with the apical ectodermal ridge (AER) and controls limb bud

outgrowth by coordinating BMP, FGF, and SHH signaling with

the clearance of retinoic acid from the distal mesenchyme

(Probst et al., 2011; Zeller et al., 2009). A key node in this system

is the BMP antagonist Gremlin1 (GREM1), which keeps BMP

activity low during limb bud outgrowth (Bénazet et al., 2009).

This feedback signaling system is self-terminating, as (1) the ex-

panding population of Shh descendants is refractory to Grem1

expression (Scherz et al., 2004), and (2) high AER-FGF signaling

inhibits Grem1 expression in the distal mesenchyme (Verheyden

and Sun, 2008). AER-FGF signaling increases during limb bud

outgrowth, which eventually inhibits Grem1 expression. This

termination of Grem1 expression results in a renewed raise of

BMP activity (Bénazet et al., 2009; Verheyden and Sun, 2008),

which initiates condensation and chondrogenic differentiation

of mesenchymal progenitors (Bandyopadhyay et al., 2006; Piz-

ette and Niswander, 2000). In digit primordia, differential BMP

signal transduction in the distal phalanx-forming region is likely

required to determine the definitive identities (Suzuki et al.,

2008; Witte et al., 2010).

In vertebrates, the expression of SHH target genes is

regulated by the GLI1-3 transcription factors. In particular,

SHH signal transduction at the primary cilia inhibits the proteo-

lytic processing of GLI3 to a transcriptional repressor (GLI3R;

Wen et al., 2010). This results in accumulation of GLI1-3 activa-

tors in the posterior limb bud, whereas GLI3R is the predominant

GLI isoform in the anterior mesenchyme (Ahn and Joyner, 2004;

Wang et al., 2000). A genome-wide screen for cis-regulatory
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regions bound by an epitope-tagged GLI3R transgene in

mouse limb buds has identified �200 candidate transcriptional

targets, among them Grem1 and the cell-cycle regulator Cdk6

(Vokes et al., 2008). Loss-of-function mutations in the mouse

Gli3 gene cause preaxial and central polydactylies with soft

tissue fusions (polysyndactyly), a prominent feature shared

with human congenital malformations caused by mutations in

GLI3 (Biesecker, 2006). Analysis of the extra-toes (Xt) loss-of-

function mutation in mice has been instrumental to uncover

essential requirements of Gli3 (Hui and Joyner, 1993; Schim-

mang et al., 1992). In limb buds, Gli3 is expressed from early

stages onward and interacts with the Hand2 and 50Hoxd
transcription factors to polarize the nascent mesenchyme and

restrict Shh activation to the posterior mesenchyme (Galli

et al., 2010; te Welscher et al., 2002a; Zakany et al., 2007). In

Gli3-deficient mouse limb buds, posterior genes are expressed

ectopically, whereas anterior genes are downregulated (Büscher

et al., 1997; Hill et al., 2009; Litingtung et al., 2002; McGlinn et al.,

2005; teWelscher et al., 2002b; Zúñiga and Zeller, 1999). Hence,

Gli3 participates in setting up the AP limb bud axis, but the

extent to which posterior identity is retained in Gli3-deficient

limb buds remained unclear (Galli et al., 2010; Hill et al., 2009).

Limb buds deficient for both Gli3 and Hand2 lack AP polarity

and are highly polydactylous (Galli et al., 2010), whereas

the polydactyly of mouse limbs lacking both Gli3 and Shh is

indistinguishable from Gli3 mutants (Litingtung et al., 2002; te

Welscher et al., 2002b). Molecular analysis indicated that one

major function of SHH is to counteract GLI3R-mediated repres-

sion of distal limb and digit development. Furthermore, the

massive apoptosis observed in Shh-deficient limb buds has

been linked to increased GLI3R levels and aberrantly high

BMP activity (Bastida et al., 2004). Indeed, the incompletely

penetrant anterior digit duplications in heterozygous XtJ

(Gli3XtJ/+) mice are enhanced by additional heterozygosity for

aBmp4 loss-of function allele (Dunn et al., 1997). Similarly, trans-

gene-mediated ectopic Hoxd12 expression enhances the digit

polydactyly because GLI3R forms a transcriptional activator

complex with HOXD12 that promotes the formation of additional

digits (Chen et al., 2004). The digit polydactyly of Gli3-deficient

limbs is also enhanced by deletion of 50HoxD genes, which

results in an anterior gain of Hoxd9 and Hoxd10 expression

(Sheth et al., 2007).

We generated a conditional loss-of-function Gli3 allele and in-

activatedGli3 specifically in the developing hand plate (autopod)

of mouse limb buds. This allowed us to uncover the dual mech-

anism by which GLI3 controls digit morphogenesis and restrains

the autopod to five digits (pentadactyly). In the anterior mesen-

chyme, GLI3 acts as a gatekeeper of the G1–S transition by regu-

lating the expression of cell-cycle genes and S phase entry. In

addition, GLI3 restricts and terminates Grem1 expression in

the anterior autopod in a spatiotemporally controlled manner,

which promotes the BMP-dependent exit of progenitors from

proliferation to chondrogenic differentiation. Disruption of this

dual role underlies the resulting preaxial polydactylies because

progenitors continue to proliferate, and the onset of chondro-

genic differentiation is delayed in the absence of Gli3. This study

shows how GLI3 tightly controls the kinetics and length of prolif-

erative expansion and constrains the developing limb bud to

pentadactyly.
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RESULTS

Constitutive Loss of Gli3 Alters the Anterior but Not
Posterior Autopod
To assess the extent of posterior development in Gli3-deficient

forelimb buds, mesenchymal progenitors were marked by acti-

vation of a LacZ reporter gene in Shh-expressing cells and their

descendants (Harfe et al., 2004). Despite the lack of Gli3 and

anterior ectopic SHH signaling (see Figure S1 available online),

the descendants contributed equally to the posterior-most

digits d5 and d4, and no ectopic anterior spot of LacZ-positive

cells was detected in Gli3-deficient limb buds (Figure 1A; see

also Harfe et al., 2004). The central and posterior digits 3–5

were readily identified by their morphology and extent of meta-

carpal ossification in Gli3-deficient limbs (Figure 1B). Several

additional anterior digits formed, but the anterior-most digit 1

was lost in Gli3-deficient limbs (Figure 1B). These results

showed that posterior cell fates were maintained and that the

polydactyly arose from the anterior and central autopod in

mutant limb buds. Real-time quantitative PCR (qPCR) and

RNA in situ hybridization showed that the expression of SHH

targets such as the transcriptional regulators 50Hoxd, Hand2,
and Gli1 was increased in the anterior mesenchyme

(Figure S1).

