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We give an algebraic proof of the Birman—Bers theorem—an algebraic result
whose previous proofs used topology or analysis, and which says that a certain
subgroup of finite index in the (algebraic) mapping class group of an oriented
punctured surface is isomorphic to a certain group of automorphisms. The index 2
case gives rise to an automorphism of the group consisting of those automorphisms
of a free group that stabilize the normal subgroup generated by an oriented-surface
relator, and we analyze this curious automorphism.  © 1997 Academic Press

1. INTRODUCTION

1.1. Notation. Let G be a group. For a subset X of G, X*! will
denote the set consisting of the elements of X and their inverses.

Let a, b, ¢ be elements of G. The product of a and b will be denoted by
ab and also by a - b. We write [a, b] to denote aba 1b~! and write a(b) to
denote aba~'. This latter notation is too standard for us to alter, but it
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gives rise to ambiguities, so we make the convention that juxtapositions are
to be performed first, followed by the bracketing operation, followed by
the dot multiplications; thus a - b(c) = abcb™! and ab(c) = abchb ‘a1

We write [a] to denote the conjugacy class of a in G, so if G is a free
group with a specified basis, [a] is viewed as a cyclic word in the basis.

We use the same symbol a to denote both the group element and the
inner automorphism a(—) of G; the correct interpretation should be clear
from the context.

The group of automorphisms of G will be denoted Aut(G), and the
subgroup of inner automorphisms will be denoted Inn(G). The latter is
isomorphic to G modulo its center, which we denote G /Ctr. When the
center of G is trivial, we will tend to identify the foregoing groups with G,
and, again, the interpretation will be clear from the context. In all our
applications, G /Ctr will be either G or trivial.

Throughout this article, g and n will be nonnegative integers, and y, ,
will denote the integer 2 — 2g — n.

1.2. DerFINITIONS.  We write

[xlnh] [xg’yg]zl vz, = 1>,

the fundamental group of an orientable closed surface of genus g with »
punctures, which we call a (g, n)-surface. This surface has Euler character-
istic x, , and if n > 1, then %,  is a free group of rank 2g +n — 1 =

Eg’n = <x1,y1,...,xg,yg,zl,...,zn

n

If Si, ..., S, are elements, subsets, or sets of subsets, of X, , we shall

AUt(S, Sy, S,)

g.n

to denote the subgroup of Aut(X, ,) consisting of those elements a such
that a(S,) = S;, i = 1,..., m, with the natural interpretation of «(S),).
Thus

Aut(Egyn, {[z] ._.,[Zn]il})

is the group of automorphisms that permute the conjugacy classes of the
z,. The (algebraic) mapping class group is defined as the quotient

2%, = Aut(3, , (2] [2,]7) /inn(z, ).

In a natural way .# &, , maps onto the symmetric group on n letters, and
the kernel is a normal subgroup of index n! called the pure (or unper-
muted) mapping class group, denoted

PHE, , = A3, . [2]. [2,]7Y) /imn(3, ).
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Our aim is to prove that, except in the degenerate case (g, n) = (0, 1),

MEy 41 2 AUI(Eg,nJrl’ {[Zl]iln --w[zn]il}1 [Zn+1]il)/|nn(2g,n+l)
= Aut(3, , {[z]. . [2,07Y), (1)

that is, a subgroup of index n + 1in .#&, , ., is isomorphic to a group of
automorphisms. Restricting to subgroups of index n! gives

‘@‘%gg,n-%—l = AUt(zg,n-%—l’ [Zl]ill ] [Zn-%—l]il)/lnn(zg,n-%—l)
= Aut(3, . [z]*. (2,17, (2)

The case g = 0 of (1) is due to Magnus [13], and the case n = 0 is due to
Dehn and Mangler [14]. Topological and analytic analogues of (1) were
proved by Birman [3] and Bers [2]. Invoking the subsequent identification
by Maclachlan and Harvey [12] of the algebraic and topological mapping
class groups, we can express Birman’s homotopy-fibration exact sequence
[3] in the form

1-3%,,/Ctr >PHE, .1 > PHE,, > 1, (3)

which can be viewed as another way of stating (2) (see [3, Section 3]), and
we can express Bers’ result [2, Theorem 10] in the form (1). The form (1)
was first explicitly stated by Maclachlan [11, Corollary 8]. Our main claim
is to give a purely algebraic proof of (1). We do this by constructing and
analyzing the kernel that appears in (3), a normal subgroup which has
played a part in the calculation of presentations of mapping class groups in
the work of McCool [16] and Wajnryb [20].

In Section 2, we briefly discuss the isomorphism (1) from a topological
viewpoint. In Sections 3 and 4, we give the algebraic proof. Notice that

AUt(Egyn_*_l,{[Zl]il----i[Zn]il}’{zn+l}il) N Inn(zg,n+1)
=Inn({z,, 1)),

since, in a nonabelian free group, a basis element generates its own
centralizer; also

AUt(Eg,n+1' {[zl]il' s [zn]il}! {Zn+l} il) ' Inn(2g~n+l)

= Aut(Eg',,H, {[zl]il, o [Z,,]il}' [Zn+1]tl)-
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Thus we have an isomorphism

Aut(Eg,nH, {[Zl]ilx ---1[Zn]i1}! [Zn+1]il)/|nn(2g,n+l)
= Aut(S, o [0 L2 2 ) F ) 0z, D).

There is also a natural map

A3, o (2] L2 (20 )

N AUt(Eg,n’{[zl]tl,""[zn il}),

denoted collapse (z,,,), and our task is reduced to showing that
collapse(z,, . ;) is surjective and has kernel Inn({z, ). Surjectivity is not
difficult, and it is the calculation of the kernel that occupies Sections 3 and
4. We conclude Section 4 with a brief proof of Zieschang’s result that any
endomorphism of X, , that sends each of the n + 1 z;s to a conjugate
of itself is an automorphism.

In Section 5, we consider the embedding of 2/, ,., In ZF, .,
which produces an image of the symmetric group S,,, in the outer
automorphism group of the groups in (2). Results of lvanov [8] show that if
Xg.» < —2, then this image is the whole outer automorphism group. We
study the way in which a specific transposition of §,,; acts on
Aut(z, ,,[z,]%%,...,[2,]"). In consequence, we obtain an explicit free
generating set of the kernel of the surjective map

collapse(z,): Aut(2, ,.[z].....[2,]) = Aut(Z, ,_1.[z]..... [2,.1]),

for each n > 1. For n = 1, the action of the transposition completely
describes the outer automorphism group of Aut(Egvl,[zl]il), the group
consisting of those automorphisms of the free group %, , that stabilize the
normal subgroup generated by the oriented surface relator z,. The outer
automorphism group is trivial for g < 1 and has order 2 for g > 2.

2. THE TOPOLOGICAL VIEWPOINT

In this section we give a vague idea of how the topologists view the
group isomorphism that we shall prove algebraically over the two subse-
guent sections.

Recall that the fopological mapping class group 4%, , is the group of
isotopy classes of homeomorphisms of the (g, n)-surface. It is convenient
to think of the (g, n)-surface as a surface of genus g with n distinguished
points, so that we can refer to homeomorphisms “permuting the punc-
tures.”
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Let us choose a distinguished point p on a (g, n)-surface, and take 3, ,
to be the fundamental group with respect to this base point. By a
p-homeomorphism of the (g, n)-surface we shall mean a homeomorphism
which fixes p. In a natural way, a p-homeomorphism determines an
element of

Au(s, ([0 [207),

and hence an element of .Z¢%, ,.

