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An infinite sequence of finite or denumerable limit sets is found for a class of 
many-to-one transformations of the unit interval into itself. Examples of four 
different types are studied in some detail; tables of numerical results are included. 
The limit sets are characterized by certain patterns; an algorithm for their 
generation is described and established. The structure and order of occurrence 
of these patterns is universal for the class. 

1. Introduction. The iterative properties of 1-l transformations 
of the unit interval into itself have received considerable study, and the 
general features are reasonably well understood. For many-to-one trans- 
formations, however. the situation is less satisfactory, only special and 
fragmentary results having been obtained to date [l, 21. In the present 
paper we attempt to bring some coherence to the problem by exhibiting 
an infinite sequence of finite limit sets whose structure is common to a 
broad class of non 1-l transformations of [0, l] into itself. Generally 
speaking, the limit sets we shall construct are not the only possible ones 
belonging to an arbitrary transformation in the underlying class. Never- 
theless, our sequence-which we shall call the “U-sequence”-constitutes 
perhaps the most interesting family of finite limit sets in virtue of the 
universality of their structure and of their order of occurrence. With 
regard to infinite limit sets we shall have little to say. There is reason to 
believe, however, that for a non-vacuous (in fact, infinite) subset of the 
class of transformations considered here, our construction-suitably 
extended to the limit of “periods of infinite length”-is exhaustive in the 
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probabilistic sense, namely, that with “probability 1” every limit set 
belongs to the U-sequence. 

2. We begin by describing the class of transformations to which 
our construction applies, but make no claim that the conditions imposed 
are strictly necessary. The description is complicated by our attempt to 
exclude, insofar as is possible, certain finite limit sets, not belonging to 
the U-sequence, whose existence and structure depend on detailed proper- 
ties of the particular transformation in question. 

All our transformations will be of the form 

T,(x) : x’ = hf(x), 

where x’ denotes the first iterate of x (not the derivative!) and h varies in.a 
certain open interval to be specified below. The fundamental properties 
off(x) will be: 

A.1. f(x) is continuous, single-valued, and piece-wise fY1) on [0, 11, and 
strictly positive on the open interval, withf(0) = f(1) = 0. 

A.2. f(x) has a unique maximum,f,,, < 1, assumed either at a point or 
in an interval. To the left or right of this point (or interval) f(x) is strictly 
increasing or strictly decreasing, respectively. 

A.3. At any x such thatf(x) = fmax , the derivative exists and is equal to 
zero. 

We allow the possibility that f(x) assumes its maximum in an interval 
so as to include certain broken-linear functions with a “flat top” (cf. 
example (3.4) below). 

In addition to the properties (A) we need some further conditions which 
will serve to define the range of the parameter h: 

B. ~thn,x= llfmax. Then there exists a h, such that, for h, < h < h,, , 
hf(x) has only two fixed points, the origin and x&), say, both of which 
are repellent. For functions of class C(l) this means simply that 

For piece-wise C(l) functions the generalization of these conditions is 
obvious. 

The above conditions are sufficient to guarantee the existence of the 
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U-sequence; that they are not necessary can be shown by various examples, 
but we shall not pursue this matter here. 

f(x) as defined above clearly has the property that its piecewise derivative 
is less than 1 in absolute value in some interval N which includes that for 
which f(x) = fmax . In order to exclude certain unwanted finite limit sets, 
we append the following condition: 

C. f(x) is convex in the interval N, at every point x 4 N, the piece-wise 
derivative off(x) is greater than 1 in absolute value. 

Unfortunately, property (C) is not sufficient to exclude all finite limit 
sets not given by our construction; to achieve this end it might be necessary 
to restrict the underlying class of transformations rather drastically. We 
shall return to this point in Section 4 below. 

It will simplify the subsequent discussion to make the non-essential 
assumption that f(x) assumes its maximum at the point x = 8 (or, if the 
function assumes its maximum in an interval, that the interval includes 
x = +). In the sequel we shall make this assumption without further 
comment. A particular iterate x’ will then be said to be of “type L” or of 
“type R” according as x’ < 4 or x’ > 4, respectively. Given an initial 
point x,, , the minimum distinguishing information about the sequence of 
iterates Ti’“‘(x,), k = 1, 2 ,..., will consist in a “pattern” of R’s and L’s, the 
k-th letter giving the relative position of the k-th iterate of x0 with respect 
to the point x = 4. The patterns turn out to play a fundamental role in our 
construction; they will be discussed in detail in the following sections. 

3. Let us give some simple examples of the class of transformations 
we are considering: 

QJx): x’ = hx(l - x) 

3<x<4 (3.1) 

S,(x): x’ = h sin 7rx 

X,<X<l (with .71 < h, < .72) (3.2) 

C,(x): x’ = h W(3 - 3 w  + WZ), w  = 3x(1 - x) 

h <h-=2 0 63 (with .872 < X, < .873) (3.3) 

In the last two examples, more precise limits for X0 are available, but 
they are not important for our discussion. All these examples are convex 
functions of class C@) which are, moreover, symmetric about x = Q. 
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With regard to the existence of the U-sequence, these restrictions are in no 
way essential. As will be remarked in Section 4, however, these examples 
happen to belong to the subclass for which our construction does exhaust 
all finite limit sets. 