Conditional Inactivation of Gli3 in the Developing
Autopod
To study the spatiotemporal requirements of Gli3, we generated

a conditional loss-of-function Gli3f allele (Figures 1C and S1).

Cre-mediated recombination of the Gli3f allele resulted in a

deletion that encompassed the DNA binding and transactivation

domains as in the constitutive Gli3XtJ null allele, but only 15 kb

instead of 51 kb was deleted (Maynard et al., 2002). An addi-

tional Gli3 null allele (Gli3D) was generated by germline recombi-

nation of the Gli3f allele. Genetic complementation with the

Gli3XtJ allele showed that this Gli3D allele reproduces the pleio-

tropic range of Gli3 loss-of function phenotypes (Figure S1;

data not shown). Therefore, both Gli3 null alleles were used

interchangeably and are referred to as Gli3D alleles. In addition,

Prx1-Cre-mediated inactivation of Gli3 from early limb bud

stages onward (Gli3D/Dc; P1-Cre) caused an anterior polydactyly

indistinguishable from Gli3XtJ/XtJ limbs (Figure 1D; compare to

Figure 1B).

We inactivated the Gli3f allele specifically during autopod

development in forelimb buds (Gli3Dc allele) using a mouse

strain expressing the Cre-recombinase under control of the

Hoxa13 locus (Hoxa13Cre/+, Figure 1E; Scotti and Kmita,

2012). At embryonic day (E) 10.5, the Gli3 transcript distribution

was not affected, whereas by �E11.75, Gli3 transcripts had

cleared from the distal autopod of Gli3D/Dc forelimb buds (lower

panels, Figure 1E). Immunoblotting showed that both the full-

length GLI3 (GLI3FL) and GLI3R protein isoforms were no longer

detectable in the distal part of the Gli3D/Dc autopod, whereas

levels in the proximal part remained similar to Gli3D/+ controls

(Figures 1F and 1G). To exclude phenotypic and/or molecular

variations due to heterozygosity for Hoxa13 in Gli3D/Dc forelimb

buds, all other embryos (wild-type, Gli3D/+, and Gli3D/D)

analyzed also carried one Hoxa13Cre/+ allele (Figures 2, 3, 4, 5,

6, and 7).
nc.



Figure 1. Preaxial Polydactyly and Condi-

tional Inactivation of Gli3 during Mouse

Autopod Development

(A) Shh-Cre-mediated activation of a LacZ trans-

gene inserted into the mouse Rosa26 locus was

used to map Shh descendants in wild-type and

Gli3-deficient forelimbs. Wild-type (Wt) genotype,

ShhCre/+, R26LacZ/+; Gli3XtJ/XtJ, Gli3-deficient

embryo carrying theShhCre/+ andR26LacZ/+ alleles.

(B) Forelimb skeletons at E16.5. Themineralization

of metacarpal bones (red; cartilage appears blue)

in combination with the number and length of

phalanges allows identification of posterior digits

in wild-type (Wt) and Gli3-deficient (Gli3XtJ/XtJ)

embryos (see also Figure S1).

(C) Scheme depicting the Gli3 locus and Gli3

conditional allele. Deletion results in complete loss

of function identical to the Gli3XtJ null allele. Black

triangles indicate loxP sites (see also Figure S1).

(D) Inactivation of Gli3 in the limb bud mesen-

chyme from early stages onward using the

Prx1-Cre transgene (P1-Cre) results in fore- and

hindlimb polydactylies indistinguishable from

Gli3XtJ/XtJ limbs.

(E) Upper left panels show the Hoxa13-Cre trans-

gene recombines the R26LacZ/+ reporter specifi-

cally in the distal part of the forming autopod.

Upper right and lower panels illustrate the clearing

of Gli3 transcripts that was assessed by RNA

in situ hybridization. Wt and Gli3D/D embryos were

used as positive and negative controls (upper right

panels). Hoxa13Cre/+-mediated recombination of

the Gli3f allele produces the Gli3Dc allele.

(F) Immunoblot analysis of full-length (GLI3FL) and

processed GLI3 repressor (GLI3R) protein in

forelimb hand plates at E11.75. Protein extracts

were normalized for Vinculin content (VCL).

(G) Immunoblot analysis of GLI3 protein in Gli3D/Dc

forelimb hand plates dissected into proximal (P)

and distal (D) portions.

For digit nomenclatures in (A), (B), (D), and all

subsequent figures, normal digits with respect to

position and morphology are indicated in black.

Duplicated and/or additional digits in Gli3-defi-

cient forelimbs are indicated in red. Red asterisks

indicate hypomorphic digits or digits with uncer-

tain identity. *s, ‘‘split’’ digit due to duplication of

distal phalanges.