Dehn showed that every isotopy class contains a p-homeomorphism, and
that two p-homeomorphisms lie in the same isotopy class if and only if
they have the same image in .#%, ,. Hence there is an injective homomor-
phism J#€, , >HE, . Comblned work of Dehn, Nielsen, Magnus,
Harvey, Maclachlan and others culminated in a proof that this map is
surjective; see [12]. Thus, the algebraic and topological mapping class
groups can be identified with each other.

Two p-homeomorphisms are said to be p-isotopic if there is an isotopy
through p-homeomorphisms between them. Epstein [7] showed that two
p-homeomorphisms are p-isotopic if and only if they determine the same
automorphism of the fundamental group. Together with the results de-
scribed in the previous paragraph, this implies that Aut(%, ,
{[z,1*%,...,[z,]*D) can be identified with the group of p-isotopy classes
of p-homeomorphlsms of the (g, n)-surface.

If we now delete p from the (g, n)-surface, we get a (g, n + 1)-surface
with a distinguished puncture, and there is a natural bijective correspon-
dence between p-homeomorphisms of the (g, n)-surface and homeomor-
phisms of the (g, n + 1)-surface that fix the distinguished puncture. More-
over, two p-homeomorphisms are p-isotopic if and only if they determine
isotopic homeomorphisms of the (g, n + 1)-surface.

This gives the topological interpretation of the isomorphism (1). Modulo
identifying the algebraic and topological mapping class groups, Bers’
article [2] gives two interpretations of the isomorphism—one topological
and one analytic.

3. BIRMAN'S NORMAL SUBGROUP

Recall that » is a nonnegative integer.

3.1. DeriniTioNns.  Throughout this section, 2 will denote a finitely
generated free group with a specified (finite) basis X. Thus the elements
of 3 are thought of as reduced words in X **, and we use terms such as
“subword,” “cyclically reduced,” etc., without explicitly mentioning X.
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Let ¢,,...,t, t be nontrivial elements of X and let T = ([#,],...,[z,], ).
An element w of % is said to occur in T if w occurs as a subword of ¢
(reduced) or of some cyclically written ¢;, 1 <i < n (cyclically reduced).
We denote by <, the relation on X *! given by y <, z if and only if
yz~t oceurs in T, for all y,z in X *1,

Throughout this section, .7 will denote the set of sequences of the form

T=([t]....[t]0),

where ¢ and all the ¢, are nontrivial elements of X, such that every
element of X *' occurs exactly once in T and such that <, uniquely
determines a total order <, , called the T-ordering, on X **. For all y, z
in X *!, z immediately follows y in the T-ordering if and only if y <, z.
A specific example is given in Definition 4.2, below. In the degenerate case
where X is empty, we declare that the foregoing definition of . does not
apply, and we take .7 to consist of the single element T = (¢), where ¢ is
the identity element.

In a natural way Aut(X) acts on 7.

For any (T,U) € 7 X.7, we let

Z(T,U) = {a € Aut(3)|a(T) = U}

and we let £ denote the disjoint union of the £(T,U), as (T, U) ranges
over 7 X 7. Each element of £ has, associated with it, an element of
Aut(X), called the underlying automorphism, and we write a: T — U to
denote an element of (T, U) that has underlying automorphism «. In a
natural way, the group structure of Aut(X) induces on & a groupoid
structure, with vertex set 7.

Notice that for any 7 = ((#,],...,[¢,],1) €7,

Z(T,T) =Aut(2,[t,],....[1,]. 7).

An element «: T — U of & is said to be a signed permutation if «
permutes the elements of X *1. Notice that o commutes with the invert-
ing operation.

An element a: T — U of & is said to be a Nielsen shift if there are
elements y,z of X*! such that « acts trivially on X *! — {y}*! and
a(y) = yz, where (yz~*)*! occurs in T, that is, either y <, z or z <, y.
In this event we say that «: T — U is a right, resp. left, Nielsen shift.

Since « is an automorphism, z # y~*. Conversely, if we have T € .7 and
y,z € X *! such that either y <, z #y~ ! or y ' #z <, y, then there
exists an automorphism « that acts trivially on X *! — {y}** such that
a(y) =yz, and then a(T) € 9.
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3.2. LEMMA (McCool). With respect to the above, the groupoid & is
generated by the signed permutations together with the Nielsen shifts.

Proof. Recall that there are two types of Whitehead automorphism
(with respect to X) of 3. Those of the first type permute X *'. Those of
the second type fix some y € X*! and send each x € X *! — {y}*! to
y(— 1or O)X)/(O or 1).

Now let us pass to a free group of larger rank by adding one more free
generator u and associate with each element (#],...,[¢,],©) of &, the
sequence ([#,],...,[¢,], [ut] of cyclic words in the new, larger, free group.
As in the proof of [15, Lemma 2], by applying [15, Lemma 1] to the action
on such sequences of cyclic words of automorphisms that fix u, we see that
Z is generated by those elements «: T — U whose underlying automor-
phisms are Whitehead automorphisms. If « is of the first type, then
a: T — U is a signed permutation. If « is of the second type, then
a: T — U can be written as a product of Nielsen shifts by a simple
inductive procedure; see [17, Corollary 3]. 1

3.3. DeFiniTions.  Let T = (t,],...,[z,],1) €7 and let x,y € X *1.

In this section we will use angle brackets and a semicolon to denote a
pairing, which we hope will not be confused with the usage in the other
sections where angle brackets with no semicolons are used to denote
groups generated by presentations, and subgroups generated by sets.

We define

t, if x <7y,

(x <7 y) = 1, if x >, y.

Notice that 7' plays two roles here, since (x <, y) is a power of the last
entry of T. (We would have preferred to use the notation * <7’ | but this
would have complicated our formulas even more.) We also define

(x TY)

e NG T = ) < ),

For each w € 3, we will eventually construct an element

w;T) € Aut(2, [, ],....[1,].1).
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To begin, for each x € X *1, we define (x; T) to be the endomorphism of
>, such that

y, if y=x*1,

(7 P<px) (x<pxtt) (y<px7t) (37 <px)

(x7* <Tx)x(y*1 <Tx*1)y (x <Tx*1)x (y <zx)
ify e X+ — (x*1).

TH(y) =

Notice that {x; T)(y~1) = ({x; T)(y))~ L.
34. Lemma. If T=(t,),...,[t,1,1) € Tand x € X **, then

(x;T) € Aut(Z,[1,],....[1,],0).

Proof. Consider any y,z € X *! — {x*1} such that yz or yxz or yx 'z
occurs in T.

By construction, {x; T') sends y to an expression of the form ayb, where
a, b are expressions in x, . Hence {x; T) acts on a word or cyclic word by
inserting, between each pair of adjacent letters, an expression in x and ¢.

If yz occurs in T, then y <, z~* and {x;T) inserts between y and z
the expression

(y <7 x ) » (xt<px) (278 <y )x (x <T x7)

(X<T 1) (y <z x) (xil <rx ) ( <r 1)

(zh<pxt) (T <px) (27t <px)  (v<pxTh)
= x X =1

(x <y x71) (z7h<px) (xt<px) (270 <y x7Y)

If yxz occurs in T, then y <, x! and x <; z7!, and between y and z,
(x;T) replaces x with

(v <s x‘l))fl (x7* <y ) (27! <y x)x (x <p x71)
(x <; x71) (y <7 x) (x < x) (27t <pxt?h)

t o (x7* <y x)x 1 x(x <r x71)
(x<p x71) (x7 ' <px) (a7t <px) (s<px7h)

t
= X =X.