As a further example, consider the broken-linear mapping: 

L,(x; e): x' = 3 x, O<x<e, 

x' = A, e<x<l-e, (3.4) 

x’ = ; (1 - x), 1-e<x<l, 

with 1-e<h<l. 

Here e is a parameter characterizing the width l-2e of the maximum, and 
may be chosen to have any value in the range 0 < e < 4. It remains fixed 
as A is varied, and different choices of e yield distinct transformations. 

4. The finite limit sets of our class of transformations-and, in 
particular, of the four special transformations given above-are attractive 
periods of order k = 2, 3,... . (We exclude the case k = 1 by invoking 
property (B).) The reader will recall that an “attractive period of order k” 
is a set of k periodic points xi , i = 1, 2,..., k, with TA(xi) = xi+r (in some 
order). Each of these is a fixed point of the k-th power of T,+ : TV”’ = xi, 
for which, moreover, the (piece-wise) derivative satisfies 

(By the chain rule, the slope is the same at all points in the period.) As a 
consequence of this slope condition, there exists for each xi an attractive 
neighborhood n(xJ such that for any x* E n(xi) the sequence of iterates 
Tjj”‘(x*),j = 1, 2 ,..., will converge to xi , Periodic points which do not 
satisfy this slope condition (more precisely, for which the absolute value 
of the derivative is greater than 1) have no attractive neighborhood; they 
are consequently termed repellent (or unstable). These points belong to 
what is sometimes called “the set of exceptional points,” a set of measure 
zero in the interval which plays no role in a discussion of limit sets. 

The sequence of finite periods which we shall exhibit will be 
characterized inter alia by the following property: 

.I. For every period belonging to the U-sequence there is a period point 
whose attractive neighborhood includes the point x = 4. 



ON FINITE LIMIT SETS 29 

Now it follows from a theorem of G. Julia [3] that, if T&C) is the restriction 
to [0, l] of some function analytic in the complex plane whose derivative 
vanishes at a single point in the interval, then the only possible finite limit 
sets (k > 1) are those with the property (J). The transformations (3.1) 
through (3.3) are clearly of this type, so that, with respect to finite limit 
sets, the U-sequence will exhaust all possibilities for them. That Julia’s 
criterion is not necessary is shown by example (3.4); in this case there 
cannot be any attractive periods which do not have a period point lying 
in the region e < x < 1 - e. Such a period, however, clearly is of the 
type described by property (J), and hence belongs to the U-sequence. 

Taking our clue from property (J), we now investigate the solutions h 
of the equation: 

TjQ) = 4. (4.1) 

The corresponding periodic limit sets will be attractive, since the slope 
of A.(x) at x = 4 is zero by hypothesis (property (A.3)). By way of example, 
we choose k = 5. Then for each of the four transformations of Section 3 
there are precisely three distinct solutions of equation (4.1). The three 
patterns-common to all four transformations-are: 

Omitting the initial and final points as understood, we write these 
patterns in the simplified form: 

RLR2, 

RL2R, (4.2) 
RL3. 

In accordance with this convention, a pattern with k - 1 letters R or L 
will be said to be of “length k.” 

These solutions are clearly ordered on the parameter X. In Table I we 
give the full set of solutions of (4.1), through k = 7, for all four special 
transformations; in the broken-linear case we choose e = .45. The 
numerical values of h were found by a simple iterative technique (the 
“binary chopping process”); although they are given to only seven 
decimal digits, they are actually known to approximately twice that 
precision. Of course, once a particular ;\ has been found, the corresponding 
pattern can be generated by direct iteration. 
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TABLE I 

i ki 

1 2 

2 4 

3 6 

4 7 

5 5 

6 7 

7 3 

8 6 

9 7 

10 5 

11 7 

12 6 

13 7 

14 4 

15 7 

16 6 

17 7 

18 5 

19 7 

20 6 

21 7 

pi 
_____~~~ 
R 

RLR 

RLR8 

RLR’ 

RLR” 

RLRaLR 

RL 

RL2RL 

RL*RLR 

RL=R 

RL2RS 

RL2Ra 

RLaR2L 

RL2 

RL3RL 

RL3R 

RL8R2 

RL3 

RL4R 

RL4 

RLS 

CA(x) 

3.2360680 

3.4985617 

3.6275575 

3.7017692 

3.7389149 

3.7742142 

3.8318741 

3.8445688 

3.8860459 

3.9057065 

3.9221934 

3.9375364 

3.9510322 

3.9602701 

3.9689769 

3.9777664 

3.9847476 

3.9902670 

3.9945378 

3.9975831 

3.9993971 

Values of Xi 

s%(x) CA(X) 

.7777338 .9325336 

.8463822 .9764613 

.8811406 .9895107 

.9004906 .9955132 

.9109230 .9990381 

.9213346 1.00243 11 

.9390431 1.0073533 

.9435875 1.0083134 

.9568445 1.0111617 

.9633656 1.0123766 

.9687826 1.0132699 

.9735656 1.0140237 

.9782512 1.0146450 

.9820353 1.0149542 

.9857811 1.0152122 

.9892022 1.0154974 

.9919145 1.0156711 

.9944717 1.0157727 

.9966609 1.0158320 

.9982647 1.0158621 

.9994507 1.0158718 

Ldx; .45) 