Developmental Cell

Dual Control of Digit Progenitor Expansion by Gli3
Inactivation of Gli3 by Hoxa13-Cre Uncouples Preaxial
Polydactyly from AP Axis Specification
Analysis of Gli3D/Dc forelimbs at E16.5 revealed a distinct

preaxial polydactyly (n = 42/42, Figure 2A). In general, the

duplications affected digits 1 and 2 (asterisks in Figure 2A),

and anterior character was retained in contrast to Gli3D/D fore-

limbs. All Gli3D/+, Hoxa13Cre/+ forelimbs were phenotypically

normal (n = 10/16) or displayed only minor dysmorphologies

(n = 6/16; data not shown). Anterior ectopic or expandedmesen-

chymal expression of Gli1, Hoxd12, Hoxd13, and AER-Fgf8

hallmarks the Gli3 loss-of-function phenotype (panels Gli3D/D,

Figures 2B–2E; Büscher et al., 1997; Zúñiga and Zeller, 1999),

but none of these genes were significantly altered in Gli3D/Dc

forelimb buds (panels Gli3D/Dc, Figures 2B–2E). Rarely, very

small ectopic patches of 50Hoxd transcripts (Hoxd13, n = 1/9;
Deve
Hoxd12, n = 2/6) were detected in Gli3D/Dc forelimb buds (data

not shown), but the anterior expression boundaries were other-

wise maintained (panels Gli3D/Dc, Figures 2B–2E). This indicated

that anterior and posterior identities were retained in Gli3D/Dc

forelimb buds. At E11.75, the size ofGli3D/Dc hand plates was still

normal in contrast to the enlarged autopod primordia in Gli3D/D

forelimb buds (Figures 2B–2E). Morphometric analysis revealed

that only by E12.5, bothGli3D/Dc (+38% ± 14%) andGli3D/D hand

plates (+46% ± 12%) were enlarged in comparison to wild-type

controls (Figure S2; data not shown). Although the anterior-most

digit inGli3D/Dc forelimbs was clearly dysmorphic, the analysis of

molecular markers revealed the normal anterior digit 1 expres-

sion domains (Figure S2). Therefore, inactivation of Gli3 during

autopod development uncoupled the preaxial polydactyly from

alterations of the AP axis and showed that GLI3R is required to
lopmental Cell 22, 837–848, April 17, 2012 ª2012 Elsevier Inc. 839



Figure 2. Hoxa13-Cre-Mediated Inactivation of

Gli3 Uncouples Preaxial Polydactyly from the

Loss of AP Axis Specification

(A) Analysis of forelimb skeletons at E16.5.

(B–E) Analysis of the spatial distribution ofGli1 (B),Hoxd13

(C), Hoxd12 (D), and AER-Fgf8 transcripts (E) in forelimb

buds (E11.75, 50–52 somites). Ectopic (white arrowheads)

and normal (black arrowheads) expression domains of

Gli1 and Fgf8 are indicated. Broken lines mark the

expanded (white) and normal (black) expression of 50Hoxd
genes in Gli3D/D and Gli3D/Dc forelimb buds. All forelimb

buds analyzed carried one Hoxa13Cre/+ allele to exclude

possible phenotypic variation due to heterozygosity for

Hoxa13 (see also Figure S2).
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restrain the autopod to pentadactyly long after SHH-dependent

specification of AP identities (Zhu et al., 2008).

Shared Molecular Signatures of the Two Gli3-Deficient
Polydactylies
The transcriptomes of both types of Gli3-deficient anterior auto-

pods were compared to wild-types at E11.75 to identify shared

molecular alterations. The transcriptome of three independent

anterior autopod samples per genotype was analyzed (Fig-

ure 3A). Hierarchical clustering revealed that the transcriptomes

of Gli3D/Dc and Gli3D/D anterior autopods were more similar to

each other than wild-type and Gli3D/+ control samples (all

carrying the Hoxa13Cre/+ allele; Figure 3B). These microarray

data sets were biologically significant because all known anterior

alterations in Gli3XtJ/XtJ limb buds (Figure S1; McGlinn et al.,

2005) and the normal expression of anterior genes in Gli3D/Dc

forelimb buds were detected (Figures 2 and S2). Ingenuity

Pathway Analysis and validation of the detected alterations by

qPCR and RNA in situ hybridization revealed striking transcrip-

tional changes. In particular, the core module that regulates

the G1–S transition of the cell cycle was specifically altered in

both Gli3D/Dc and Gli3D/D anterior autopods (indicated by broken
840 Developmental Cell 22, 837–848, April 17, 2012 ª2012 Elsevier Inc.
line, Figure 3C; Neganova and Lako, 2008),

whereasMycn andmost other cell-cycle regula-

tors were not consistently changed (Figures 3C

and S3). The significant upregulation and ante-

rior expansion of the cyclin/kinase pair Cdk6

(�1.9-fold) and Ccnd1 (�1.3-fold) in the anterior

hand plate of both types of Gli3-deficient fore-

limb buds were confirmed by qPCR and RNA

in situ hybridization analysis (Figures 3D and

3E). The expression of Cdkn2c, encoding

a CDK4/6 inhibitor (Sherr and Roberts, 1995),

was reduced �0.65-fold (Figure 3D). In

summary, this transcriptome analysis revealed

that the G1–S transition of the cell cycle was

specifically altered in the anterior of Gli3-defi-

cient autopods.

Altered Cell-Cycle Kinetics of Digit
Progenitors in the Anterior Autopod
To directly assess the relevance of these tran-

scriptional changes with respect to the cell
cycle, mouse embryos were labeled with BrdU for 1 hr, and ante-

rior and posterior autopods were dissected from age-matched

Gli3D/D (n = 5 at E11.75; �50 somites) and control littermates

(n = 7). Dead cells (%10% in all genotypes), erythrocytes, and

debris were excluded using the appropriate gates, and intact

single cells were analyzed by flow cytometry (Figures 4A and

4B) to determine the fractions of cells in three distinct phases

of the cell cycle (G0–G1, S, andG2–M; Figure 4A). Cells in S phase

contained high levels of BrdU and DNA, whereas cells in the

G0–G1 (low DNA content) and G2–M (high DNA content) phases

had incorporated little or no BrdU (Figure 4A). No significant

changes were detected between anterior and posterior parts

of control autopods or with posterior parts of Gli3D/D mutant au-

topods (Figures 4A and 4B). This contrasted with the anterior

part of Gli3-deficient autopods because the fraction of cells in

S phase was increased by �25% (p % 0.01; Figures 4A and

4B). Concurrently, the fraction of cells in the G0–G1 transition

of the cell cycle was decreased by �17% (p% 0.01; Figure 4B).