(x <p xH)(x' <y x)

The argument is similar if yx~*z occurs in T. Thus the n cyclic words of
T are fixed by {x;T).
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If z is the first letter in 7 and y is the last letter, then z! is the least
element and y is the greatest element in the <; ordering. The foregoing
shows that

S (5t 5 ()
<x,T>(t) = (x_l <, x)x(z_l < x_l)t(_x <, x_l)x (y <7 X)
t (x <r xil) 1 -1 (x71 <r x)
"ot 0 Gy L

= 1.

The same result holds if x*! is the first or last letter of ¢, since x is
fixed. 1

35. DeriniTion. If T = ([,],...,[,],1) € and x € X **, then, since
(x;T) fixes x and ¢, it is not difficult to see that {x; T) is bijective and
that (x~%; T) is its inverse. Thus (—; T') can be extended to a homomor-
phism

3 - Aut(s, 1] [ ]00), w e {w;T).

3.6. LEMMA. With the above notation, let o: T — U be a right Nielsen
shift in &, with a(y) =yz, y <; zin X *1,

) aly;TY) =u™{y;UXz;U) =u"{aly),U), where u denotes
the last entry in U and u™ = (z7' <, 2)/((z7! <, y Dy~ <, 2).
(i) alz;T)) =<z;U) = al2),U).
(i) IfxeX*' —{y, z2}*!, then a(x;T)) ={x; U) = (a(x);U).
[In (i), we can take m = —1 or 0, depending as the permutation that

carries the sequence z~ %, y~!, z into its correct T-ordering is even or odd,
respectively.

Proof. Here a(t) =uand y <; z, z7* <, y. Moreover the T-ordering
and the U-ordering of X ** — {y} are the same ordering.

To prove (i) we first recall the actions of {y; T) and {y; U).

If weX*! —{y}*! then

(y; TH(w)

(wih<ry) (y<ry™) w(W <y (<)
G <) i<y ) <y )’ w<y
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We have y <; z,s0if w € X *1 — {y, z}*1, then

(y; TH(w)

(w*l <r z) (z <y yil) w(w <r yil) ) (y*1 <y z)
G i< ) Wiy ) Gy (w<r2)!

while
. _ (z_l <r Z) (Z <7 y_l) o
i THX(z) = (y’l < Z)y(z*1 < yil)zy (y < Z)
and
1 . i,
(y;TY(z™h) = LTy (v <y 2)

(y*<s Z)yz (z<ry™Y) Y (27t <y 2)°
If we X*! —{y}*1 then

(y;Uy(w)

_ (W71 <vu Y) (271 <u yil) w (W <u yil) 1 ()’71 <u Y)
0 <) W<y ) i<y ) W<y

Here z7! <, y,s0if w e X** — {y, z}*!, then

(y;UX(w)

_ (wit<gzh) (z7'<py ™) N w<py™) [ (y<pz?)
(y_1 <y z‘l)y(w_1 <y y‘l) (z‘1 <y y‘l)y (w <pgz )

while

(z<yy™) (b '<yz?)

(y;U)(z2) = O < Z—l)yz(zfl <y Y (z<y27h)
U I RN e
(e S e e
and
L (e (v :
. N 1 1
R M CE T 0 I P ey
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Notice also that

. O <wer) (E<wzl) <ezl) [ (F7<uz)
<Z,U>(y)_ (271 < Z)Z(y 1<U Zﬁl)y(z <y Zﬁl) (y <y Z)
_ (yt<pz) (z<yz7h) 1 71

(z7'<pz) (yi<pz ) (z<pz7h)

We can now verify (i) by considering three cases:

u™(y; UXz; UX(y)
=u"(y;U)({z; UX(y))
(yt<pz) (z<yz7) 1 )
(z7' <y z)z(y_l <y z‘l)y(z <y z‘l)z )
o (y*<y2)
- ( (27t <y 2)
L0t <) (2<p ) 1
(z<yz7h) . (y'<y 2—1))’(2 <y z )
(z<pz7) (z<uy™) | | 1
L M R I ﬁ)

LT <y ) (27 <y 7Y 1 (z7' <y y )
! (27 <y 2) .
v

=u"{y;U)

(z<yy™)
(-1 “1
(Z <v ¥ )yz (Zfl <oy Y)

y

1 y(z‘l <y ) 0T <y 2)
yi<yz) (z<yy™?)

1 Gy L0t z))

-7

“(y(yl <2 <yt (Fi<e)

aly; TH(yz7h) = aly; TraH(y) = a(Ky; TH)(y)-
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Also,

aly; T)(z) = aly; Tya ' (z) = aly; TH(2)
B (z7'<pz) (z2<py7Y
- (y < z)y(z*1 <y Y
(2t <pz) (2<yyY)
B (y <y Z)yz (z7t<yy?!

(z<yy7?) ) (y*t<ygz?)

z7t <y, yil)y (z<y z7h)

=u"{y;U)(z) =u"{y;U)({z;U)(2)) = u"{y; U)z;U)(z)

- um((z—l <y e

Moreover, for w € X *1 — {y, z} £,

u™(y; UXz; U)(w)

=<y; Uz UY(w))
(wh<pz) (z<pzh) (w<yzh)
(2 <pz) wWi<gz D) (z<yz 1)

=u’"<y;U>(
1 (271 <U Z)
(w <y 2)

. .
(G e
LT <y . (z<yz7h) . (wt<yz ™)
(z<pzh) (wil<pzt) (yi<yz?)
(z7'<ygy™) L (v <u y ) = (yt<pzh)
(wh<gy™) (z'<gy™ (w<yz?)
(w<yz™) (z<pz7?) (z7'<yy™h)
G<pzh) O lr<pz ) (z<pyH)
1 ‘ (z7t <y 2)
(z7h<gy™) W<y

Z—ly—l
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(wr<yz)(z7'<yy ) (z<yy™)

m

- (z 1<, 2) T,y
AR S CR ) )
(Z <y y_l) (Z_l <y Y_l)(W <y 2)

_ (w™! <y 2) ) (z<yy™) W(W <y y71)2,1 L (7<)
i< )iy ) Gy Y W< o

=a((Wl <rz) (z<pyh) W(W <y ) LT <y Z))
(v '<r Z)y(w_l <y h) (2<g y_l)y w <y 2)

=a((Wl <ry) (y<ry™) W(W <y 1 (y <y )’))
O <) <y D) <y ) W<y

=aly;TY>W)) = ay; TX>a (W) = ay; TH(W).

