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Abstract The subsystem synthesis method has been developed in order to improve computational
efficiency for a multibody vehicle dynamics model. Using the subsystem synthesis method, equations
of motion of the base body and each subsystem can be solved separately. In the subsystem synthesis
method, various coordinate systems can be used and various integration methods can be applied
in each subsystem, as long as the effective mass matrix and the effective force vector are properly
produced. In this paper, comparative study has been carried out for the subsystem synthesis method
with Cartesian coordinates and with joint relative coordinates. Two different integration methods
such as an explicit integrator and an explicit implicit integrator are employed. In order to see the
accuracy and computational efficiency from the different models based on the different coordinate
systems and different integration methods, a rough terrain run simulations has been carried out with
a 6 × 6 off-road multibody vehicle model. c© 2012 The Chinese Society of Theoretical and Applied
Mechanics. [doi:10.1063/2.1206310]

Keywords subsystem synthesis method, differential algebraic equations

In order to generate efficient vehicle model, the
subsystem synthesis method has been proposed.1 This
method produces the equations of motion for each sub-
system independently and also separately gains the
equations of motion of a base body. The method natu-
rally provides a modular structure for each subsystem.
This modular feature enables analysts not only to im-
plement different formulations in the subsystem module
but also to replace the suspension subsystem module
easily with other types of suspension subsystem mod-
ules without altering the programming structure.1

There are two different coordinate systems which
are mostly used in the formulation of multibody dy-
namics; one is Cartesian coordinate formulation and the
other is joint coordinate formulation. Although Carte-
sian coordinate formulation is simple and easy to im-
plement, this leads to large size of differential algebraic
equations (DAE) system. Whereas, the joint coordinate
formulation provides solution efficiency due to dealing
with the minimum number of generalized coordinates.
However, this formulation leads to very complicated ex-
pressions of inertia matrix and force vector. Thus, it is
sometimes difficult to implement this formulation with-
out helping from symbolic code generators.

There are two different integrators mostly used in
multibody dynamics. One is explicit integrator, and the
other is implicit integrator. Compared with the explicit
integration method, the implicit integration method is
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complex and time-consuming, because the system Jaco-
bian matrix has to be computed for solving the DAEs
and moreover a Newton-like method must be applied.
However, the implicit integration method provides more
stable solution and also allows larger integration step
size than the explicit integrator.2

In this paper, a comparative study has been carried
out with two different subsystem synthesis methods:
one is based on the Cartesian coordinates, the other is
based on the joint coordinates. Within two different for-
mulations, the explicit and the explicit-implicit integra-
tion methods are also employed. Numerical efficiency
comparison has been carried out with 6× 6 unmanned
military robot vehicle simulations.

Since the vehicle system consists of a base body
(chassis) and several suspension subsystems, it is ide-
ally suited for the subsystem synthesis method. In or-
der to explain the subsystem synthesis method in the
Cartesian coordinates, a system that consists with a
base body and one subsystem as shown in Fig. 1 can be
first discussed.

To describe the motion of the system, Cartesian co-
ordinates are employed as

yi ≡ [rTi pT
i ]

T, (1)

where pi = [e0 e1 e2 e3]
T is the vector of Euler param-

eters that defines the orientation of the body reference
frame relative to the inertial reference frame, and must
satisfy pT

i pi = 1.
In order to derive the equations of motion for the

system as shown in Fig. 1, a variational form of the
equations of motion for the system can be obtained by
summation of the virtual work form of the D’Alembert
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Fig. 1. A system with one subsystem.

equations of the base body and the bodies in the
subsystem.3

δyT
0 (M0ÿ0 − g0) +

nb∑
i=1

δyT
i (Miÿi − gi) = 0, (2)

where nb is the number of the body consisting of a
subsystem, δyi is the virtual displacement and vir-
tual rotation vector of the body i in a subsystem, ÿi

is the composite acceleration of the body i in a sub-
system, Mi = diag[miI 4GT

i J
′c
iGi] is the block di-

agonal mass and inertia matrix of a subsystem, and
gi = [fT

i , (2GT
i n

′c
i + 8ĠT

i J
′c
iĠipi)