These alterations revealed that cell-cycle entry was significantly

enhanced in the anterior part of Gli3-deficient autopods (Figures

4A and 4B), in agreement with the specific transcriptional

changes of regulators of the G1–S transition (Figures 3C–3E).



Figure 3. The G1–S Transition of the Cell Cycle Is Altered in the Anterior Mesenchyme of Both Types of Gli3-Deficient Forelimb Buds

(A) Anterior forelimb autopods dissected for transcriptome analysis at E11.75. Lower panel shows the clearance ofGli3 RNAs from the dissected anterior regions

in Gli3D/Dc mutants.

(B) Hierarchical clustering of the significant transcriptome alterations (p% 0.05 in all paired comparisons using two-way ANOVA tests). Red, genes upregulated;

blue, genes downregulated.

(C) Ingenuity Pathway Analysis was used to uncover the transcriptional alterations shared by Gli3D/D and Gli3D/Dc anterior forelimbs. The core module that

regulates the G1–S transition of the cell cycle is indicated by a broken line. Orange-red labeling of Ccnd1 and Cdk6 indicates significantly increased expression.

Cdk1, Mycn, increased expression in only one Gli3-deficiency. Myc, alteration was not confirmed by qPCR. Blue labeling of Cdkn2c indicates significantly

decreased expression.

(D) Validation of the alterations inCdk6,Ccnd1, andCdkn2c transcript levels by qPCR (n = 8, E11.75,�52 somites). Statistically significant changes are indicated

in blue (downregulation) and orange-red (upregulation). All results are represented as mean ± SD; p % 0.01.

(E) The spatial distribution of Cdk6 and Ccnd1 transcripts was analyzed by RNA in situ hybridization in combination with optical projection tomography (OPT),

which results in improved spatial resolution of low and/or widely expressed genes. Limb bud morphology is shown in the blue channel, whereas transcript

distribution is shown in the red channel. Broken white lines indicate the anterior domains with expanded expression.

All forelimb buds analyzed were heterozygous for the Hoxa13Cre/+ allele.
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A previous genome-wide search for cis-regulatory sequences

interacting with an exogenous epitope-tagged GLI3R protein in

mouse embryos had identifiedCdk6 as a potential transcriptional

target of GLI3 (Vokes et al., 2008). To gain further insight into the

possible direct regulation of Cdk6 by GLI3, specific antibodies

(Wen et al., 2010) were used for comparative chromatin immuno-

precipitation (ChIP) analysis ofwild-type andGli3D/D forelimbbud

extracts (Figure 4C). This analysis established that endogenous

GLI3 proteins interact specifically with this genomic region

located just upstream of the Cdk6-coding region in wild-type

limb buds (�4-fold enrichment), whereas no interaction was de-

tected inmutant limbbuds (Figure 4C). The functional importance

of this regulatory interaction was assessed by analyzing mouse

forelimb buds lacking both Gli3 and Cdk6 (Figures 4D and 4E;

Malumbres et al., 2004). Although up to seven digit rays formed
Deve
in Gli3D/D forelimb buds (n = 6/8), only six with duplicated distal-

most phalanges formed in the majority of all Gli3D/D, Cdk6D/D

forelimbs (n = 12/17, Figure 4D). In contrast, the less-pronounced

preaxial polydactyly in Gli3D/Dc forelimbs was not affected by

additional inactivation of Cdk6 (n = 6/6, Figure 4E). This genetic

analysis established the sensitivity of theGli3D/D, but notGli3D/Dc,

polydactyly to Cdk6 inactivation. In agreement, FGF signaling,

which stimulates proliferation, was increased in the anterior of

Gli3D/D but not Gli3D/Dc forelimb buds (Figures 2E and S3),

whereas Wnt signaling was not altered (data not shown).

Decreased BMP Activity in the Anterior ofGli3-Deficient
Limb Buds
Ingenuity Pathway Analysis also revealed major alterations of

BMP signaling in anterior Gli3-deficient autopods (Figure S4).
lopmental Cell 22, 837–848, April 17, 2012 ª2012 Elsevier Inc. 841



Figure 4. Enhanced S Phase Entry Contributes to the Preaxial Polydactyly in Gli3-Deficient Forelimb Buds

(A) Flow cytometric cell-cycle analysis of anterior and posterior limb bud cells in representative control (Gli3D/+) andGli3D/D autopod samples at E11.75. Limb bud

cells were gated to define three populations in the G0–G1, S, or G2–M phases of the cell cycle.

(B) Analysis of several Gli3D/D (n = 5) and control (Wt, n = 3; and Gli3D/+, n = 4) samples to reveal cell-cycle alterations. Wt and Gli3D/+ forelimb autopods were

pooled as controls because no significant differences were detected by analyzing individual samples. All data are shown as mean ± SD. **p% 0.01; *p% 0.05. A,

anterior limb bud; P, posterior limb bud.

(C) ChIP-qPCR using GLI3 antibodies detects interactions of the endogenous GLI3 proteins with theCdk6 locus. The blue region corresponds to a 3 kb fragment

identified by Vokes et al. (2008) (mm9: chr5: 3,341,265–3,344,289) that includes the proximal promoter. Amplicons ‘‘2’’ and ‘‘3’’ are located in the critical region. All

results are shown as mean ± SD (n R 3; p % 0.05).

