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Abstract    

We have performed a variational Monte Carlo simulation on a two-dimensional Hubbard model with first- and second-neighbor 
hopping terms in order to study the coexistence state of a static stripe state and a modulated d-wave superconductivity in the under-
doped cuprates. In addition to a Gutzwiller, a Jastrow and a doublon-holon correlation effects, the band-renormalization effect was 
considered in the trial wave function. The condensation energies of an 8-period stripe state was computed as a function of a 
Coulomb energy under the hole-density x=1/8. Our results reveal that the renormalization of higher hopping parameters due to the 
strong correlation effect enhances the one-dimensional hole motion on a quarter-filled band in the stripe state, and brings quasi-
Fermi surface close to the magnetic zone boundary in the coexistence state.    

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ISS Program Committee. 
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1. Introduction 
 
    Recently, static incommensurate spin correlations have been observed by elastic neutron-scattering experiments on 
La-based cuprates [1,2]. These experimental results indicate that the striped spin- and charge-density modulation 
(stripe state) occurs in the under-doping region. The incommensurability δ, which corresponds to the inverse of the 
spin-stripe's period on the stripe order, is approximately proportional to x in the under-doped region (x<1/8) of La-214. 
This relation implies that the 1/4-filled charge-stripe (one hole per two Cu sites along stripe) is realized. In addition, 
by the angle-resolved photo-emission spectroscopy measurements, Zhou et al. have found that two sets of ''1/4-filled 
one-dimensional'' Fermi surface are formed near ( π, 0) or (0, π) when x is close to 1/8 in LSCO [3]. 
    The possible existence of the stripe state in a doped 2D Mott insulator has been theoretically investigated in both 
weak and strong correlations. A mean-field (MF) analysis [4] of the 2D Hubbard model with long-range hopping 
terms shows that an incommensurate spin-density-wave (ISDW) order with an incommensurate charge-density-wave 
(ICDW) is caused by the Fermi surface nesting for arbitrarily small doping, and that the linearity of δ with x is 
explained by choosing long-range hopping terms of holes. While, from a viewpoint of strong correlations, it is 
energetically expected that doped holes move freely along striped domain-wall without disturbing the 
antiferromagnetic (AF) ordered domains. It is predicted in the Hubbard model [5], the d-p model [6] and the t-J model 
[7] that the stripe state is stabilized in the under-doped region. However, the problem of why δ keeps a relationship of 
δ=x  still remains controversial. 
    In this study, we take into account of a band-renormalization effect from moderate to strong coupling regions by 
using a variational Monte Carlo (VMC) method and apply it to the doped 2D t-t'-U Hubbard model (t and t' are first- 

 

* Corresponding author. Tel.: +81-138-59-6373; fax: +81-138-59-6373. 
E-mail address: miyazaki@hakodate-ct.ac.jp. 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of ISS Program Committee
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82402749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 Mitake Miyazaki et al.  /  Physics Procedia   27  ( 2012 )  64 – 67 65

and second-nearest neighbor transfer energies, respectively, and U is an on-site Coulomb energy). t' is introduced to 
describe the properties of cuprates. In order to compute more accurately the ground state energy in the under-doing 
region, a doublon-holon binding projection [8] is introduced to the Gutzwiller-Jastrow wave function. We will show 
that the renormalized  makes stripe state stable, and the renormalized Fermi surface is formed in 1/4-filled one-
dimensional band as U increases; the relation of δ=x is satisfied. Furthermore, it is shown that the spatially modulated  
d-wave superconductivity (SC) and the stripe state compete. 
 
2. Methods 
 
    We start from the 2D t-t'-U Hubbard model,  
 

                                        (1) 
 

where h.c. stands for Hermite conjugate and ij and ij denote the first- and second-nearest-neighbor pairs, 
respectively.  In the following, we consider t as the unit of energy.  is the creation (annihilation) operator of 
the electron with  spin σ (  or ) at site i (i=1~ Nsite) and . In the VMC calculation, the variational 
energy is written as . We use the trial wave function defined by , 
where  is the Gutzwiller projection operator given by , where g is a variational parameter 
in the range from 0 to unity, which controls the on-site electron correlation.  is the Jastrow-type projection operator 
[9], , which allows the occupancy of the first-neighbor sites to be modified by adjusting h in the 
neighborhood of 1.  is the doubon-holon correlation projection operator, , where 

, , , and τ runs over all first-neighbor sites. η acts so as to avoid that double-
occupied sites are surrounded by first-neighbor occupied sites, which are particularly important to describe the Mott 
transition in the 2D Hubbard model on a half-filled square lattice [8]. Regarding an one-body part , we employ the 
MF wave function for a striped ISDW-ICDW state, a commensurate SDW state and a Fermi sea represented by 

,  and , respectively [5], and the MF wave function for the coexisting d-wave SC with a striped 
ISDW-ICDW state, , which is obtained from the effective MF Hamiltonian for the coexistence state [7,10], 
 

                                                       (2) 

 
where diagonal terms describe the MF due to ISDW-ICDW as 
 

        (3) 
 

with   and , where e, e', and e'' are vectors toward first-, second- and third-
neighbor sites, respectively.  is Kronecker's delta. Variational parameters are chemical potential, μ, charge-
amplitude, ρ, spin-amplitude, m, effective second- and third-neighbor transfer energies,  and  in . Note that 
Hamiltonian, eq. (1) does not contain the third-neighbor hopping term, . The vertical stripe state is defined with q=(0, 
2πδ) in which magnetic domains run along the x-direction. The charge-stripe period is one-half the spin-stripe period. 
On the other hand, the off-diagonal terms in eq. (2) are defined in terms of the spatially modulated d-wave SC gap as

 with  and , where Δ is another variational 
parameter in . The SC amplitude takes the maximum on the charge-stripes, and the sign of the SC gap is opposite 
between neighboring stripes. In the following, the system used is of Nsite=16 16 lattices with the periodic boundary 
conditions in both directions in order to avoid the influence due to the anisotropic condition. It is confirmed that there 
is no qualitative difference in the result with periodic-antiperiodic boundary condition. We assume δ=1/8 and total 
electron number Ne=224 (electron-density, p=Ne/Nsite=0.875) in order to consider the 8-period stripe state observed at 
x=0.125 in La-214. The SC gap function is slightly modified to  with ε~10−6 to avoid divergence 
in computation. The variational energy is obtained as the average of the results of several Monte Carlo calculations run 
simultaneously each with 2.0 106 steps.  
 
