
Theoretical Computer Science 325 (2004) 25–44
www.elsevier.com/locate/tcs

Modeling and querying biomolecular interaction
networks

Nathalie Chabrier-Riviera , Marc Chiaverinib , Vincent Danosc ,
Fran,cois Fagesd , Vincent Sch-achtere;∗

aINRIA, Rocquencourt, France
bUniversity of Paris 7, Paris, France

cCNRS, Paris 7, France
dINRIA, Rocquencourt, France

eGenoscope Evry, France

Abstract

We introduce a formalism to represent and analyze protein–protein and protein–DNA interac-
tion networks. We illustrate the expressivity of this language, by proposing a formal counterpart
of Kohn’s compilation on the mammalian cell-cycle control. This e5ectively turns an otherwise
static knowledge into a discrete transition system incorporating a qualitative description of the
dynamics. We then propose to use the computation tree logic (CTL) as a query language for
querying the possible behaviors of the system. We provide examples of biologically relevant
queries expressed in CTL about the mammalian cell-cycle control and show the e5ectiveness of
symbolic model checking tools to evaluate CTL queries in this context.
c© 2004 Published by Elsevier B.V.

1. Introduction

In recent years, molecular biology has engaged in a large-scale e5ort to elucidate
cellular processes in terms of their biochemical basis at the molecular level. Mass
production of post-genomic experimental results, such as mRNA expression data, pro-
tein expression or protein–protein interaction data, is following and completing the
initial piecemeal catalog of elementary components—genes and proteins—of the se-
quencing and genomic analyses projects by progressively painting a global picture of

∗ Corresponding author.
E-mail address: schachte@dni.cns.fr (V. Sch-achter).

0304-3975/$ - see front matter c© 2004 Published by Elsevier B.V.
doi:10.1016/j.tcs.2004.03.063

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82402685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:schachte@dni.cns.fr

26 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

the complex interactions that take place in a cell. Exploiting these experimental data to
understand the underlying processes requires much more than database integration and
storage: it calls for a strong parallel e5ort on the formal representation of biological
processes.
Several formalisms have been proposed in recent years for the modeling of metabolic

pathways, extracellular and intracellular signaling pathways, or gene regulatory net-
works: boolean networks [30], ordinary di5erential equations [28], and more recently
hybrid Petri nets [18,24] and hybrid automata [1,16]. Formal concurrent languages were
also considered, including hybrid concurrent constraint languages [2], or rewriting log-
ics [14]. Regev and Shapiro [27] were the Grst to propose the use of the �-calculus
[25].
Most formal approaches mentioned above proceed by wholesale importation of a

language (e.g. Petri nets, the �-calculus) that emerged in answer to very speciGc design
goals, some of which may be relevant to our present modeling task, and some of which
may not. While the expected beneGt is direct inheritance of preexisting methods and
tools, this results in some contorted translations and the existence of useless constructs,
and somewhat defeats the explanatory purpose of the formalization. We advocate a
di5erent approach: the ab initio design of formal languages to represent a chosen
subset of biological phenomenology, along with adaptation or redesign of accompanying
theoretical tools. 1

This allows us greater freedom in coping with the essential tension always present in
the design of a modeling language between expressivity and analyzability. The former
is about how well the language can express a given phenomenon, and the latter about
how well the obtained models will lend themselves to further investigations. If the
model is too abstract, then none of what we learn from it will be signiGcant; if it is
too rich and concrete, then there is nothing which can be learnt beyond pure simulation.
And what actually is learnt from pure simulation is sometimes questionable, if only
because the model is often taught to behave as one expects in the Grst place.
It is the ambition of this paper to present a formalism that is both rich enough to

describe interesting systems and simple enough to support formal methods. Its expres-
sivity and simplicity are tested with examples drawn from Kohn’s Grst molecular map
of the cell-cycle control [21], so that we can be reasonably conGdent in the language
representational value (it is also particularly legible, so that the authors wish they had
been taught molecular biology this way). The second focus of the paper is on the issue
of providing automated methods for querying and validating models.
The current state-of-the-art in modeling is mostly based on simulation and graphical

display [1,2,23,24], with some attempts towards stability and bifurcation analyses of
dynamical behavior on small systems [20,30] described either by di5erential equations
or by discretizations thereof. Our approach is markedly di5erent and promotes symbolic
manipulation and exploration of the model by means of computational logics which are
commonplace, in hardware veriGcation for instance. Formal methods extend the ways

1 Process algebra specializing in the representation of protein–protein interactions [10–12] and membrane
interactions [3,26] are being investigated, but our basic modeling language is somewhat simpler.