(D and E) Skeletal phenotypes resulting from additional inactivation of Cdk6 in Gli3D/D and Gli3D/Dc forelimb buds.

All forelimb buds analyzed carried one Hoxa13Cre/+ allele. See also Figure S3.
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In particular, the expression of several targets of the BMP

pathway such as Msx2, Id1, and Id3 was reduced �2-fold in

Gli3-deficient anterior autopods (Figures 5A, 5C, and S4). This

reduction in BMP signal transduction was paralleled by a R2-

fold increase in Grem1 transcripts, whereas the expression of

Bmp ligands was not consistently altered (Figures 5B, 5C, and

S4). In Gli3D/D limb buds, Grem1 expression is expanded anteri-

orly from the onset of limb bud development onward (te

Welscher et al., 2002a), whereas inGli3D/Dc forelimbs its anterior

expansion occurred much later and concurrent with Hoxa13-

Cre-mediated inactivation of Gli3 (Figure 5B, compare to lower

panels in Figure 1E). Furthermore, Grem1 transcripts persisted

in the anterior of both types of Gli3-deficient forelimb buds,

whereas in wild-types transcripts became undetectable in the
842 Developmental Cell 22, 837–848, April 17, 2012 ª2012 Elsevier I
presumptive digit primordia by E12.5 (lower panels, Figure 5B).

ChIP analysis established that the endogenous GLI3 proteins in-

teracted with a known cis-regulatory region within the Grem1

genomic landscape (�6- to 8-fold enrichment, Figure 5D; Vokes

et al., 2008).

Gli3 Inactivation Delays the BMP-Dependent Exit
of Proliferating Digit Progenitors to Chondrogenesis
in the Anterior Mesenchyme
Because BMP signaling is required to initiate mesenchymal

condensations and chondrogenic differentiation (Pizette and

Niswander, 2000; Yoon et al., 2005), we analyzed the distribution

of Sox9, which marks the precartilaginous condensations of the

forming skeletal primordia (Ng et al., 1997). In wild-type forelimb
nc.



Figure 5. Loss of Gli3 Decreases BMP Activity in Anterior Forelimb Buds

(A) Msx2 expression in Gli3D/D and Gli3D/Dc forelimb buds (E11.75).

(B) Alterations in the expression of the BMP antagonist Grem1 in forelimbs. Broken lines indicate the relevant anterior regions in wild-type (black) and

Gli3-deficient forelimb buds (white). Open arrowheads point toGrem1 expression in the proximal interdigital mesenchyme, which does not contribute to the digit

primordia.

(C) qPCR analysis of two transcriptional BMP targets,Msx2 and Id1, and the BMP antagonistGrem1 (n = 8, E11.75). Statistically significant changes are indicated

in blue (downregulation) and orange-red (upregulation). All results are represented as mean ± SD; p % 0.01.

(D) ChIP-qPCR using GLI3 antibodies detects interactions of the endogenous GLI3 proteins with a conserved element within the Grem1-Fmn1 regulatory

landscape (indicated in green; Vokes et al., 2008) (mm9: chr2: 113,481,000–113,481,438). Amplicons ‘‘2’’ and ‘‘3’’ are located in the critical region. All results are

shown as mean ± SD (n R 3; p % 0.05).

All forelimb buds shown were heterozygous for the Hoxa13Cre/+ allele. See also Figure S4.
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buds, five distinct Sox9-positive digit primordia were apparent

by E12.5 (n = 3/3, left panel, Figure 6A). In contrast, only the

posterior condensations were apparent in both types of Gli3-

deficient autopods (n = 3/3, Figure 6A). To correlate Sox9-posi-

tive with proliferating cells, the distribution of Ki67, which marks

all proliferating cells (Gerdes et al., 1983), was assessed on

parallel sections (Figures 6A and 6B). In wild-types, few Ki67-

positive cells were detected in the Sox9-positive condensations

of the digit primordia, whereas the surrounding mesenchyme

continued to proliferate (left panels, Figure 6B). In Gli3D/D auto-

pods, most cells in the anterior mesenchyme remained Ki67

positive (middle panels, Figure 6B), and in Gli3D/Dc autopods,

Ki67 persisted throughout the distal-most mesenchyme (right

panels, Figure 6B). Noggin and Col2a1, two molecular markers

of chondrogenic differentiation, delineated all digit primordia in
Deve
wild-types, but only the posterior ones inGli3-deficient autopods

(Figure 6C; McGlinn et al., 2005). In Gli3-deficient forelimb buds,

the anterior-most condensation appeared reduced and forked,

and the small primordia for digit 1 was absent (Figure 6C). Taken

together, this analysis established that in Gli3-deficient forelimb

buds, the anterior mesenchymal progenitors continued to prolif-

erate and failed to initiate chondrogenic differentiation at the

right time. To determine if this delayed exit toward chondrogenic

differentiation was indeed caused by an excess of GREM1-

mediated BMP antagonism, beads loaded with 0.5 mg/ml

BMP4 were implanted into the anterior of Gli3-deficient forelimb

buds (Figure 6D). These grafts induced strong expression of both

Noggin and Col2a1 in the anterior mutant mesenchyme (right

panels, Figure 6D), but in contrast to grafts into younger limb

buds (see e.g., Bastida et al., 2004), cellular apoptosis was not
lopmental Cell 22, 837–848, April 17, 2012 ª2012 Elsevier Inc. 843



Figure 6. The Exit of Proliferating Progenitors to Chondrogenesis Is Delayed in the Anterior of Gli3-Deficient Autopods

(A) Sox9 (red fluorescence) demarcates the forming digit primordia on sections of wild-type, Gli3D/D, and Gli3D/Dc autopods (E12.5, �60 somites).