T]T is the gener-
alized composite force vector acting on the body in a
subsystem. Here, Gi(pi) = [−ei, −ẽi + e0I] is a 3×4
matrix, mi is the mass of the body i, J ′ci is the inertia
matrix with respect to the body i fixed centroidal refer-
ence frame, fi is the vector of applied forces acting on
the body i, n′ci is the vector of applied torques acting on
the body i, and ẽi is the 3×3 skew-symmetric matrix.3

In Eq. (2), the vector of virtual displacement and ro-
tation δyi must be consistent with kinematic constraints
in the system.

Φ(y0, ȳ) = 0, (3)

where y0 is the composite position vector of the base
body, ȳ = [yT

1 , yT
2 , ..., yT

nb
]T is the composite position

vectors of all the bodies in a subsystem. Differentiating
Eq. (3) with respect to time twice yields the constraint
acceleration equations

Φy0(y0, ȳ)ÿ0 +Φȳ(y0, ȳ)¨̄y ≡ γ̄(y0, ȳ, ẏ0, ˙̄y), (4)

where γ̄ is the right hand side of the constraint accelera-
tion equations. Using the Lagrange multiplier theorem3

in Eq. (2) and augmenting constraint acceleration equa-
tions of Eq. (4) yield the following matrix form of the
subsystem equations of motion⎡

⎢⎣ M∗
0 0 ΦT

y0

0 M̄ ΦT
ȳ

Φy0 Φȳ 0

⎤
⎥⎦
⎡
⎢⎣ ÿ0

¨̄y

λ̄

⎤
⎥⎦ =

⎡
⎢⎣ g∗0

ḡ

γ̄

⎤
⎥⎦ , (5)

where M∗
0 and g∗0 are respectively the mass matrix

and the generalized applied force vector of the base
body, M̄ = diag[Mi, M2, ..., Mnb

] and ḡ =
[gT

1 , gT
2 , ..., gT

nb
]T are the mass matrix and the gener-

alized applied force vectors of all the bodies in a subsys-
tem respectively, and λ̄ is the vector of Lagrange mul-
tipliers that account for the workless constraint forces.

From the second and third row of Eq. (5), the sub-
system equations of motion can be obtained by treating
the acceleration ÿ0 of the base body as the known value.
Thus, the accelerations of the bodies in the subsystem
and the Lagrange multiplier vectors associated with the
subsystem can be obtained as

¨̄y = M̄−1
(
ḡ −ΦT

ȳ λ̄
)
, (6)

λ̄ = (ΦȳM̄
−1ΦT

ȳ )
−1(Φy0 ÿ0 +ΦȳM̄

−1ḡ − γ̄). (7)

The base body equations of motion can be obtained
separately with the effective mass matrix and effective
force vectors by substituting Eq. (6) and Eq. (7) into
the first equation of Eq. (5).

(M∗
0 +

�

M
c

)ÿ0 = g∗0 +
�
g
c
, (8)

where

�

M
c

= M∗
0 +ΦT

y0
(ΦȳM̄

−1ΦT
ȳ )
−1Φy0 , (9)

�
g
c
= g∗0 +ΦT

y0
(ΦȳM̄

−1ΦT
ȳ )
−1(γ̄ −ΦȳM̄

−1ḡ). (10)

The effective mass matrix and force vector are the
dynamic effects from the subsystem to the base body.

If the system consists of several subsystems as
shown in Fig. 2, the base body equations of motion for
this system can be easily obtained through the synthe-
sis procedure by adding the effective mass matrix and
the effective force vector from each subsystem as⎛

⎝M0 +

k∑
j=1

�

M
c

j

⎞
⎠ ÿ0 =

⎛
⎝g0 +

k∑
j=1

�
g
c

j

⎞
⎠ , (11)

where k is the total number of the subsystem, M0 is
the mass and inertia matrix of the base body, g0 is
the generalized force vector acting on the base body,

and
�

M
c

j and
�
g
c

j are the effective mass matrix and the
effective force vector of the subsystem j, respectively.