.6581139 

.7457329 

.7806832 

.8031673 

.8180892 

.8318799 

.8645337 

.8858150 

.8977794 

.9085993 

.9187692 

.9278274 

.9361518 

.9462185 

.9564172 

.9635343 

.9702076 

.9775473 

.9846165 

.9903134 

.9957404 

We note that the set of 21 patterns and its X-ordering is common to all 
four transformations. This remains true when we extend our calculations 
through k = 15. As k increases, the total number of solutions of (4.1) 
becomes large, as indicated in Table II. Thus for k < 15 there is a total 
of 2370 distinct solutions of equation (4.1). In the appendix we give a 
complete list of ordered patterns for k < 11. 

The fact that these patterns and their h-ordering are a common property 
of four apparently unrelated transformations (note that they are not 
connected by ordinary conjugacy, a relation which will be discussed in 
Section (6) suggests that the pattern sequence is a general property of a 
wide class of mappings. For this reason we have called this sequence of 
patterns the U-sequence where “U” stands (with some exaggeration) for 
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TABLE II 

k . . . 2345678 9 10 11 12 13 14 1.5 

Number of 

solutions . . 1 1 2 3 5 9 16 28 51 93 170 315 585 1091 

“universal.” In the next section we shall state and prove a logical al- 
gorithm which generates the U-sequence for any transformation having 
the properties (A) and (B) of Section 2. In the present section we confine 
ourselves to describing what might be called the “X-structure” of the limit 
sets associated with the patterns of the U-sequence. No proofs are included, 
since the results given here will not be used in the proof of our main 
theorem. 

As constructed, the patterns of the U-sequence correspond to distinct 
solutions of equation (4.1); they are attractive k-periods containing the 
point x = 4 and possessing the property (J). It is clear by continuity that, 
given any solution X (with finite k) and its associated pattern Pk(X), then 
for sufficiently small E > 0 there will exist periodic limit sets with the 
same pattern for all x in the interval A - E < x < h + E. In other words, 
each period has a finite “X-width.” It is also clear that there exist critical 
values ml(X) and m,(h) such that, for 1 < h - m, and 1 > X + m2 , the 
pattern P,(h) does not correspond to an attractive period of Tr(x). 

Consider now for simplicity the case in which the transformation is 
C(l), and take m, and m2 to be boundary values such that for 
h - m, < x < h + m2 the periodic limit set with pattern Pk(/t) is attrac- 
tive. As x varies in this interval, the slope dTjk’/dx at a period point varies 
continuously from + 1 to - 1, the values & 1 being assumed at the bound- 
ary points. It is natural to ask: what happens if x lies just to the left or just 
to the right of the above interval? The question as to what the limit sets 
look like if x = X - m, - S (6 small) is a difficult one; the conjectured 
behavior will be described in Section 6, but rigorous proof is lacking. For 
h = h + m2 + 6 we are in better case. As shown in Section 5, corre- 
sponding to any solution X of (4.1) and its associated pattern there exists 
an infinite sequence of solutions h < X(l) < X@) < ... < htrn) with asso- 
ciated patterns H(l)@(l)), HL2)(h(2)),..., called “harmonics,” with the 
property that they exhaust all possible solutions h* in the interval 
h < X* ,( hem). The sequence of harmonics of a given solution is a set of 
periods of order 2”k, m = I, 2 ,..., with contiguous h-widths and well- 
defined pattern structure; no other periods of the U-sequence can exist 
for any h* in the given interval (harmonics have been encountered before 

582a/15/1-3 
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in a more restrictive context: cf. reference 4). From the construction of 
Section 5 it will be obvious that hcrn) exists as a right-hand limit; the 
question as to the nature of the limit sets for h* = Ate) + E remains open 
(but cf. Conjecture 2 of Section 6). 

In order to prepare the ground for the discussion in the next section, we 
give here the following formal 

DEFINITION 1. Let p = RLQIRWLW . -. be a pattern corresponding to 
some solution of (4.1). Then the (first) harmonic of P is the pattern 
H = PpP, where p = L if P contains an odd number of R’S, and p = R 

otherwise. 

For example, the pattern RLR2 has the harmonic H = RLR2LRLR2, 
while for RL2R we have H = RL2R3L2R. 

Naturally, the construction of the harmonic can be iterated, so that one 
may speak of the second, third,..., m-th harmonic, etc. When necessary, 
we shall write H(i) to denote thej-th harmonic. 

In addition to the harmonic H of a pattern P, there is another formal 
construct which will be used in the sequel: 

DEFINITION 2. The “antiharmonic” A of a pattern P is constructed 
analogously to the harmonic H except that p = L when P contains an 
even number of R’s, while p = R otherwise. 

Thus in passing from a pattern to its harmonic the “R-parity” changes, 
while for the antiharmonic the parity remains the same. The antiharmonic 
is a purely formal construct and never corresponds to any periodic limit 
set; the reason for this will become clear in the next section. Note that, 
like that of the harmonic, the antiharmonic construction can be iterated 
to any desired order. 