Thus a(Ky;T)) and u"{y;U){z;U) agree on y, on z, and on
X *t —{y, z}*1, so are equal. This proves (i).
We now prove (ii) in the same way:

a({z;17)(y)
=alz; TYa ' (y) = alz; TH(yz7 1)

_ (y*<s z)Z (z<rz7t) (y<y z‘l)[l (27! <y Z)zl)
(z7'<pz) (yi<pzY) (z<p27Y) (v <7 2)

. (y < Z)Z (z<p27h) - (27 < Z)zl)
(z7'<pz) (yi<pz7h) t

. (" < Z)Z (z<r27) ot ! Z—l)
(z7'<pz) (y i<y 2zt (z<p27h)

yi<pz) (z<y27) 1 .
—1 4 -1 -1 y -1 z
zh<yz) (yiri<pgz ) (z<y 27

(
(
(y* <y Z)z (z<yz7h) y(y <y z’l)[1 (z7' <y 2)
(z7'<pz) (yi<pz ) (z<y2z7Y) (y <y 2)
(
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Also a{z;TY)N2D)=a(z;T)a W(2)=alz;TY2)=a(z)=2z={z; U)X 2).
In addition, for w € X ¥ — {y, z}*1,

a({z;T))(w)

=alz;Tya Y(w) = alz; TH(W)
(w™ <y Z)z (z<p27%) W(W <y zfl)z_l (27! <; 2)
(z7'<pz) (Wwi<pzh) (z<p27Y) (w <7 2)

=

L wlt<yz) (z<pzt) (w<yzl) (2 <y2)
(27t <y 2) Z(w_l <y z‘l)w (z<yz7Y) (w <y 2)
={z;U)(w).

Thus a({z;T)) and {z;U) agree on y, on z, and on X *! — {y, z}*1,

so are equal. This proves (ii).
Finally, we prove (iii) in the same way:

a({x;T)(y)
= alx; Tya H(y) = alx; TH(yz7")

_ a( (y'<s x)x (x <y x71) y(y <y xil)x_l (x7 <p x)
(x P <px) (yi<pxt) (x<pxh) (y <7 x)

(z <r x) B
(x7* <p x)

)
(
(
_ a( Ot <rx) (< at) (z2<p a7ty (TN <px)
i )
(
(

x<pxt) (< att) (< x)
1\ % Ty X 1
z<p x7Y) (x <y x7h) (271 <4 x)

(y'<s x‘l)y(x <r x‘l)x (z <7 x)

)Z_l (27 < x*l)x_l (x7 <y x))
) (x <y x71h) (271 <7 x)
x ) yz =t (z7h<px™) (< x))
(xt<px) (yi<pxh) (x <p x71Y) (27t <; x)
(y* <y x)x (x <y x7h) y(z‘1 <y x‘l))fl (x7* <y x)
(xt<px) (yi<px ) (x<pxh) (27t <y x)
_ (y* <y x)x (x<yx) (y<u x’l))fl (x7' <y x)
(xt<px) (yi<p ) (x<yx?h) (y <y x)

={x;U)(y).
Also a({x; THXx) = alx; TYa 1 (x) = alx; T)(x)=x= {x; U)x).
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Moreover, for w € X *1 — {x, y}*1,
a({x 1) (w)
alx; Tra (w) = alx; T)(w)
(wh<px) (x<pxt) (w<pal) (27 <px)
(x7t <y x)x(wf1 <r x’l)w (x <; xil)x (w <; x)

(w™ <y x)x (x <y x7h) W(w <gx7h) (< x)
(x <y x) (wit<yx ) (x<yxh) (w <y x)
(x; U (w).

Thus a({x;T)) and {x;U) agree on y, on x, and on X *! — {y, x}*%,
so are equal. This proves (iii). |

3.7. THEOREM. With the above notation, for each o: T — U in & and
each x € 3, there exists an integer m such that a({x;T)) = u"{a(x);U),
where u denotes the last entry in U.

(If X is not abelian, the integer m is uniquely determined by «: T — U
and x, since no positive power of u is central.)

Proof. It follows from McCool’s Lemma 3.2, that it suffices to consider
the case where «: T — U is a signed permutation or a Nielsen shift.

The result is clear for a signed permutation, and here m = 0.

Thus we may assume that «: T — U is a right or left Nielsen shift. The
case of a right Nielsen shift is covered by Lemma 3.6, and here m = 0 or
—1. The case of a left Nielsen shift is quite similar, and is converted to a
right Nielsen shift if we invert the elements of 7', U. This completes the
proof. 1

3.8. Open Problem. What is the topological significance of the integer
m occurring in Theorem 3.7? We have not been able to extract any useful
information from this invariant, but we suspect it must have applications.

We have now proved the main result of this section, which originally
came from topological results of Birman [3], and Maclachlan and Harvey
[12], which in turn depended on results of Dehn, Nielsen, and others. Our
proof is algebraic, since it is based on the above result of McCool.

3.9. COROLLARY. With the above notation, for any ([t,],...,[t,],1) €T
any a € Aut(Z,{[t,],...,[2,1},1), and any x € X, there exists an integer m
such that a({x;T)) = t"(a(x); a(T)) = t"{alx); T).

Proof. This is immediate from Theorem 3.7, since { a(x); T) does not
depend on the order of the cyclic words in the sequence 7. |
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4. THE ISOMORPHISMS

4.1. Notation. Throughout this section, %, , ., denotes the free group
with the specified basis X = {x;,y;,z;|1 <i <g, 1 <j <n} and a speci-
fied element

Zn+1 = 2;1 Z]Tl[yg'xg] [yl7xl]'

For 1 <i <n,wewrite p, =[x, y,],50 2}, =p, " p,z; " 2,
Let N denote the normal subgroup of %, ., generated by z,,,, and
identify >, , =3, ,,,/N.

4.2. DerINITIONs.  Let T=(z],...,[z,], z,. ). It is readily verified
that 7 lies in the set .7 described in Definition 3.1. The T-ordering on
X *1 of Definition 3.1 will be denoted < for the purposes of the current
definition. Thus
W<zt < <z <zt <yt <x, <y, <xgt <yt <o <xgh

For each w Enﬂvg, we denote by w the automorphism {(w;T) of
Definition 3.5, so we have a homomorphism

Eg,n+l - AUt(Eg,nJrl’ {[Zl]il""’[Zn]il}’{ZnJrl}il)’ w = 1:1/\

Let us record the following, after which we will no longer need T nor the
T-ordering:

XiZy (W), forw =ux;,y,....% 1, Y1,
R X;, forw =x,,
x(w) = -1
l ZpraXiYiXi Ty forw =y,
Z, 1 %(W), forw =2, 1,y 0 Ve 21000 2
71 _
Zy v 1yi(w), forw=x;,y;,....% 1,y 1,
-1 -1 -
- i for w =,
yi(w) - for —
Yir W =D
71 _
YiZuia(W), forw =i 1, Yivaroo Yoo 200 vs 2
2z, 1(W), forw =y, y1, Yg 2100 221,
Z;(w) = { % forw =z,

Z,112;(w), forw=z_,,...,2,
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A straightforward but tedious calculation shows that

Zys1PiZy (W), forw =X,y % 1o
Di(w) = Z, 1 Pi(W), forw=x,y,
zy 1 pi(w), forw=ux; 1.y Vg 2o 2

Let us also record the only case of Corollary 3.9 that we shall use.

4.3. COROLLARY. For any a € Aut(x, .. {lz]....[z,} 2,,,) and

anyw € 3, , .1, there exists an integer m such that a(w) =z, ja(w).

In the following statement we use Fix to denote the fixed subgroup of an
automorphism and & to denote Kronecker’s delta.