The ith subsystem equations of motion can be ex-
pressed as the same as Eqs. (6) and (7)

¨̄ysi = M̄−1
si

(
ḡsi −Φ

sTi
ȳsi

λ̄si

)
, (12)

λ̄si = (Φsi
ȳsi

M̄−1
si Φ

sTi
ȳsi

)−1 ·
(Φsi

y0
ÿ0 +Φsi

ȳ M̄−1
si ḡsi − γ̄si). (13)

To solve the equations of motion for the entire sys-
tem as shown in Fig. 2, first the effective mass matrices
and the effective force vectors from the subsystems must
be computed. Then, the base body equations of motion
of Eq. (11) is constructed and solved for the base body
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Fig. 2. A system with several subsystems.

acceleration ÿ0. Once the based body acceleration is
obtained, then the Lagrange multipliers and the accel-
erations of the bodies in the each subsystem can be
computed using Eq. (13) and Eq. (12), respectively.

For the vehicle system, based body (sprung mass)
motion is less affected by the road roughness due to sus-
pension subsystem. Thus, an explicit integrator can be
applied for the base body equations of motion. For the
subsystem with suspension assembly and tire, it expe-
riences highly oscillatory vibration due to the bumps of
the road. An implicit integrator might be good choice
to obtain the stable solutions.5

In this paper, the Adams-Bashforth 3rd order ex-
plicit integrator is used for solving the equations of mo-
tion for a base body (sprung mass), while the HHT-α
implicit integrator is utilized for obtaining the solutions
of the equations of motion for each subsystem (suspen-
sion assembly and tire). In order to apply HHT-α for
the subsystem equation of motion, the second equation
of Eq. (5) can be expressed as the complimented form
of equations of motion with HHT-α method.

Ψ̄ =
(
M̄ ¨̄y

)
n+1

+ (1 + α)
(
ΦT

ȳ λ̄− ḡ
)
n+1

−
α
(
ΦT

ȳ λ̄− ḡ
)
n
= 0, (14)

where as indicated in Hilbert,6 the HHT-α method has
the second order accuracy and a desirable level of nu-
merical dissipation can be adjusted with integration pa-
rameter α.

α ∈
[
−1

3
0

]
, γ =

1− 2α

2
, β =

(1− α)2

4
. (15)

In the HHT method, the velocities and the positions
at next time tn+1 can be computed by a second-order
integration formula from the Newmark family as

˙̄yn+1 = ˙̄yn + (1− γ)h¨̄yn + γh¨̄yn+1, (16)

ȳn+1 = ȳn + h ˙̄yn +
h2

2
(1− 2β) ¨̄yn + βh2 ¨̄yn+1, (17)
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Fig. 3. A system with one base body and a subsystem.

where h is step size, and subscript denotes discrete time
step.

A Newton-like algorithm is used to solve the result-
ing system of nonlinear equations for the unknown ¨̄y

and λ̄ from Eq. (4) and Eq. (14). The iterative method
requires the solutions of the linear system at each iter-
ation (k)

⎡
⎣ Ψ̄¨̄y

1 + α
ΦT

ȳ

Φȳ 0

⎤
⎦[

Δ¨̄y
(k)

Δλ̄(k)

]
=

⎡
⎢⎢⎣ − Ψ̄

1 + α

− Φ

βh2

⎤
⎥⎥⎦ (18)

with

¨̄y
(k+1)

= ¨̄y
(k)

+Δ¨̄y
(k)

,

λ̄(k+1) = λ̄(k) +Δλ̄(k),
(19)

where Ψ̄¨̄y in Eq. (15) is defined as

Ψ̄¨̄y =
[
M̄ + βh2

(
M̄ ¨̄y

)
ȳ

]
+ (1 + α)

[
βh2

(
ΦT

ȳ λ̄
)
ȳ
−

βh2 (ḡ)ȳ − hγ (ḡ) ˙̄y

]
. (20)

Figure 3 represents a system with one base body and
one subsystem attached to the base body for the joint
coordinate formulation. The typical subsystem can con-
sist of bodies, joints, force elements, and a virtual base
body. The virtual base body is introduced here to define
the reference body in the subsystem, since the relative
joint coordinates are employed. The virtual base body
is the mass-less body and the recursive kinematic rela-
tionship is applied from this body.7 The fixed joint con-
nects the virtual base body and the original base body
in order to make a dynamically equivalent system.