(B) The Ki67 antigen (green fluorescence) marks proliferating cells, whereas the autofluorescent erythrocytes appear white. Cell nuclei appear blue due to

counterstaining with Hoechst-33258. In the upper panels, dotted rectangles indicate the position of the enlargements. In the left and right lower panels, dotted

white lines indicate the proximal limit of the mesenchymal zone with largely Ki67-positive cells.

(C) Noggin and Col2a1 transcripts mark the ongoing chondrogenesis during digit formation at E12.5.

(D) RNA in situ hybridization revealed the induction of Noggin (n = 13/16) and Col2a1 (n = 10/13) expression (right panels) following implantation of BMP4-loaded

beads (0.5 mg/ml) into the anterior of Gli3D/D forelimb buds at E12.0. Contralateral controls with no or PBS-soaked beads (left panels).

All relevant forelimb buds in (A)–(C) carried one Hoxa13Cre/+ allele.
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increased (data not shown). Hence, a causal link between

increased GREM1, aberrantly low BMP activity and delayed

chondrogenic differentiation was established. In particular,

Grem1 expression in the anterior mesenchyme terminated

around E13.0, which correlated well with the delay in differentia-

tion of anterior digits in Gli3-deficient forelimb buds (data not

shown).

Because complete inactivation of Grem1 alters limb bud

development from early stages onward in the context of the

Gli3 deficiency (Zúñiga and Zeller, 1999), the phenotypic conse-

quences of genetically reducing Grem1 in Gli3D/D and Gli3D/Dc

forelimbs were determined (Figures 7A and 7B). Although

Gli3D/D, Grem1D/+ forelimb buds were identical to Gli3D/D

forelimb buds (Figure 7A), the preaxial polydactyly of Gli3D/Dc

forelimbs (six to seven digit rays, n = 12/12) was reduced to

pentadactyly in most cases in Gli3D/Dc, Grem1D/+ forelimbs (Fig-

ure 7B). In particular, distinct Col2a1-positive condensations

were visible in the positions normally giving rise to digits 2 and

1 in Gli3D/Dc, Grem1D/+ forelimb buds (upper right panel, Fig-

ure 7B, compare to wild-type in Figure 7A). Although an appar-

ently normal digit 2 formed, duplicated distal phalanges

persisted on the most-anterior digit in Gli3D/Dc, Grem1D/+ fore-

limbs (n = 11/17, lower right panel, Figure 7B). This analysis

revealed the differential sensitivity of Gli3D/D and Gli3D/Dc poly-

dactylies to the Grem1 gene dosage, which is likely linked to

the fact that Grem1 is anteriorly expanded from the earliest

stages onward in Gli3D/D forelimb buds (te Welscher et al.,

2002a), whereas it expands only late during autopod formation

in Gli3D/Dc forelimb buds (Figure 5B).

The genetic interaction of Gli3 with Bmp4 and effects on poly-

dactyly were first analyzed in trans-heterozygous mouse

embryos due to the early lethality of Bmp4-deficient mouse

embryos (Dunn et al., 1997; see also Figure S5). Therefore, we
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used Hoxa13-Cre to inactivate Bmp4 (Liu et al., 2004) in a

conditional manner during autopod development. Such

conditional inactivation of Bmp4 (Bmp4D/Dc) did not alter the

anterior autopod likely due to redundancy among Bmp ligands

(Bandyopadhyay et al., 2006), but a postaxial condensation

formed in some forelimbs (asterisks, Figure S5, and Figures 7C

and 7D). In contrast, inactivation of Bmp4 in the context of

heterozygosity for Gli3 significantly enhanced the preaxial

polydactyly (Figure 7C). Although Gli3D/+ forelimbs were

pentadactylous, the preaxial polydactyly in Gli3D/+, Bmp4D/Dc

forelimbs was increased to the maximal extent seen in Gli3D/Dc

forelimbs (n = 10/12, Figure 7C, compare to left panels in Fig-

ure 7B). The elongated Col2a1-positive condensation that

normally forms digit 2 was reduced to a forked rudiment in

Gli3D/+, Bmp4D/Dc forelimb buds (asterisks, Figure 7C). Further-

more, the small anterior condensation giving rise to digit 1 (black

arrowhead, Figure 7C) was absent in Gli3D/+, Bmp4D/Dc forelimb

buds (upper right panel, Figure 7C). These results pointed to

reduced and/or delayed initiation of chondrogenic differentia-

tion. This polydactylous phenotype was not further enhanced

by complete inactivation of both Gli3 and Bmp4 (n = 14/14, Fig-

ure 7D). Overall, these results corroborate the proposal that

aberrantly low BMP activity delays chondrogenic differentiation

and contributes to the preaxial polydactylies in Gli3-deficient

forelimbs.

DISCUSSION

First, we show that constitutive loss of Gli3 specifically alters the

anterior of the developing limb bud, which indicates that the re-

sulting preaxial polydactyly is predominantly caused by disrupt-

ing the GLI3R isoform. In fact, it has been recently shown that

GLI3R also mediates all essential Gli3 functions during cortical
nc.



Figure 7. Reduction and Promotion of

Preaxial Polydactyly by Altering Grem1,

Bmp4, and Gli3 Gene Dose

Comparative analysis of genetic alteration of BMP

pathway activity in the context of both types ofGli3

deficiencies. Col2a1 expression at E12.5 detects

mesenchymal condensations (upper panels),

which is compared with the resulting skeletal

pattern at E16.5 (lower panels). In the upper

panels, arrowheads indicate the small condensa-

tion for digit 1; red asterisks point to reduced or

forked digit primordia with uncertain identity. In the

lower panels, black asterisks indicate postaxial

condensations. Figure S5 shows the skeletal

preparations of all genotypes analyzed.

(A) Wild-type (i.e., Hoxa13Cre/+) forelimbs com-

pared to Gli3D/D (n = 6) and Gli3D/D, Grem1D/+

forelimbs (n = 9).