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 27

one can play with a given model and thus may second simulation and even replace it
when quantitative information is sparse or inaccurate.
This idea of introducing formal methods was mentioned as a prime motivation by

early e5orts at formal modeling [27], and the speciGc prospects of using computational
logics were clearly articulated in [14]. In the present paper, we give substance to this
idea by proposing the use of the computation tree logic (CTL) as a query language for
biomolecular networks. We provide concrete examples of relevant biological queries
expressed in CTL about the mammalian cell-cycle control, and show the e5ectiveness
of symbolic model checking techniques on some preliminary benchmarks obtained from
a proof-of-concept implementation using the symbolic model-checker NuSMV [8].

2. A core modeling language

2.1. A case for simplicity

We introduce below a simple and biologically legible formalism meant to represent
molecular biology networks at the protein interaction level.
The formalism is quite expressive: one of our aims is to demonstrate this with a

side-by-side comparison of standard biological subsystems described in natural language
with their precise and concise rendering in the formalism. All our examples are taken
from the cell-cycle control reaction network after Kohn [21] and we were able to
complete the formalization of Kohn’s Grst map, resulting in about 600 reactions [7].
A few ambiguities in Kohn’s description were resolved in the process.
The formal set of reactions obtained can be complemented by di5erent breeds of

operational semantics: individual-level non-deterministic or stochastic dynamics, or
population-level deterministic di5erential equation systems. One advantage of having
a core formalism is to stay agnostic regarding the operational semantics or dynamics
one wants to equip it with, a point which has gone largely unnoticed in the practice
of biological modeling. Di5erent operational semantics will probably support di5erent
analytic tools and be chosen depending on the application.
Another advantage of singling out a simple formalism is to stimulate the Gnding

of better and/or richer ones. For instance, here, we choose not to represent domains
(functional sub-units of proteins involved in bindings), and we are a fortiori not able
to represent internal wirings in protein complexes. Some more involved biological
narratives do take place at the domain-level and to account for these one needs domains
in the language. We also choose to take complexes to be multisets of proteins, and we
are consequently unable to express situations where the order in which a given complex
is constructed will bear upon its interactive capabilities. Other choices made will be best
commented with the examples in hand. For now, suJces it to say that in our language,
the abstractions made are clear from the notation. In contrast, Kohn’s formalism though
extremely useful in displaying information, is not formal enough to be equipped with
an operational semantics or to always allow unambiguous determination of reaction
paths.

28 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

2.2. The formalism

We assume an inGnite set of protein names, written N , and ranged over by symbols
such as A; B; : : : and an arity function a(·) : N→N from protein names to integers,
mapping a protein name to an integer representing its number of sites.
A formal protein, or simply a protein, is a pair (A; x), written A〈x〉, where A ∈ N

is a name and x ∈ {0; 1}a(A) is a vector of booleans representing the occupancy state
of A’s sites, or simply the state of A.

2.2.1. Protein–Protein interaction
Proteins may be assembled into protein complexes, or simply complexes ranged over

by C;D; : : : and we write “·” for composition. Furthermore, composition is assumed
to be associative and commutative. In other words, the order of proteins inside the
complexes is irrelevant. Here is an example, the following two expressions denote the
same compound made of A1, A2, and A3:

A1〈x1〉 · A2〈x2〉 · A3〈x3〉; A2〈x2〉 · A1〈x1〉 · A3〈x3〉:

Biologically, a complex is a bundle of proteins connected together mostly by low-
energy bonds. In the course of some interactions, members of the complex may ex-
change smaller molecules such as phosphate groups or be modiGed otherwise. This
in turn induces di5erent foldings in space and subsequent changes in the complex
interaction capabilities. Now, at the level of abstraction of our formalism, all these
interactions are grouped under the generic name of modiGcation and are represented
as state transformation.