5. We begin by defining the “extension” of a pattern: 

DEFINITION 3. The H-extension of a pattern P is the pattern generated 
by iterating the harmonic construction applied j times to P, where j 
increases indefinitely. 

DEFINITION 4. The A-extension of P is the pattern A(j)(P), where j 
increases indefinitely. Here A(i)(P) denotes the j-th iterate of the anti- 
harmonic. 

In these definitions we avoid writing j-t co, in order to avoid raising 
questions concerning the structure of the limiting pattern. In practice, all 
that will be required is that j is “sufficiently large.” 
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We are now in a position to state 

THEOREM 1. Let K be an integer. Consider the complete ordered 
sequence of solutions of (4.1) and their associated patterns for 2 < k < K. 
Let h, be any such solution with pattern P, and length k, , and let h, > XI be 
the “adjacent” solution (i.e., the next in order) with pattern P, and length k, . 

Form the H-extension of PI and the A-extension of P, . Reading from 
left to right, the two extensions H(P,) and A(P,) will have a maximal 
common leading subpattern P* of length k*, so that we may write 

H(P,) = P*/-Q . . . . A@‘,) = P*p2 . . . . /x1 f /Lo, 

where pLi stands for one of the letters L or R. 

Case 1. k* > 2k, . Then the solution h* of lowest order such that 
A1 < h* < AZ is the harmonic of PI . 

Case 2. k* < 2k, . Then the solution X* of lowest order such that 
A1 < X* < X, corresponds to the pattern P* of length k* (> K necessarily). 

A simple consequence of this theorem is the following: 

COROLLARY. Let 1 k, - k, 1 = 1 in Theorem 1. Then the lowest order 
solution h* with h, < X* < X, has length k* = 1 + max(k, , k,). 

This follows from the theorem on noting that all patterns have the 
common leading subpatterns (not maximal!) RL; therefore, in forming 
the extensions, the first disagreement will indeed come at the indicated 
value of k*. 

We give some examples of the application of Theorem 1. 

Example 1. Take K = 9. Reference to the table in the appendix 
shows that patterns #12 and #14 are adjacent. We have 

PI = RLR4, k, = 7, H(P,) = RLR4LRLR4..., 

P, = RLR4LR, k, = 9, A(P,) = RLR4LRLRL..., 

so P* = RLR4LRLR, with k* = 11, as verified by the table. 

Example 2. Again take K = 9. Patterns #16 and #19 are adjacent 
and PI = RLR2 with k, = 5; here k* 2 2k, . Therefore, by Case 1, the 
lowest order solution between the two patterns is the harmonic of P, , 
namely, RLR2LRLR2, as given in the table (pattern #17). 
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To prove Theorem 1 we must first introduce some new concepts. 
Consider the transformation: 

T,(x): x’ = h,,f(x) V-1) 

This transformation maps [0, l] onto itself; hence, for any point in the 
interval, the inverses of all orders exist. Let us restrict ourselves for the 
moment to the point x = 4 and its set (2” in number) of k-th order 
inverses. At each step in constructing a k-th order inverse we have the free 
choice of taking a point on the right or on the left. For example, designa- 
ting the point x = 6 by the letter 0, a possible inverse of order 5 would 
be represented by the sequence of letters 

RLR20, (5.2) 

which is to be read from right lo left. Let us call a sequence like (5.2), when 
read from right to left, a “5-th order inverse path of the point x = +.” 
Note that (5.2) is precisely the pattern associated with the first solution of 
equation (4.1) for k = 5. Another possible inverse path of the same order 
would be L2Ra0, but this clearly does not correspond to any solution of 
(4.1). 

Choosing a particular k-th order inverse path of x = 4, let us call the 
numerical value of the corresponding k-th inverse the “coordinate” of 
the path. Obviously, no path whose coordinate is less than 4 can 
correspond to a pattern associated with a solution of (4.1). In order to 
achieve a l-l correspondence between a subclass of inverse paths and our 
periodic patterns we introduce the concept of a “legal inverse path,” 
which we abbreviate as “1.i.p.” 

DEFINITION 5. For the transformation T,(x) (cf. (5.1)), an 1.i.p. of 
order k is a k-th order inverse path of x = 4 whose coordinate xp has the 
greatest numerical value of any point on the path. 

In other words, of all the inverses constituting the path, the coordinate 
(i.e., the k-th inverse) lies farthest to the right. Note that any inverse path 
of x = 4 can be inversely extended to an 1.i.p. by appending on the left 
some suitable sequence, e.g., the sequence RLCL with LY sufficiently large. 
Now consider the transformation T,(x) corresponding to T,(x) with 
h < &rlax~ As h decreases, the original 1.i.p. is deformed into an inverse 
path with varying coordinate x,(X), but with the same pattern. By con- 
tinuity, there clearly exists a A* for which 
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this in turn implies that for h = h* there exists a solution of equation (4.1) 
with the same pattern as that of the original 1.i.p. On the other hand, for 
an inverse path (with, say, an R-type coordinate) which is not an 1.i.p. the 
cycle will close on some intermediate point of the path (farther to the right 
than x,()0), so that the path cannot be further inverted; this means that 
the original pattern cannot correspond to a solution of (4.1). Thus we have 
proved 

LEMMA 1. There is a 1-l correspondence between the set of i.i.p.‘s and 
the patterns associated with the solutions of equation (4.1). 