4.4. LEMMA. Fix(zy,,p) = {p>-, z,,,) and Fix(z), ,Z;) =
<zj5k‘°, Z,,17, forany integers i, j, k,with 1 <i <g,1<j <n.

Proof. It follows from the formulas in Definition 4.2 that

zjzn+1(w), forw =2,y Y, 20,0 Zjo 1,
%(w) = zj(w), forw =z,
2z, 1(W), forw =2z,(z,1),.-.,2,(z,).

Let G, = (z]-> and G, = (xl,yl,...,yg,zl,...,zj_l,zj(zj+l),...,z]-(zn)>.
Thus we have a free product decomposition X, ,.; = G,*G, and we
have elements g, = z; € Gy, §, = z;z,,1 € G,, since

P Pz zmn 0 2i(2540) o 2i(2,) =Z;ilzfl-

Now Z; acts as conjugation by g; on G;, for i = 1,2, so Fix(z)) = g, &,)
and this is (z;, z, 1)

Since z,,, = g; ‘g, has length exactly 2 with respect to the free product
decomposition, conjugation by z*, , increases this length for any element
whose free product normal form does not begin or end with z*?,. Since z;
preserves the length, we see that if k # 0, then Fix(z;, ,Z)) lies entirely in
<Zn+l>'

Similarly, it follows from Definition 4.2 that

Z, 41 DA(w)

PiZpia(w), forw=x;,y;,...,x_1,¥_1,

= { pi(w), forw =x,,y,,
PiZpri(wW), forw=pi(x;1), . pi(¥e) pi(21), - pi(2,).



ALGEBRAIC MAPPING CLASS GROUPS 75

Now let G, = {x;, y;» and

G, =<x1,y1, ---7xi—lvyz'—llpi(xnl)!l?i(yz'ﬂ)’---aPi(yg)vPi(Zl)v
pi(2,) -

Again 2, = G, =G, and we have elements g, =p, € Gy, 8§, = p;2,.;
€ G,, since p; = pi_1 pApi) - pp)  plz) o plz) =20 p
Now z, !, p; acts as conjugation by g, on G,, for i = 1,2, so Fix(t 'p,) =
(g1, 8,7, and this is {p;, z,,. 1)

As before, Fix(z*,  p,) = (z,, ), if k # —1. We will not be using this
particular fact later, but have included it for completeness. ||

Recall that N denotes the normal closure of z,,, in X, , ., and that
Xe, n =2-—-2g—n.

45. LEMMA. Z, . =zXr and N = (Z,,,) = (z}%1).

n+1
Proof. We have

~

& 7l -8 55 ...p T ...
ZpE1Zni1 = Zp3aP1P2 " PgZy T 2y

)

et T MR B
=Zyi1P1Zpi1 P2 Zy+1Pg21 Zy-

Using the descriptions

zjzn+1(w), forw=x;,y1,..., X, ¥gr 21,1 Zj 21,
Zi(w) = { %> forw =z,
zn“zj(w), forw=z.,,,...,2,
PiZuia(W), forw =2,y %0 Yo
z b pi(w) = { pi(w), forw =ux;,y;,
Zy 1 Pi(W), forw =x, . Y1 Ve 20 2y,

it is straightforward to calculate that z,},p,z, 11D, " z,11P,21 2,

n
acts as z$1} % on each generator, 50 Z,,, = z; 27" = z X,

Now N is the normal subgroup of 'E\gvnﬂ generated by the (central)
element z,  , =z, s0 N =zXn). |

4.6. DerFINITIONS.  We have a natural homomorphism

2g,n+1 - Eg,n+l/]V = Eg,n’
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and hence an induced homomorphism

collapse(z,.,): Aut(3, .0 {[z] o (2,07 (2000} )
= Aut(3, ([0 (2,07,

since N is stabilized by maps which fix or invert z, , ;.
Let us consider the composite of the latter map, with the map

Eg,n+1 - AUt(Eg,n+l’ {[zl]tl""’[zn i:L}’{Zn+l}il)’ w= W

It is immediate from the formulas in Definition 4.2 that this composite
carries each element of X to the corresponding element of Inn(%, ,).
Hence the image of Eg .+1 under collapse(z, ) is precisely Inn(E )
and we have a surjective map

S ne1 = 3, ,/Clr.

4.7. PROPOSITION. The map ig',ﬁl - 2, ,/Ctr gives a universal central
extension.

Proof. If x,, =0, then (g,n) €{(0,0), (0,1, (0,2), (1,0)}, and it
follows from the formulas in Definition 4.2 that X, , ., is trivial, as is
./ Ctr.
Thus we may assume that x, , <0,s0 %, /Ctr =% . The kernel of
the map Egv,,ﬂ 3,08 clearly N and, by Lemma 4.5, N is central and
infinite cyclic. Thus we have a presentation

Eg,n-%—l
= (xl,yl,...,xg,yg,zl,...,zn [[xg, y1] [xg,yg]zl -+ z, is central ),

which is the universal central extension of Eg,,,. |

4.8. REMARK. Here we have a phenomenon similar to one encoun-
tered by Milnor [18]. In lifting representations of surface groups in SL,(R)
to representations of central extensions in SL,(R), he found that the
power of the generator of the center of SL,(R), to which the “relator”
gets mapped, is a nonzero multiple of the Euler characteristic of the
surface.

We now come to the delicate algebraic proof of a theorem, which
Birman [3], Bers [2], and Maclachlan [11] obtained using topology and
analysis.
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4.9. THEOREM. The homomorphism

collapse(z,, ,): Aut(EMH,{[zl]ily_..,[Zn]i1}7{zn+l}¢1)

- Aut(Eg,,,, {[Zl]ill ""[Zn]il})

induced by the homomorphism %, .4 —> 2%, ,.1/N=%,
and, except in the case (g, n) = (0,1), has kernel Inn{z,, ;).

Proof. Letthe map %, v, = 3, ,,,/N =3, , be denoted x — x.

We begin by proving surjectivity. Notice that, in Definitions 4.6, we saw
that Inn(X, ) lies in the image of collapse(z,. ;). Let B €
AUtCS, 2,152, 2,10,

Consider first the case n = 0. Here there exists o € Aut(%, ;,[z,]*")
that induces B, by a topological result of Nielsen; for algebraic proofs see
[22, Corollary 5.4.3] or [5, Theorem 4.9]. Hence there exists x € X, ; such
that xa € Aut(%, ;,{z,}*%). Thus collapse(z,,,) sends xa to yB for
some inner automorphism y. Since y and yB lie in the image of
collapse(z,,, ,), we see that B does also.

Thus, in proving surjectivity, we may assume n > 1. Since the inner
automorphisms lies in the image, we may assume that B fixes or inverts
z,. Let us identify %, , with the free factor of X, ., generated by

—{z,}. Let a € Aut(Z, ,.,) = Aut(Z, , ={z,)) be the automorphism
that acts on the free factor EM as B and sends z, to z, or z, 'z, 'z,
depending as B fixes or inverts z,, respectively. This flxes or mverts an,
so collapse(z,, ;) sends « to B, and this completes the proof of surjec-
tivity.