(B) Constitutive genetic inactivation of one Grem1

allele in Gli3D/Dc forelimb buds.

(C) Gli3D/+forelimb buds carrying the Hoxa13Cre/+

allele compared with Gli3D/+, Bmp4D/Dc forelimbs

in which one Bmp4 allele was conditionally in-

activated by Hoxa13-Cre.

(D) Gli3D/Dc, Bmp4D/Dc forelimb buds.

(E) Regulation of the proliferative expansion and

chondrogenic exit of digit progenitors by GLI3R

and SHH-dependent gene networks. Green indi-

cates genetic interactions positively regulating

proliferation; red shows genetic interactions re-

straining the cell cycle and promoting exit to

chondrogenic differentiation.
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neurogenesis in mouse embryos (Wang et al., 2011). Second, we

establish that conditional inactivation of Gli3 in the developing

autopod uncouples the preaxial polydactylies from the early

GLI3 functions in establishment of AP identities (Galli et al.,

2010; te Welscher et al., 2002a; Zakany et al., 2007). Therefore,

the preaxial polydactyly observed in Gli3D/Dc forelimbs must be

caused by alterations that occur long after the functions of Gli3

in setting up the AP limb bud axis and the early specification of

digit identities by SHH signaling (Zhu et al., 2008). In this context,

GLI3R might be required only early and transiently to restrict the

expression of posterior genes (Büscher et al., 1997; Zúñiga and

Zeller, 1999).

Most importantly, our study reveals the two distinct regulatory

steps by whichGli3 limits the proliferative expansion of the ante-

rior limb bud mesenchyme and ascertains pentadactyly (Fig-

ure 7E). Initially, GLI3 acts as a negative modulator of the G1–S

transition, most probably by directly regulating Cdk6 transcrip-

tion. These alterations of the G1–S transition likely result in faster

cycling rather than an increase in proliferating cells because the
Developmental Cell 22, 837–8
mitotic index was not altered (M.O. and

J.L.-R., unpublished data). Subse-

quently, GLI3 limits the proliferative

expansion of mesenchymal progenitors

by restricting and ultimately terminating

Grem1 expression in a spatiotemporally

controlled manner in the anterior autopod

(Figure 7E). The resulting increase in BMP

activity promotes the exit of undifferenti-
ated proliferating progenitors toward chondrogenesis. There-

fore, GLI3 fulfills a dual role in constraining proliferation of

mesenchymal progenitors by regulating both cell-cycle entry

and exit to chondrogenic differentiation. In support of a causal

link between these two functions, it has been shown that Cdk6

overexpression promotes proliferation and interferes with

BMP2-induced osteoblast differentiation (Grossel et al., 1999;

Ogasawara et al., 2004). Furthermore, these dual GLI3 functions

are likely of general relevance because Gli3 is required together

with Plzf to initiate chondrogenic differentiation of stylopod and

zeugopodal primordia in hindlimbs (Barna et al., 2005). More-

over, Gli3 has been shown to balance proliferation with neural

differentiation during central nervous system development (Bla-

ess et al., 2008; Wang et al., 2011).

The gene networks regulating limb bud outgrowth and termi-

nation of the SHH-dependent signaling system that originates

from the posterior autopod have been studied extensively (Fig-

ure 7E). The core module of this signaling system is the SHH/

GREM1/AER-FGF feedback loop that keeps BMP activity low
48, April 17, 2012 ª2012 Elsevier Inc. 845
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and promotes coordinated outgrowth of the limb bud (reviewed

byZeller et al., 2009). Its termination results in a renewed increase

in BMP activity (Bénazet et al., 2009), which likely promotes

mesenchymal condensation and chondrogenic differentiation

similar to what the present study establishes for the anterior au-

topod (Figure 7E). Indeed, genetic inactivation of both Bmp4

and Bmp2 interferes with formation of posterior digit primordia

(Bandyopadhyay et al., 2006). Taken together, these studies indi-

cate that BMP activity is low during the proliferative expansion of

digit progenitors, but high levels are required for exit to chondro-

genic differentiation (this study; Bandyopadhyay et al., 2006).

Conversely, high BMP levels induce mesenchymal cell death

during limb bud outgrowth and patterning (see e.g., Bastida

et al., 2004), which in agreement with the present study indicates

that proliferating progenitors depend on low BMP activity.

Genetic analysis revealed the differential sensitivity of the two

types of Gli3-deficiencies to Cdk6 inactivation and Grem1 gene

dosage. The autopod of Gli3D/D forelimbs was enlarged and the

G1–S transition likely altered from early stages onward, which

would render the resulting preaxial polydactyly more sensitive

to Cdk6 inactivation. In contrast, the Gli3D/D polydactyly was

not sensitive to heterozygosity for Grem1, which may again be

a consequence of the early enlargement of the anterior autopod.

This occurs during the period of robust and self-regulatory feed-

back signaling, which will rapidly compensate variations in BMP

activity by adjusting Grem1 expression (Nissim et al., 2006; Bé-

nazet et al., 2009). In contrast, the anterior autopod of Gli3D/Dc

forelimb buds was only enlarged as feedback signaling termi-

nated, which should render the system susceptible to aberrant

Grem1 expression. This was indeed evidenced by the fact that

the preaxial polydactylies in Gli3D/Dc forelimbs are sensitive to

the Grem1 gene dose. Therefore, the delayed exit from prolifer-

ation to BMP-dependent chondrogenic differentiation due to

increased GREM1 activity is likely to contribute proportionally

more to the enlargement of the anterior autopod in Gli3D/Dc

than in Gli3D/D forelimb buds.