We note that the l.i.p.‘s are naturally ordered on the values of their 
coordinates. By Lemma 1, any true statement about the pattern structure 
and coordinate ordering of the set of l.i.p.‘s corresponds to a true state- 
ment about the pattern structure and X-ordering of the set of solutions of 
(4.1)‘ 

Given some 1.i.p. of order k, we construct an inverse extension Z(P) of 
the path according to the prescription Z(R) = &PO, where p is R or L. 
Obviously, one choice corresponds to the harmonic, the other to the 
antiharmonic (Definitions 1 and 2). We can therefore speak of the 
harmonic or antiharmonic of an 1.i.p. as well as of a pattern. Now, because 
of the monotonicity property (A.2) it follows that, given any two points, 
taking the left-hand inverse of both points preserves their relative order, 
while taking the right-hand inverse reverses it. A simple argument shows 
thatx, tx<x,, where x is the coordinate of some 1.i.p. and xA , x, are 
the coordinates of its antiharmonic and harmonic, respectively. This 
explains why the harmonic of an 1.i.p. is again an 1.i.p.. while the anti- 
harmonic is not (and hence can never correspond to an attractive period 
of the U-sequence). 

One final concept, the “projection” of an interval, will be of value in the 
subsequent discussion. 

DEFINITION 6. Choose any two points x1, x, in (0, 1); they define 
some interval I. Let P be an arbitrary sequence of R’s and L’s with k - 1 
letters in all. Now, for some T,(x), construct the inverse paths Px, and Px,. 
The coordinate x1* and x2* of these two paths define a new interval I*, 
called the “projection under P of I.” Because the defining inverse paths 
are of length k, we refer to it as a k-th order projection. (If we wish to 
exhibit explicitly the end-points x 1 , x, of the interval I, we write 1(x, , x2); 
in contrast to the usual notation for an interval, no ordering is implied.) 

Proof of Theorem 1. It is clear that, if two intervals Z, Z* are related by 
a k-th order projection, then for any point x E Z* we have T:‘(x) E I. 
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Consider now any 1.i.p. with pattern PO and coordinate x1 . Its harmonic 
is again an lip., with pattern PpPO and coordinate X, , p being either 
R or L depending on the R-parity of P. If x, is the point corresponding to 
the choice ZL, then this construction shows that the interval Z*(x, , xH) is 
the (k-th order) projection under P of the interval I(+, x,). Now any point 
x in the interior of I* must map into the interior of Z, and the end-points 
must map into end-points. Thus no inverse path of x = &-which is one 
of the end-points of Z-can have a coordinate x* satisfying x1 < x* < xH . 
Precisely the same argument can be made for the antiharmonic. This 
proves 

LEMMA 2. Let PO be some 1.i.p. with coordinate x1 . Form the H(j)- 
extension of P, with coordinate x2’, and the A(j)-extension of P with coor- 
dinate x2’. We then have xx’ < x1 < x(j) H . The intervals Z*(xI , x2’) and 
Z(x, , xy’) do not contain the coordinate of any inverse path of x = g. 

The left-hand interval I* (x1 , x2’) is of no significance for the limit sets 
of T,(x); in fact, for h a solution of (4.1) this interval shrinks to zero (and 
for A* < A, neither the harmonic nor the antiharmonic exists). The 
right-hand, interval, however, is important. Using Lemma 2 and Lemma 1 
we immediately derive 

LEMMA 3. Zf h, is a solution of equation (4.1) and h, is the solution 
corresponding to its harmonic, then there does not exist any solution X* of 
(4.1) with the property A1 < X* < hx . 

Iterating this argument, we verify the statement of Section 4 that the 
sequence of harmonics is contiguous, i.e., that harmonics are always 
adjacent. 

The adjacency property of harmonics serves to prove Case 1 of 
Theorem 1. We now proceed to Case 2. 

Given some K, let (PI , x1 , k,) and (Pz , xz , k,) be two adjacent l.i.p.3 
with x1 < x2 and K + 1 < 2Zc, . Form the H-extension of PI and the A- 
extension of Pz ; these can be written in the form 

H(P,) = P*j+ ... 

A(P,) = P*p., ..- 
(PI f I%). 

The coordinates x, and xA define an interval I* which is a projection of 
4q 7 x,,); clearly, I* is contained in the original interval Z(x, , x2). Since 
I contains the point x = +, there must exist an inverse path of 4, P*O, 
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with coordinate x* satisfying x1 < x* < xZ . But P*O must be an 1.i.p. 
since it is a leading subpattern of the interated harmonic of P, . Moreover, 
by the adjacency assumption, its length k* must necessarily be greater 
than k, or k, . On the other hand, P*O is the shortest pattern for which 
an interval with non-zero content exists. Invoking Lemma 1, we see that 
the proof of the theorem is complete. 