If the the conventional joint coordinate formulation8

is used, the equations of motion for the above described
system can be derived as⎡

⎢⎣ M̄yy M̄yq 0

M̄T
yq M̄qq ΦT

q̄

0 Φq̄ 0

⎤
⎥⎦
⎡
⎢⎣

˙̂
Y 0

q̈

λ

⎤
⎥⎦ =

⎡
⎢⎣ P̄y

P̄q

γ̄

⎤
⎥⎦ . (21)

Equation (21) has different characteristics from the
corresponding equations of motion (Eq. (5)) using the
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Cartesian coordinates. In the Cartesian coordinate for-
mulation, the base body and the subsystem are coupled
through constraints, whereas in the joint coordinate for-
mulation, there is inertia coupling between the base
body equation and the subsystem equations as shown
in Eq. (21).

From the second and third rows of Eq. (21), the
equations of motion for the subsystem can be obtained

by treating the state acceleration
˙̂
Y 0 of the base body

as the known value as

λ =
(
Φq̄M̄

−1
qq ΦT

q̄

)−1 ·{
Φq̄M̄

−1
qq

(
P̄q − M̄T

yq
˙̂
Y 0

)
− γ̄

}
, (22)

M̄qq ¨̄q = P̄q −MT
yqŶ0 −ΦT

q̄λ. (23)

After obtaining the acceleration expression ¨̄q in terms of
˙̂
Y 0 from Eq. (23) and substituting this expression and
the expression of the Lagrange multiplier in Eq. (22)
into the first row of Eq. (21), the reduced form of the
virtual base body equations of motion is obtained as

�

M
c ˙̂
Y 0 =

�

P
c

, (24)

where
�

M
c

= M̄yy − M̄yqM̄
−1
qq M̄T

yq +

M̄yqM̄
−1
qq ΦT

q̄ (Φq̄M̄
−1
qq ΦT

q̄ )
−1Φq̄M̄

−1
qq M̄T

yq, (25)
�

P
c

= P̄y − M̄yqM̄
−1
qq P̄q +

M̄yqM̄
−1
qq ΦT

q̄ (Φq̄M̄
−1
qq ΦT

q̄ )
−1 ·

(Φq̄M̄
−1
qq P̄q − γ̄). (26)

Since the virtual base body and the original base
body are connected by a fixed joint, the equations
of motion for the base body is obtained by simply
adding effective mass matrix (Eq. (25)) and force vector
(Eq. (26)) to the original base body equations of motion
as

(M̂0 +
�

M
c

i )
˙̂
Y 0 = (Q̂0 +

�

P
c

i ). (27)

If the reduction procedure is applied to the system
shown in Fig. 4, entire system equations of motion can
be easily obtained. The base body equations of motion
can be now expressed as Eq. (28) with the effective mass
matrices and force vectors from all of the subsystems(

M̂0 +
n∑

i=1

�

M
c

i

)
˙̂
Y 0 =

(
Q̂0 +

n∑
i=1

�

P
c

i

)
. (28)

Once the acceleration
˙̂
Y 0 is obtained by solving

Eq. (28), then the subsystem equations of motion can
be solved using following equations.