In light of the present study, alterations affecting cell-cycle

entry and exit to chondrogenic differentiation, rather than bona

fide patterning defects, could underlie the congenital malforma-

tions observed in patients with Greig’s cephalopolysyndactyly

and Pallister-Hall syndrome, which are caused by scattered

point mutations and deletions in the humanGLI3 gene (reviewed

by Biesecker, 2006). The highly variable limb polydactylies in

these patients could be a consequence of variations affecting

the duration of proliferative expansion of digit progenitors. In

fact, Alberch and Gale (1983), using colchicine to inhibit prolifer-

ation in amphibian limb buds, realized that local changes in cell

proliferation affected the number and identities of digits. They

concluded that the number of digits correlated well with the final

size of the autopod field, i.e., the extent to which the progenitors

expanded. In agreement, the constitutive loss of Gli3 causes

a more severe preaxial polydactyly than later inactivation during

autopod development. Therefore, the dual functions of GLI3 in

restricting S phase entry and promoting exit to chondrogenic

differentiation are an essential part of the morphoregulatory

systems (Figure 7E) that initiate and terminate the rather homo-

geneous proliferative expansion of limb bud mesenchymal

progenitors (Boehm et al., 2010; Gros et al., 2010) and constrain

the autopod to pentadactyly.
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EXPERIMENTAL PROCEDURES

Mouse Strains and Embryos

Studies with mice were performed in strict accordance with Swiss law and 3R

principles. The Gli3XtJ allele was maintained in a NMRI background. The Gli3f,

Gli3D alleles and Hoxa13-Cre alleles were maintained in a mixed 129SvJ/

C57BL/6J background. R26RLacZ/+, ShhCre/+, Prx1-Cre, Cdk6, Grem1, Bmp4

null, andBmp4 conditional alleles weremaintained in a C57BL/6J background.

For all studies, wild-type and mutant embryos (age matched, ±1 somite) of the

same genetic background were used to exclude phenotypic variation. This

analysis focused on forelimbs becauseHoxa13-Cre is active earlier in hindlimb

buds resulting in a Gli3 null phenotype.

Immunofluorescence and Immunoblot Analysis

Limb budswere fixed overnight in 4%paraformaldehyde at 4�C, and Sox9 and

Ki67 protein were detected on 7 mmserial paraffin sections. Primary antibodies

against Sox9 (1:500) and Ki67 (1:200; Millipore) were detected using goat anti-

rabbit conjugated to Alexa Fluor 594 (1:500; Invitrogen). Nuclei were counter-

stained with Hoechst-33258. For immunoblot analysis, forelimb bud pairs

were dissected at E11.75 (�52 somites), and 10 mg protein was separated

on 6% SDS-PAGE gels, followed by transfer to PVDF membranes (Millipore).

GLI3 proteins were detected by chemiluminescence using monoclonal anti-

GLI3 antibodies (clone 6F5, 5 mg/ml; Wen et al., 2010).

Microarray Analysis

Total RNA was isolated from the anterior hand plates of forelimb bud pairs of

three sex- and somite-matched embryos per genotype. Probes for the inde-

pendent triplicates were labeled and hybridized to GeneChip Mouse Gene

1.0 ST Arrays (see Probst et al., 2011). Data were analyzed using the Partek

Genomic Suite 6.5 software and Ingenuity Pathway Analysis software. The

correlation coefficients (r) of biological triplicates of a particular genotype

ranged from 0.994 to 0.998. To identify differentially expressed genes, two-

way ANOVA analysis was used. The microarray data files are available via

MIAMExpress (accession number E-MEXP-3495).

Quantitation of Transcript Levels by Real-Time PCR

The anterior halves of hand plates at E11.75 (�52 somites) were dissected,

total RNAs were extracted, and cDNA was synthesized and analyzed by

qPCR as described (Bénazet et al., 2009; for primers see Supplemental Exper-

imental Procedures). Relative transcript levels were normalized to the expres-

sion of two housekeeping genes, Rpl19 and Hprt1. The expression levels of

mutant samples were calculated in relation to wild-type controls (average

set to 100%). All results (mean ± SD) are based on analysis of seven or eight

samples per genotype. The significance of all differences was assessed using

the two-tailed, nonparametric Mann-Whitney U test.

Flow Cytometric Analysis

Pregnant females were injected intraperitoneally with 2 mg of BrdU 1 hr before

sacrifice. Forelimb autopod pairs of individual embryos (E11.75, �50 somites)

were dissected in ice-cold IMDM (Invitrogen) supplemented with 10% FCS

(Hyclone) into anterior and posterior halves. Samples were dissociated into

single cells using 1 mg/ml collagenase D and 50 mg/ml DNase I in 13 HBSS

(Roche). Subsequently, cells were filtered through a 70 mM mesh and deco-

rated with FITC-conjugated anti-BrdU antibodies and 7-AAD (to determine

DNA content; BD Bioscience). Samples were cooled on ice during the entire

procedure. Flow cytometric analysis was done using a FACScalibur System

(BD Biosciences), and primary data were processed using FlowJo software

(Tree Star). Initial analysis of DAPI uptake into apoptotic cells established

that this dissociation caused less than 10% cell death. In particular, no differ-

ences in cell survival were apparent among the different genotypes. Forward

and side scatter gates were set to exclude erythrocytes, cell debris, and

dead cells. No genotype-specific differences in size or complexity were de-

tected. The significance of all differences was verified by two-tailed, nonpara-

metric Mann-Whitney U test.

Manipulation and Culture of Mouse Limb Buds

Mouse forelimb buds were cultured as described (Probst et al., 2011). Heparin

beads were loaded with recombinant BMP4 (0.5 mg/ml in PBS; R&D Systems)
nc.
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and implanted into the anterior autopod of embryos at E12.0 (�56 somites).

This BMP4 concentration was used because it neither stimulates Grem1

expression (Nissim et al., 2006) nor causes significant cell death. Individual

forelimb buds were cultured for 12–14 hr, fixed, and analyzed by RNA in situ

hybridization. Contralateral limbs with no beads or PBS-soaked beads served

as controls.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

devcel.2012.01.006.
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