The formulation of a practical algorithm, using the results of Theorem 1, 
needs little comment. Given the complete U-sequence for k < K, one 
generates the sequence for K + 1 by inserting the appropriate pattern of 
length K + 1 between every two (non-harmonic) adjacent patterns 
whenever the theorem permits it. The pattern R(k = 2) remains the 
lowest pattern; as is easily shown, for any k the last pattern is always of the 
form RL”-2, and this is simply appended to the list. As previously men- 
tioned, the algorithm has been checked (to k < 15) for the four special 
transformations of Section 3 by actually finding the corresponding 
solutions of equation (4.1)-a simple process in which there are no 
serious accuracy limitations. 

We remark here that the combinatorial problem of enumerating all 
l.i.p.‘s of a given length k has been solved [SJ; the number of patterns 
turns out to be just the number of symmetry types of primitive periodic 
sequences (with two “values” or letters allowed) under the cyclic group C, 
(so that the full symmetry group is C, x S, , where S, is the symmetric 
group on two letters). For k a prime, this number is simple, and turns out 
to be given by the expression 

$ (2b-1 - 1). 

We encountered this enumeration problem previously (cf. reference 4, 
Table 1); at that time we were not aware of the work of Gilbert and 
Riordan [5]. 

6. In this final section we collect some observations and conjec- 
tures concerning the nature of limit sets not belonging to the U-sequence, 
ending with a few remarks on the relation of conjugacy. 

(1) Other finite limit sets. As remarked in the introduction, it does not 
seem possible to exclude “anomalous” limit sets without seriously restric- 
ting the underlying class of transformations. To convince the reader that 
such anomalous periods can in fact exist we give a simple example: 
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Let us alter the special transformation (3.4) in the following way (we 
take e = .45): 

xf = 4.5Xx, OGxG.2 

x’ = h(.4x + .82), .2 < x < .45 

x’ = A, .45 < x < .55 
(.55 < X < 1). (6.1) 

x’ = & (1 - X), .55 < x < 1 

Then, in addition to the U-sequence (with X values different from those 
of the original transformation), there exists an attractive 2-period in the 
range h, < X < 1 with 

A, = 4 + 3 d.19. 

Note that the 2-period remains attractive even for X = 1. While the anom- 
alous periods do not affect the existence of the U-sequence, they do cause 
additional partitioning of the unit interval because their existence implies 
that there is a set of points (with non-zero measure) whose sequence of 
iterated images will converge to the periods in question. 

These anomalous periods, however, differ radically from those belonging 
to the U-sequence in that they do not possess the property (J). This in 
turn means that the slope at a period point is strongly bounded away from 
zero. Thus, at least for transformations with the property (C), it seems 
reasonable to conjecture that such periods cannot have arbitrary length 
and still remain attractive. Hence we make 

CONJECTURE 1. For transformations with properties (A), (B) and (C), 
the anomalous attractive periods constitute at most ajnite sequence. 

(2) Injinite limit sets. For simplicity we consider the case in which 
there are no anomalous periods, e.g., functions covered by Julia’s theorem 
(or some valid extension thereof). We assign to each period of the U- 
sequence a h-measure equal to its h-width. The question is then: is the h 
measure of the full U-sequence equal to Amax - &,? Or, put otherwise, is 
there a set of non-zero measure in the interval (A,,, A,,) such that the 
sequence of iterates of x = + does not converge to a member of the U- 
sequence? Numerical experiments with the four special transformations 
of Section 3 together with some heuristic arguments based on the iteration 
of the algorithm of Theorem 1 leads us to make the modest 
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CONJECTURE 2. For an infinite subclass of transformations with proper- 
ties (A) and(B), the h-measure of the U-sequence is the whole X interval. 

(3) A limiting case. Take the transformation L,(x; e) of Section 3 and 
set e = 4. We then have 

L,(x; 4): x’ = 2xX, 0 < x < 4 
(g < x < 1). W) 

x’ = 2h(l - x), 4 6 x < 1 

Although we cannot speak of attractive periods in this case (since the 
slope of the function is nowhere less than 1 in absolute value), it is still of 
interest to investigate the corresponding solutions of equation (4.1). These 
turn out to be a subset of the U-sequence in which the 2-period, all 
harmonics, and all patterns algorithmically generated from the harmonics 
and adjacent nonharmonics, are absent. The count through k < 15 is 
given in Table III, which may be compared with Table II. 

TABLE III 

k . . . 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 

solutions 1 1 3 4 9 14 27 48 93 163 315 576 1085 

One can explain this behavior by saying that, as the width l-2e of the 
flat-top shrinks to zero, the harmonics and harmonic-generated periods 
“coalesce” in structure with their fundamentals. This provides another 
illustration of the nature of the harmonics outlined in Section 4. 

(4) Conjugacy. Two transformations f(x), g(x) on [0, l] are said to be 
conjugate to each other if there exists a continuous, l-l mapping h(x) of 
[0, I] onto itself such that 

g(x) = hf iF(x x E [O, I]. (6.3) 

If f(x) and g(x) are themselves 1-1, the question of the existence of an 
h(x) satisfying (6.3) is settled by a theorem of Schreier and Ulam [6]. 
When f(x), g(x) are not homeomorphisms, very little is known about the 
existence or nonexistence of a conjugating function h(x). 