λi =
(
Φq̄iM̄

−1
qiqiΦ

T
q̄i

)−1
[
Φq̄iM̄

−1
qqi ·(

P̄qi − M̄T
yqi

˙̂
Y 0

)
− γ̄i

]
,

Fig. 4. A system with several subsystems.

for i = 1, 2, .., n, (29)

M̄qiqi
¨̄qi = P̄qi −MT

yqi Ŷ0 −ΦT
q̄i
λi,

for i = 1, 2, · · · , n. (30)

Exactly the same procedure as discussed change
from in previous to in the Cartesian coordinate case can
be applied to the joint coordinate subsystem synthesis
method for the explicit-implicit integration method. If
HHT-α integration method is applied to the subsystem
equations of motion expressed in Eq. (29), the comple-
mented equations of motion considering the numerical
damping effect6 is obtained as shown in Eq. (31).

Ψ ≡ (M̄T
yq

˙̂
Y 0)n+1 + (M̄qq ¨̄q)n+1 +

(1 + α)(ΦT
q̄λ− P̄q)n+1 −

α(ΦT
qλ− P̄q)n = 0. (31)

In the HHT-α method, the Newmark formula is uti-
lized for the joint velocity and the joint position at next
time step tn+1 as

˙̄qn+1 = ˙̄qn + (1− γ)h¨̄qn + γh¨̄qn+1, (32)

q̄n+1 = q̄n + h ˙̄qn +
h2

2
(1− 2β)¨̄qn + βh2 ¨̄qn+1, (33)

where, h is step-size and the subscripts denote discrete
time steps.

The iterative method such as the Newton-Raphson
algorithm can be applied to solve the resulting systems
of nonlinear equations.

⎡
⎣ Ψ¨̄q

1 + α
ΦT

q̄

Φq̄ 0

⎤
⎦[

Δ¨̄q
(k)

Δλ̄(k)

]
=

⎡
⎢⎢⎣
− Ψ

1 + α

− Φ

βh2

⎤
⎥⎥⎦ (34)
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Fig. 5. 6× 6 unmanned robot vehicle.
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Fig. 6. 1/6 unmanned Robot vehicle 3D model.

with ¨̄q
(k+1)

= ¨̄q
(k)

+ Δ¨̄q
(k)

, λ̄(k+1) = λ̄(k) + Δλ̄(k).
Where, (k) represents the iteration counts for the
Newton-Raphson method. In the Eq. (34), Ψ¨̄q is the
system Jacobian matrix that can be expressed as the
following equation

Ψ¨̄q = M̄qq + βh2(Ψ )q̄ + γh(Ψ) ˙̄q + (Ψ )¨̄q. (35)

The computation of the system Jacobian matrix is
very complicated. To calculate the system Jacobian ma-
trix effectively, the symbolic code generator MAPLE is
used in this paper.

To compare the subsystem synthesis method with
two different coordinate systems, an unmanned robot
vehicle shown in Fig. 5 has been considered. This robot
consists of six rod arm type suspension systems, a cam-
era system with stabilizer for vision, a laser scanner and
a machine gun subsystem.

In this paper, the 1/6 unmanned robot vehicle 3D
model has been constructed first as shown in Fig. 6.

Table 1. 1/6 unmanned Robot vehicle 3D model.

Force properties Values

Rotational spring coefficient 31.416 Nm/(◦)
Rotational damping coefficient 10.47 Nm/(◦)
Tire vertical stiffness 200 kN/m

Table 2. Four different 1/6 robot vehicle models.

Model Formulation Integrator

1 Cartesian Explicit

2 Cartesian Explicit-implicit

3 Joint Explicit

4 Joint Explicit-implicit
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Fig. 7. 1/6 unmanned robot vehicle model and the vertical
position of chassis.

It consists of a chassis body, suspension housing, and a
tire model. The chassis body is connected to the ground
by a translational joint. The suspension housing and
the chassis body are connected with a revolute joint.
A simple tire force model is utilized. The rotational
spring-damper model is applied into the revolute joint.
The rotational spring and damper properties and tire
stiffness property are shown in Table 1.

In order to carry out comparative study, four differ-
ent models for the 1/6 robot vehicle have been imple-
mented in C language as shown in Table 2.