Now it remains to show that the inner automorphism z,,; generates
the kernel of collapse(z, , ;). Let « be an arbitrary element of the kernel
of collapse(z, , ;). Since (g, n) # (0, 1), it can be seen that « lies in

AUt(Eg’HJFlv [Zl]l RN [Zn], {Zn+l})'

_ Consider any w € %, , ;. Then a(w)=w, so ~a(w) € wN and hence
a(w) € wN= w(zXer) by Lemma 4.5. However, a(w) € a(W)Xz,,,» by
Corollary 4.3; thus a(w) € Wlz,,1)-

Consider any i € {1,..., g}. We have

a(p;) = [0‘(5‘\5)' a()"\z)] € [55\5<Zn+1>:}"\i<zn+1>] = {[55::)"\1]} = {1,7\:}

That is, a(p,) = p;, SO

is surjective

ail(Pi) =a(p)(p) =Di(p:) =2, P;)-
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1

Applying ™" we get

ﬁi(a_l(pi)) = a_l(zn+l(pi)) =Zn+1(a_l(pi))'

Hence o '(p,) € Fix(z;1,p) = {z,.,, p;> by Lemma 4.4. By symmetry,
we then have a(p,), a *(p,) € {z,.,, p;>- Hence « induces an automor-
phism of {z,,,, p;» fixing z,,,, so <z, a(p)) =<{z,,1, p;). Since
{z,.1, p;7 is free of rank 2, or p, =z, ,, a normal form argument shows
that there exist integers a,, b; such that a(p,) = z% , p,zbi, ..

Let X, ,../M be the quotient group in which z, , is made central.
Then

x;ita(x;), y ' (y;) EN S NM = {z,, )M,

SO

PiZZ’leb'M = ZZ#lPinlzﬁrlM =a(p)M= [a(xi)’ O‘(J’i)]M
€ [xz,, 10, ¥z,  DIM = {[x;, v, ]}M = { p} M.

Hence z%’: € M. Since making z,,, central in the free group does not
make it have finite order, we see that b, = —a,. Hence we have a(p,) =
z8 o (p),i=1,...,¢g

Now consider any j € {1,..., n}. We have seen that «(Z)) =z}, ,Z; for
some k;. Hence

aZia”H(z;) = a(Z)(z) = 2,412(2) = z344(2).

1

Applying ™" we get

%(a_l(zj)) = a_l(zll’l(];i'l(zj)) = Zr];{i—l(a_l(zj))'

Hence o '(z)) € Fix(z,51%)) = {z,,,,z>°) by Lemma 4.4. However,

a”l(z) is a free generator of %, ,.1 so k; =0 and, moreover, by
symmetry, we then have a(z)), a 1(z ) € (z,,1, ;7. As before, there exist
integers c;, d; such that

a(zj) = Zn+1Z Zn+l

Since a(z ) has to be a conjugate of some z;**, which becomes z; modulo
N, we see that a(z) has to be a conjugate of z;, s0 making z; central
makes z;:fr vanlsh This means that d; = —c;. Hence we have a(z) =
n+ l(Z ) ] R
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Now a(z,, ) = z,,, implies that

a —aqt+a P R ] —a,+c —c1+c —C,_1tcC —c
Znarlplzn+11 2pZ Z,,Jrgl ! gngn+5'1 1len+i 222 Zp-1Zn+1 ! "ZnZn+1
=p1 ”.pgzl ”'Zn'

This can be viewed as an equation in the free group on the p;, z;, and it
is straightforward to show that all the “internal’” powers of z,, ; must be 0,
since the only place any cancellation can occur is at z,z, . ,. Hence
a, =a,= "+ =a,=C, = " =¢C,.

If b denotes the common value, z, 2, « lies in the kernel of collapse(z,, , ;)
and fixes the p; and the z;. Thus we may assume that « fixes the p; and
the z;.

Fix an i €{1,..., g}. We have [a(x)), a(y)] = a(x,, y,D =[x, y,]. A
well-known algebraic result of Nielsen [19] (who attributes it to Dehn)
shows that

vy €alx), a(y) = a(lx, y));
see the proof of Proposition 4.12 below for a simple argument using Fox
derivatives. Replacing o with ! shows that {(x;, y,) = (a(x)), a(y,),
and « induces an automorphism «; of {x,y). Since a« becomes trivial

modulo the normal closure N of z,,, in X, ., ., a becomes trivial
modulo N N {x;, y;7. We now consider two cases.

Case . n+g=1 Heren=0 g=i=13, ., =Cx,yl) z=
[x,, ¥,] has normal closure N, and « becomes trivial modulo N and
fixes z;. Thus « induces the trivial automorphism of X, . /N =
(x4, y; [[x1, y,I>. Another well-known result from the same paper of
Nielsen [19] says that « must then be an inner automorphism, and since it
fixes z,, it must be a power of z,, as desired. This result of Nielsen is quite
simple to prove, once one knows yet another result of Nielsen, McCool’s
generalization of which was used in the preceding section, that the auto-
morphism group of F = (x,yl| ) is generated by (y, x), (x7%, y),
Gy =2, ), (y = x, ).

Since F/N is abelian, every inner automorphism of F acts trivially on
F /N, and we want to show, conversely, that any automorphism which acts
trivially on F/N is inner. We can work modulo the group F of inner
automorphisms. Notice that

(x5 y) = (. x) (' x ) (3 x) (0, ) (v, x) (xp7?

Y)
(o 1 y) = ()
(v ey) = (xy)

(. y) =y(x.y).
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Thus, (y, x),(xy, y), F, together generate Aut(F), so it suffices to show
that, in the subgroup G generated by (y, x) and (xy, y), any element which
acts trivially on F/N is inner.

Since (y, x)* = 1, the subgroup H of G generated by the two elements

(x,y) and (y,x)(x,y)(y, x) = (x,x)

has index at most 2 in G. Moreover, (y, x) acts with determinant —1 on
F /N, while the elements of H act with determinant +1, so it suffices to
show that any element of H that acts trivially on F/N is inner.

Now the elements

B=(xy,y) "(x,yx) =(xy Ly t) and y=(xp,y) B 1= (gx 1 x7?)

generate H and satisfy y2 = xy8, 83 = yx8, where 6§ = (x~*, y~1). Thus &
becomes central in HF /F = H/(H N F) and 8% = 1. Hence every non-
trivial element of HF /F is represented by a nontrivial monoid word in

vB=(w.y) and yB®= (x,yx),
or such a word followed by 8, and it is clear that such elements do not act
trivially on F/N. Thus we have the desired result.

Case 2. n+g=>2. Here NN<x;,y;) =1, since X, . ,/N can be
expressed as a free product with amalgamation over the infinite cyclic
group generated by [x;, y;] in which one of the factors is the free group on
x;, ¥, Thus «; is trivial. Since this holds for each i, « is trivial. Hence the
kernel is precisely {z,,.>. 1

4.10. Remark. It was shown at the beginning of the above proof that
each automorphism f of the surface group Eg,o, lifts back to an automor-
phism f of the free group zg,l = (xl,yl,...,xg,ygl > which fixes or
inverts the relator z;* =[xy, y,1++ [x,, y, 1.

As remarked in the Introduction, we now have the following.

4.11. CorOLLARY (Birman and Bers). Suppose that (g, n) # (0, 1).

(i) Aut(s, . {[2]" . [2,]7))

= Aut(zg,nuv {[zl]ill et [Zn]i1}7 [Zn+1]il)/|nn(2g,n+l)
S‘%gg,rwrl‘
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(i) Aut(Eg'n,[zl]il,,,.,[zn]tl)

= Aut(zg'n_;_l; [Z]_]tll e '![zn+l]tl)/|nn(28v”+l)
:y‘%gg,n+l'

We conclude this section with an amusing proof of a known result. The
case (g, n) = (2,0) is due to Nielsen [19], the case g = 0 is due to Artin [1],
and the general case is due to Zieschang [21, 4, Theorem V.4.11; 22,
Corollary 5.2.13]. Let

End(Eg,,ﬂ [zl]il,...,[zn]il)

denote the monoid of endomorphisms of X, , that carry each z; into a
conjugate of itself or its inverse.