The importance of (6.3) for our purpose is that the attractive nature of 
limit sets is preserved under conjugacy; in particular, if T,(x) possess the 
U-sequence, then so does every conjugate of it. Clearly, our class of trans- 
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formations must be invariant under conjugation by the set of all con- 
tinuous, 1-l functions h(x) on [0, 11. (Incidentally, we now see why our 
special choice of the point x = 4 is no restriction, since it can be shifted by 
conjugation with an appropriate h(x).) 

It has long been known [7] that the parabolic transformation (3.1) 
with A = X,,, = 4 is conjugate to the broken-linear transformation (6.2) 
with X = 1, the conjugating function being 

h(x) = f sin-l (d/x). 

In general, no such pairwise conjugacy exists for the four special trans- 
formations of Section 3. For particular choices of the parameters this can 
be shown by making the following simple test. If f(xO) = x,, and g(xr) = 
x1(x0, x1 # 0), then a short calculation shows that 

df (4 _ ddx) -- 
dx c=zo dx ’ 2=c1 

(6.4) 

It is easily established that (6.4) does not hold in general for any pair of 
our special transformations. 

In view of the existence of the U-sequence, it is of interest to speculate 
whether there is not some well-defined but less restrictive equivalence 
relation that will serve to replace conjugacy (for one such suggestion-due 
to S. Ulam-see the remarks in reference 1, p. 49). Of course, Theorem 1 
itself provides such an equivalence relation, albeit not a very useful one: 

Let Trn(x), T,,(x) be two transformations with properties (A) and (B). 
Then there exists a mapping function M,, such that M,,(X) = CL, the 
domain of M being the union of the X-widths of the U-sequence for T, and 
the range being the union of the p-widths of the U-sequence for T, , 

Since at present nothing whatsoever is known about these mappings 
Mij , the above correspondence amounts to nothing more than a restate- 
ment of the existence of the U-sequence itself. 

APPENDIX 

The following table gives the complete ordered set of patterns associated 
with the U-sequence for K < 11; i is a running index, K gives the pattern 
length, and I(K) indicates the relative order of periods of given length K. 
The ordering corresponds to the X-ordering of solutions of equation (4.1). 
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i x I(K) Pattern 

1 2 

2 4 

3 a 

4 10 

5 6 

6 10 

7 a 

a 10 

9 11 

10 9 

11 11 

12 7 

13 11 

14 9 

15 11 

16 5 

17 10 

ia ii 

19 9 

20 11 

21 7 

22 11 

23 9 

24 11 

25 10 

26 a 

27 10 

28 11 

29 3 

30 6 

31 3 

32 11 

33 10 

34 11 

35 a 

36 11 

37 10 

38 ii 

39 9 

1R 

1 RLFi 

1 Rrn3LR 

1 RLR’LRLR 

1 ml3 

2 RLR5LR 

2 RLR5 

3 RLR7 

1 ma 

1 RLR6 

2 HLR%R 

1 RLR4 

3 RLR4LRLR 

2 RLR4LR 

4 HLFi4LR3 

1 RLFi2 

4 RLR2LRLR2 

5 RIB2LRLR3 

3 RLR2LRLR 

6 RLR2LFmLR 

2 RLFh 

7 RIR’LR’LR 

4 RLR21di3 

a RLR2LR5 

5 RLR’LR’ 

3 RLR2LR2 

6 RLR2LR2LR 

9 RLR2LR2LR2 

1 RL 

2 RL’RL 

5 RL2RLR2L 

10 RL2RLR2LR2 

7 RL’RLR”LR 

11 RL2HLR2LRL 

4' RL’RLR’ 

12 RL2RLR4L 

a RL2RLR4 

13 RL2Rm5 

6 RL2RLR3 

40 11 14 RL2Rrn3LR 

i K I(K) Pattern 

41 10 9 

42 7 3 

43 10 10 

44 11 15 

45 9 7 

46 11 16 

47 10 11 

48 ii 17 

49 a 5 

50 ii ia 

51 5 2 

52 10 12 

53 11 19 

54 a 6 

55 11 20 

56 10 13 

57 11 21 

58 9 a 

RL2RLR3L 

RL’RLR 

RL’RLRLRL 

RL2RLRLFtLR 

RL2RLRLR 

RL2RLRLR3 

RL2RI.RLR2 

RL2RLRLR 21. 

RL’RLRL 

RL’RLRL’RL 

RL’R 

RL2R3L2R 

RL2R3L2RL 

RL2R3L 

RL2R3LR2L 

RL2R3LR2 

RL2R3LR3 

RL2R31.Ei 

61 7 4 

62 10 15 

63 11 23 

64 9 3 

65 11 24 

66 10 16 

67 11 25 

68 a 7 

69 11 26 

70 10 17 

71 11 27 

72 9 10 

73 II 28 

74 6 3 

75 11 29 

76 3 11 

77 11 30 

78 IO 16 

79 11 31 

a0 a a 

59 11 22 RL’R’LRLB 

60 10 14 RL2R3LRL 

RL2R3 

RL2R5L 

RL2R5LR 

RL2R5 

RL2R7 

RL2R6 

RL2R6L 

RL2R4 

RL’R’LRL 

RL2R4LR 

RL2R4LR 2 

RL2R4L 

RL2R4L2R 

RL2R2 

RL2R2LRL2R 

RL2R2LEL 

RL2R2LRIE2 

RL’R’LRLR 

RL2R2LRLRL 

RL’R’LR 
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I X I(K) Pattern I X I(K) Pattern 