Figure 7 shows the simulation results of the verti-
cal position of the chassis from four different models.
Essentially, the same results are obtained from four dif-
ferent models.

CPU time has been measured in the PC system with
Intel@CoreTM 2 Duo 2.71 GHz CPU, 3328 MB RAM.
Table 3 shows the CPU time comparison.

In this 1/6 vehicle system, if joint coordinate for-
mulation is used, subsystem equations of motion turn
out to be an ordinary differential equations. However,
in the Cartesian coordinate formulation, DAE system
must be solved in the subsystem equations of motion.
In this research, the generalized coordinate partitioning
method3 has been used for solving DAE. As shown in
Table 3, joint explicit model is the most efficient one.
RMS error has been obtained by taking the joint ex-
plicit model as a reference solution. The solutions of
position and velocity of the models are accurate enough
to compare with the reference model. However, in the
acceleration level, explicit model shows better accuracy
than both joint and Cartesian explicit-implicit models.



063010-6 S. S. Kim, W. H. Jeong, and M. H. Kim, et al. Theor. Appl. Mech. Lett. 2, 063010 (2012)

Table 3. CPU time comparison.

Formulation Cartesian Cartesian Joint Joint

Integrator Explicit Explicit-implicit Explicit (Ref. 3) Explicit-implicit

Step-size/ms 0.7 0.7 0.7 0.7

RMS error

Pos. 1.85× 10−5 2.63× 10−6 — 1.31× 10−5

Vel. 1.18× 10−5 2.94× 10−4 — 4.31× 10−4

Acc. 1.51× 10−3 2.28× 10−1 — 2.39× 10−1

CPU time/s 4.555 5.945 0.674 1.143

Ratio of CPU to Sim time/(%) 13.02 16.99 1.92 5.54

Ratio 6.76 8.83 1 1.70

Joint explicit

Joint ex-implicit

Joint RMS error (Acc)
Cartesian explicit

Cartesian ex-implicit

Catesian RMS error (Acc)
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Fig. 8. CPU time results (1/6 unmanned robot vehicle
model).

Figure 8 shows the CPU times with various step-
sizes in the 2nd model and the 4th model, i.e., explicit-
implicit model. When the explicit integrator is used,
the maximum step-size that can produce a stable solu-
tion is 0.7 ms. The constant below line represents the
CPU time from the joint explicit integrator with step-
size 0.7 ms (model 3). The constant up line represents
the CPU time from the Cartesian explicit integrator
with step-size 0.7 ms (model 1).

Differently from the explicit integrator, larger step-
sizes can be used in the explicit-implicit integrator due
to the iterative nature. The green line shows the CPU
time with various step-sizes from the joint explicit-
implicit integrator (model 4). The sky blue line rep-
resents the RMS error in acceleration from the model
4. The RMS error is increased if the step-size greater
than 5.6 ms. Thus, only up to 5.6 ms step-size, stable
solutions can be obtained. The CPU time with step-size
5.6 ms is about 0.156 s. It is almost 4.3 times faster than
the joint explicit model with 0.7 ms step-size. The pur-
ple line represents the CPU time with various step-sizes
from the Cartesian explicit-implicit integrator (model
2). In this case, if step-size is greater than 2.1 ms, then

unstable solution is obtained. The authors speculate on
the reason that DAE with index 3 must be solved in the
subsystem equations of motion in the Cartesian explicit-
implicit formulation, whereas ODE system is solved in
the joint explicit-implicit method.

The joint coordinate subsystem synthesis method
with the explicit integrator is the most efficient method
comparing with others, when they use the same integra-
tion step-size. However, only the small step-size must be
used in order to obtain the stable solution with explicit
integrator. Whereas, the joint coordinate subsystem
synthesis method with the explicit-implicit integrator
provides solutions with a larger step-size. In the 1/6
unmanned robot vehicle model, without loss of accu-
racy, the most efficient solutions can be obtained with
step-size 5.6 ms, using the joint explicit-implicit model.

Further investigation on the DAE solution method
with index 3 must be performed.
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