4.12. PROPOSITION.

ENd(S in L] 2] = Au(S o [0 2,000 ).

Proof. Since we can compose with automorphisms, we see that it
suffices to show that

End(zg,n+17 [z:.],. - [2,.], Zn+1) = AUt(zg,n+17 [z:],- 2], Zn+l)'

Let « € End(X, ,,4,[z],...,[2,], z,. ). It suffices to show that « is
an automorphism.

Let H denote the image a(Z, ,.,). Nielsen showed that all finitely
generated free groups are Hopfian; see, for example, [10, Proposition 1.3.5]
or [4, Theorem 1.10.5]. Hence, it suffices to show that H =%, . ;.

There exist c,,...,c, €%, ,,; such that a(z) =c;z;c;', 1 <j<n.
For 1 <i<g, let X; denote a(x;,) and Y, denote a(y,). Then H is
generated by the X, the Y;, and the cjzjcj’l.

Since « fixes z, !, we have

[ X, Y] [ X, Y erziert o euzer = Doy ] [, v,z - 2,
(4)

For each w in the free generating set {x,, y;,..., X, ¥, Z1, ..+, 2,}, the
left Fox derivative 3/dw: ¥, , .1 = Z[%, ,.,]is the unique left derivation
vanishing on all the free generators but w, and taking the value 1 on w;
see, for example [10, Sect. 1.10] or [4, Sect. V.4.7].
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Suppose that 1 <i < g and that H contains x;, y,,...,X;,_q, ¥;_;. On
applying d/dx; to (4) we find that, in Z[3, ,,,],
g

X
Z [leyl] [Xp—lvy;;—l] (1 —XprXil)—p

o1 ox;

Y
I

l

n dc
+ Y [X, Y] [Xg,Yg]clzlc{l‘—-cq,lzq,lc;,ll(l —cqzchl)&—;
q=1 i

= [xl’)ﬁ] [xi—ln Yi—l](l _xiYix;l)'
Now let both sides of this last equation act on the element H1 in the
right Z[%, ,,,}-module Z[H \ %, , . ,], where H \ X, , ., denotes the set
of orbits for the left H-action on X, , ;. We then find that

0=H[x;,y; ] [x_4, yi—l](l - xiyixi_l) = H(l - xiyixi_l)‘
Hence x;y,x;* € H. A similar argument with d/dy, shows that
0= Hxi(l _yixiilyiil)'
Hence x,y,x; 'y, 'x;' € H. It follows that x;, y, € H, so, by induction, H
contains all the x; and all the y,.
Now suppose that 1 <j <n, and that H contains z,...,z;_;. On

applying d/dz; to (4) we find that, in Z[3, . ,],

8 X
Z [XlVYI] o [prlvypfl] (1 _XPY;X;:L)_I)
p=1 &zj
Y
C1y- p
+XI’(1 - YX, 1Yp 1) 9z
J
- -1 -1 -1 ﬁcq
+ 2 [ XY ] [ Xy Y| erzier e, iz maeg (L e, 2 e, )E
q=1 J

+H XL Y] [ X, Y erziert o ciiizimaci e
=[xy, 0] [x, 9]z Zj_1-
If we now let both sides of this last equation acton H1 € Z[H \ X, ,,,],
we find that

ch = H[xy, y;] [x,, v, ]z - Zj1 = H.

Hence c; € H. Since cjzjcj_l € H, we find that z; € H. So, by induction,
H contains all the z;, and this completes the proof.
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5. A DUALITY FOR THE NORMALIZER OF THE
NORMAL CLOSURE OF A SURFACE RELATOR

Throughout this section we assume (g, n) # (0,1),(0,2) and we study
the group

AUt(Eg,n’[Zl]il""'[zn]il) z‘@‘%%g,rwrl' (5)

The embedding of #.#4%,,,., in #%,,., gives us an image of the
symmetric group S, , ; in the outer automorphism group of the groups in
(5). Ilvanov [8, Theorem 1] has shown that the outer automorphism group is
S,+1 1f X, , < —2. The action on L4, , ., is quite clear, since we are
just permuting the n + 1 punctures. However, when viewed on the isomor-
phic group given in (5), the action becomes rather unnatural.

Thus, for example, S, , permutes the kernels of the » + 1 natural maps

PHME, . >PME,,,

each one obtained by filling in one of the n + 1 punctures. If we carry
these maps over via the isomorphism in (5), we find that S, ., permutes
the kernels of n + 1 maps from

Aut(s, . [z]" 0 [2]7)

to the groups Aut(Z, , _,[z,]*%,.. [z, ,]*") and 2%, ,. The first n
maps are the maps collapse(z;), j = 1,...,n, and the n + 1st map is the
quotient map corresponding to the normal subgroup Inn(%, ) = X, , /Ctr.

5.1. DEFINITION. We assume n > 1 and (g, n) # (0,1),(0,2). Here we
can describe a particular automorphism ® which interchanges Inn(Egyn)
with the kernel of collapse(z,).

Let

O e Aut(Eg,nH, {[Zl]il’---a[zwrl]il})

be given by ®'(z,) =z,,,, ©'(z,,,) =z,},2,2,. 1, With ®' acting as the
identity on xy, yy,..., X,, ¥, 23, -, Z,_1. TOpologically, ® arises from a
Dehn twist along a (punctured) curve that passes through the nth and the
(n + Dst punctures. Then ©' determines an element of .#&, ,., that
acts on 4%, ,., by conjugation, and hence determines an automor-
phism @ of

Aut(S, 0 [z [2]7)).

Thus @ arises from a Dehn twist that interchanges the base point and a
puncture.
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Recall that the map
1 1
PHEC, 11— Aut(Egyn, [z, ..., [z,]" )

acts on an element of 2#€, , ., by first choosing a representative of the
element, modulo inner automorphisms, in

AUt(Eg,n+17 [Zl]ilv'--a[zn il’ {Zn+l}i1)

and then collapsing z,, ;. Thus ® acts on an

= AUt(Eg,nHv{[zl]il,---’[zn]il})

by lifting it back to an

a' e Aut(Eg,nH, {[Zl]ilv--"[zn+l]il})

that fixes {z,, ,}**, then applying ®’ to «’, then composing ®'(a’) with
conjugation to get something that fixes {z, . ,} **, and then collapsing z, . ;.
Since

w, forw=x1,y1,...,xg,yg,zl,...,z,,,l,
0% (w) ={z,1(z,), forw =z,

-1 -1 _

Zy+1%n (Zn+1)' forw_zn+l’

we see that z,z,,,0'? fixes both z, and z,_,, and acts as z,z,,, on

n“n+

Xy Viveees Xgy Ygr 210 os Zyo 1

Since this fixes z, . ,, we can collapse z, ., and find that ®2 acts as z, on
3, , Thatis, @° =z,
Since Aut(, ,,[z,]1*%,...,[z,]*") is the product of the two subgroups

Aut(S, . [z]" . (2,0 {z,) ) and Inn(s, ),

we can understand how @ acts by examining what it does to each of these
subgroups.