81 11 32 RL2R2.U3L 

82 10 19 RL2R21.R3 

83 11 33 RL2R21R4 

84 9 12 RL2R2LR2 

85 11 34 RL2R2LR2LR 

86 10 20 RL2R2LR2L 

01 7 5 

88 10 21 

89 11 35 

so 9 13 

91 11 36 

92 10 22 

93 11 37 

94 4 2 

95 8 9 

96 11 38 

RL2R2L 

RL2R2L2RL 

RL2R2L2RLR 

RL2R2L2R 

RL2R2L2R3 

RL2RZL2R2 

RL2R2L2R2L 

RL2 

RL3RL2 

RL3RL2R2L 

97 10 23 RL3RL2R2 

98 11 39 RL3RL2R3 

99 9 14 RL3RL2R 

100 11 40 RL3RL2RLB 

101 10 24 RL3RL2RL 

102 11 41 RL3RL2RL2 

103 I 6 RL’RL 

104 11 42 RL3RLR2L2 

105 10 25 RL3RLR2L 

106 11 43 RL3RLR2LB 

107 9 15 RL3RLR2 

108 11 44 RL3RLR4 

109 10 26 RL3RLR3 

110 ,ll 45 RL3RLB3L 

111 8 10 RL’RLR 

112 11 46 RL’RLRLRL 

1.13 10 27 HL3RLRLR 

114 11 47 RL3RLRLR2 

115 9 16 RL3RLRL 

116 11 48 RL’RLRL’R 

117 10 28 RL3RLRL2 

A 1 0 6 4 RL3R 

119 10 29 RL3R3L2 

120 11 49 RL3R3L2R 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

1.56 

157 

158 

153 

160 

9 17 

11 50 

10 30 

11 51 

8 11 

11 52 

10 31 

11 53 

9 18 

11 54 

10 32 

11 5s 

7 7 

11 56 

10 33 

11 57 

9 19 

11 58 

10 34 

11 59 

8 12 

11 60 

10 .35 

11 61 

9 20 

11 62 

5 3 

10 36 

11 63 

9 21 

11 64 

10 37 

11 65 

8 13 

11 66 

10 38 

11 67 

9 22 

11 68 

10 39 

RL3R3L 

RL3R3LRz 

RL3R3LR 

RL3R3LRL 

RL3R3 

RL3R5L 

RL3R5 

RL3R6 

RL3R4 

RL3R41B 

RL3R4L 

RL3R4L2 

RL3R2 

RL3R2LRL2 

RL3R2LRL 

RL3R21JU 

RL3R2LR 

RL~R~LR~ 

RL3R2LR2 

RL3R2LR2L 

RL3R2L 

RL3R2L2RL 

RL3R2L2R 

RL3R2LzR2 

RL3R2L2 

RL3R2L3R 

RL3 

RL4RL3 

RL4RL3R 

RL%L2 

RL4RL2R2 

RL4RL2R 

RL”RL’RL 

RL4RL 

RL’RIR’L 

RL4RLB2 

RL4RLR3 

RL’RLR 

RL4RLRLE 

RL*RJ.BL 
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i K I(K) 

161 11 69 

162 7 a 

163 11 70 

164 10 40 

165 11 71 

166 9 23 

167 11 72 

168 10 41 

169 11 73 

170 a 14 

j71 11 74 

172 10 42 

173 11 7s 

174 9 24 

175 11 76 

176 10 43 

177. 11 77 

178 6 5 

179 11 78 

la0 lo 44 

la1 ii 79 

182 9 25 

la3 11 a0 

la4 lo 45 

la5 ii ai 

166 a 15 

la7 ii a2 

168 10 46 

ias 11 a3 

190 9 26 

191 ii a4 

192 10 47 

193 11 as 

194 7 9 

195 11 86 

196 lo 48 

197 11 a7 

198 9 27 

199 ii aa 

200 10 49 

RL%IBL2 

RL4H 

RL4R3L2 

RL4R3L 

RL4R3LR 

RL4R3 

RL4R5 

RL4R4 

RL4R4L 

RL4R2 

RL4R2LRL 

RL4R2LR 

RL4R2LR2 

RL4R2L 

RL4R2L2R 

RL+b2L2 

RL~R~L~ 

RL4 

RL5RL3 

RL5RL2 

RL~RL~R 

RL'RL 

RL'RLR' 

RL5F&R 

RL5RLRL 

RL5R 

RL5R3L 

RL'R~ 

RL5R4 

RL5R2 

RL'R'LR 

RL5R2L 

RL5R2L2 

RL5 

RL6RL2 

RL'RL 

RL'RIR 

RL6R 
RL6R3 

RL6R2 

Pattern i K I(K) Pattern 

201 11 as 

202 a 16 

203 11 SO 

204 10 50 

205 11 91 

206 9 28 

207 11 92 

208 10 51 

209 11 93 

RL6R2L 

RL6 

RL'IRL 

RL7R 

RL7R2 

RL7 

RL'R 

RL8 

RLs 
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