3. Results 
 
    First, the condensation energy for the stripe state without SC is compared with that for the AF state. We compute 
the energy difference between the normal state and the stripe state defined as ΔEstripe=(E( )−E ( ))/Nsite. ΔEAF  
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Fig. 1. Condensation energies of the 8-period stripe state and the AF state as a function of U/t. The system is a 16 16 lattice for 
the case of =−0.20, p=0.875. The statistical error-bars are smaller than the size of symbols. 

 
for the AF state is obtained similarly. In Fig. 1, ΔEstripe and ΔEAF are plotted as a function of U/t. The stripe state is 
more stable than the AF state, which is the same as the calculation only using the Gutzwiller projection [5]. To see the 
renormalization of the Fermi surface due to the correlation effect, optimized values of   for  are shown as a 
function of U/t in Fig. 2(a). For a comparison, values for  are also shown in Fig. 2(a). The  for the normal 
state decreases with U/t increases, which suggests that there is an energy gain due to the increase of the density of state 
because the Fermi surface close to the saddle point at ( π, 0) and (0, π) as   decreases. While, the U-
dependence of   for the stripe state is opposite to that of the normal state. The  for  increases as U/t 
increases (where note that the optimized  becomes almost zero). This result is quite different from that in the Mott 
insulating phase in the 2D Hubbard model with the half-filling where the large band renormalization with  ~0 
occurrences [11]. Furthermore, it is similar to the result for VMC calculation in the t-J model [12], but its calculation 
was performed by using the Gutzwiller projected BCS wave function.  In order to understand our result, the 
renormalized Fermi surface of  =−0.30, −0.40 and −0.50 are plotted in Fig. 2(b). In addition, the Fermi surface of 
one-dimensional electrons with 1/4-filling and the non-interacting Fermi surface with =−0.20 are plotted. As U/t 
increases, the renormalized Fermi surface near (0, π) approaches the one-dimensional electronic state with 1/4-
filling. Our result indicates that the relation of δ=x depends not only on the Fermi surface nesting effect but also on the 
contribution of the electron correlation. 

  
 
  
  
  
  
  
  
  
 
 
 

Fig. 2. (a) Optimized effective second-neighbor transfer energies, , for  and  as a function of U/t. The system is a 
16 16 lattice for the case of =−0.20 and p=0.875. (b) Renormalized quasi-Fermi surfaces for  = −0.30, −0.40 and −0.50. As 
a reference, the non-interaction Fermi surface for =−0.20 (dashed line) and the 1D Fermi surface at 1/4-filling (thickness line) 
are plotted. (c) Contour Plot of  measured by  with 24 24 lattice. Note that the optimized variational parameters are 
employed in the case of 16 16 lattice with =−0.20, p=0.875 and U/t=8.  is larger in brighter areas. 
 

Here, we check the visualized Fermi surface represented by the gradient of the momentum distribution function, 
, calculated in the optimized . In order to increase the resolution of k-space, we calculate on the 24 24 

lattice by using optimized variational parameters on the 16 16 lattice since the change of optimized parameters due 
to the size effect is small. In Fig. 2(c), brighter areas coincide with the renormalized Fermi surface with =−0.31 
and =0.0 with U/t=8, except around (0, π) and ( π, 0) where the 1/4-filled one-dimensional structure appears, 
and it seems that the reconstructed Fermi surface is smeared related to the opening the striped ISDW gap.  
    Next, the modulated d-wave SC coexisting with the stripe state is considered. The condensation energy of SC, 
ΔESC=(E( )−E( ))/Nsite, is almost zero with U/t=8 and p=0.875 although the finite optimized d-wave SC gap 
(Δ~0.018) is obtained. This result is in contrast to the homogeneous d-wave SC without SDW state in the optimal 
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 Fig. 3. Renormalized quasi-Fermi surfaces with U/t=12 and p=0.875. Solid line is for the coexistence state with optimized values, 
  =−0.29 and  =0.025. Dashed line is for the stripe state with optimized values,  =−0.37 and  =0.0. 
 
doping [13]. Furthermore, Figure 3 shows the renormalized Fermi surface in the coexistence state with U/t=12 and 
p=0.875, where the optimized  decreases and  increases in comparison with those of the stripe state;  
the renormalized Fermi surface approaches to the AF Brillouin zone, which indicates that the AF spin-fluctuation 
enhances. The similar tendency was explained by the study on the bases of the fluctuation-exchange-approximation 
[14]. Our results reveal that the modulated d-wave SC competes with stripes in the coexistence state. 
 
4. Conclusions 
 
    In summary, we study the renormalization effect of  and  due to the strong correlation in the stripe state and 
in the SC coexisting with the stripes in the 2D Hubbard model by using VMC method. We found that the effective 
second-neighbor transfer energy increases in the stripe state, but decreases accompanied with the increase of the 
effective third-neighbor transfer energy in the coexistence state. At the 1/8-doping, the static 8-period stripes and d- 
wave SC compete. The condensation energy of the SC is very small even if they coexist. 
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