We have an embedding X, , - X, ,.;, w— i, that looks like the
identity map on x, yy,..., X,, Y, 21, -, Z,_1. This notation will be useful
when we wish to indicate where elements belong. Thus we can write

=~ -1

Zp = 2Zp-g T Zl_l[yg'xg] [ylixl] = ZpZns1
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Consider an « € Aut(3, [z JEL oz, 1 {?}”) In the case
where o fixes Z,, a can be extended to an o' € Aut(z, .9,
{[z,1* ..z, 0,]F }) which acts in the same way as « on the free factor
3, ,of X, ., and fixes z, and hence z,,,. Here ®' commutes with o'
so O(a) = a. In the case where « inverts Z,, a can be extended to an
a’' € Aut(z, .. {[z]* ... [z,,,]*"D, which acts in the same way as o
on the free factor 3, , of =, , and sends z, to z,},z,'z,,, and hence
inverts z,_,,. Thus znan ®'(a’) inverts z, ,. On collapsing z,, ;, we
see that ®(a) = z, a. [This is reassuringly consistent with ®2 acting as z,,
since here ®%«a) =z2a =z,az,' =z,(a)] In summary then, ® fixes
those elements that fix z, and left multiplies by z, those elements that
invert z,,.

We next examine the action of ® on an inner automorphism u, where

wefx,ytzll<i<gl<j<n-1}.

Thus @ € 3, ., and Definition 4.2 shows that u i lifts back u and fixes
z,. .. Notice that we are considering those u such that & sends z, to

z,,,u(z,). Thus O’ () sends z,,, to z; 1,2,z , iz, ), so itz 1zt
z,41 - 0'() fixes z,,,. On applying the formulas in Definitions 4.2 and
the definition of ®’, and collapsing z,, ;, we find that ®(u) = u 'z, ',
where 7 is given by Definitions 4.2 with n — 1 in place of n. It follows that
Ow ) =u"'z,u=zuu "

We record the action explicitly:

1 -1 _
X7z, xz(w), forw =x.,y,..., % 1, Yi_q
€] _ Xtz (X)), for w = x;,
()0w) =1 o
YiXi "ZpXis orw =y,
W, forw =i 1, Yivnro Yoo Zere e s 2y
“1-1 _
2,97 7z, yi(w), forw =x;, y1, X0, Y1,
—1-1 -1
Znyi Zn yixizn ’ forW =xi7
O(y)(w) = f _
z,(y:), orw =y;,
w, forw =X, 1, Yis1 Vg 21y Zua
1 -1 _
zj 'z, zjzn(w), forw—xl,yl,...,yg,zl,...,zj_l,
O(z)(w) = {z 'z, (7)), forw =z,
w, forw=zj+1,...,zn_1.
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5.2. Remarks. Notice that the diagram

+ +1) O
Aut(s, . [z] 2] 5 Al (2] (2,7
mod inners l collapse(z,,) l

= +1 +1
<9?%%&1171 - Al'lt(zg,nfl7 [Zl]Jr ""'[anl]+ )

commutes, since each inner automorphism ends up at the identity auto-
morphism along both routes, while both the z,-fixing and the z,-inverting
automorphisms end up at the induced map along both routes.

Let K, denote the kernel of the map

collapse( z,,): Aut(Egyn,[zl]il,---y[zn]il)

N AUt(Eg,n—ll [Zl]il,,..,[zn_l]il)

and let L, denote the kernel of the natural map 4%, , > PHE, ,_,.

Then © interchanges K, and Inn(X, ), and we have a commuting
diagram that is reflected about the main diagonal by ©:

1 1 1
l l i

1-Inmn(x, ) NK, - K, - L, -1
\ \J |

1- 3,,/Cr - Aut(3,,.[z]" ... [z]") - 22%,, -1
l l l

1- 3,,./Cr —sAu(s,, . [z]* .. [z, ,]*) ~2#%,, -1
\ \J |
1 1 1

5.3. COROLLARY. Suppose that n > 1 and that 3, , is nonabelian. Then
the kernel of the map

collapse( z,): Aut(Eg,n,[Zl]illl_,[zn]il)

BN AUt(Eg,n*l’ [Zl]il,_..,[zn—l]il)

is freely generated by {®(u) |u = x;,y,,..., Xgr Vs Zave- o Z,_ 1}
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The elements of this free generating set were given explicitly in Defini-
tion 5.1.

5.4. PROPOSITION.  Suppose that n > 1 and that %, , is nonabelian, that
is, 2g + n = 3. Let N denote the normal closure of z, in X, .

o I 3, .1 is abelian, that is, 2g + n = 3, then Inn(Egyn) =K,.

(i) If X, ,_, is nonabelian, that is, 2g + n > 4, then Inn(%, ) N
K,=Nand Inn(X, )K,/N=3,,_ 1 X%, _;

Proof. It is clear from the commutative diagram that =, , N K, is the
kernel of the map from X, to X, ,_,/Ctr. Since O reflects the diagram
about the diagonal, it induces Birman’s isomorphism %, _,/Ctr = L,.

Consider first the case where 2g + n = 3. Here X, ,_, /Ctr is trivial, so
3, , = K,. Thus we may assume that 2g + n > 4. Here X has trivial
center,so X, , N K, =N. 1

g, n—1

55. Remarks. (1) Ifn>1 g>1 and 2g + n > 4, then
Inn(2, ) NK, = [Inn(%, ,).K,] =N.

To see this, notice that since we are dealing with normal subgroups, we
have [Inn(Z, ), K, ] < Inn(X, ) N K, = N, and it remains to show the
reverse inclusion. Since [Inn(X, ,), K, ] is a normal subgroup of Inn(X, ),
it remains to show that z, lies in [Inn(%, ,), K,}, and this holds since
[Inn(Z, ), K,] contains

[yi50(x)] = [yit 2z, 5]

= )’fl 'xilz;lfl(Y1)

=2z,.

(2) There are many different maps that flip the diagram about the
diagonal. We have found it convenient to leave the centralizer of z, fixed,
but this can be exchanged for other properties, such as having order 2,
since, for any z,-inverting « in

Au(3, , [2]" . (207

such that a? = 1, we have (Ba)? = 1.
(3) In the above setting we are free to permute z,,...,z,_;, SO O
extends to

Aut(Egl,,, [z [z, {zn}tl),

and, here, in place of pure mapping class groups we must consider
subgroups of the mapping class group that permute n — 1 of the punc-
tures.
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(4) The case n =1, g=>1, deserves special mention. Here A =
Aut(x, 4, [z,]%1) is the set of automorphisms of the free group of rank 2g,
which send the element z;* = [x,, y,]1---[x,,y,] to a conjugate of itself or
its inverse, so A is the normalizer of the normal closure N of the surface
relator z, in the free group Egyl; see, for example, [10, Proposition 11.5.8].
By Corollary 4.11, A4 is isomorphic to

PAHE, , = AUL(3, . [2]7[2,]*)/Inn(3, ,),
which is a (normal) subgroup of index 2 in
2%, , = Aut(3, , ([ [5]7) /1Inn(3, ,).

For g = 1, by [6], the outer automorphism group of A is trivial. For
g = 2, by [8], the other automorphism group of A4 has order 2 and is
generated by the image of O.
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