2.2.2. Protein–DNA interaction
Complexes can also modulate the rate of synthesis of proteins by binding to speciGc

sites on DNA (small strings of DNA upstream of genes) having there a positive or
negative e5ect on the synthesis of the protein(s) associated to the gene.
To express this, we use a map ::N→P (where P stands for the set of regulatory

binding sites) associating to each A ∈ N , a binding site. We will keep with the same
notation when describing a binding between a complex and such a binding site.

2.2.3. Solutions and reactions
Solutions, ranged over by S;S′; : : : are multisets of proteins and complexes. Reactions

are deGned by rewriting rules which have the shape S −→ S′. Following the chemical
metaphor further, we will call complexes present in the left-hand side of a given rule
reactants and complexes present in the right-hand side products of the rule.
We consider Gve kinds of reactions:

(MODIFICATION)
C〈x〉; D〈y〉 −→ C〈x′〉; D〈y′〉;
(COMPLEXATION)
C〈x〉; D〈y〉 −→ C〈x′〉 · D〈y′〉;

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 29

(DECOMPLEXATION)
C〈x′〉 · D〈y′〉 −→ C〈x〉; D〈y〉;
(SYNTHESIS)
F〈x〉 · A −→ F〈x〉 · A; A〈y〉;
(DEGRADATION)
F〈x〉; C〈y〉 −→ F〈x〉:

2.2.4. Comments on the reactions
ModiGcation and complexation were already commented on, and decomplexation is

just the reaction inverse to complexation.
The synthesis reaction expresses that F is a transcription factor which, when bound

to a regulatory binding site A, activates the synthesis of protein A.
In the synthesis and degradation reactions, the complex F , commonly known as a

transcription or degradation factor, can be absent (or empty for the mathematically
minded).
The Grst three reaction types are linear in that they preserve the number of compo-

nents. The latter two are not, and even with this simple formal apparatus we see that
they o5er a mechanism for the cell to revise its own programming by renewing its
stock of current “instructions”.

2.2.5. Enzymatic notation
Many biochemical reactions require catalysis, that is, the presence of a type of protein

called an enzyme, which is not modiGed by the reaction but enables it by lowering
the free energy barrier and thus modifying the kinetics. To express conveniently these
cases, we will use the following simpliGed “enzymatic” notations:

(MODIFICATION)
C〈x〉[D〈y〉 −→ D〈y′〉];
(SYNTHESIS)
F〈x〉 · A[−→ A〈y〉];
(DEGRADATION)
F〈x〉[A〈y〉 −→]:

Additionally, for synthesis, one may indicate the qualitative inQuence of F with a +
or − as in

F〈x〉 · A[→A〈y〉]+:

2.2.6. Dynamics
Note that for the + and − signs to be endowed with other than a purely descriptive

meaning, a notion of reaction rate (discrete or continuous) is required, together with
its interpretation in the operational semantics.
In general, any set of reactions deGned following the rule schema above will gen-

erate a non-deterministic transition system on solutions in the obvious way, namely
by repeatingly applying rules in any order. If fed with enough kinetic information, it
is even possible to endow the same set of reactions with a structure of probabilistic

30 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

transition system. It is equally possible to derive a classical di5erential system and this
actually is the bulk of biological modeling (see for instance [28]). We believe, how-
ever, that interesting analyses can already be led at the purely non-deterministic level.
But, one Grst needs to verify that a pretty good approximation of molecular biology
Gts within the formal picture.

3. Representing cell-cycle regulation

The cell cycle is a central mechanism in the cell physiology which regulates cell
division. Control over this fundamental biological activity is exerted by a family of
interacting proteins known as the cyclins, or CYCs and the cyclin-dependent kinases,
or CDKs.
The cell cycle in eukaryotes is divided into four phases. Between two cell divisions,

the cell is in a gap phase called G1, which may contain a quiescent phase G0. The
cell can stay in phase G0 for very long periods of time, without further division, in
which case this phase can be construed as a steady state. The synthesis phase S starts
with the replication of the DNA. A second gap phase G2 precedes the mitotic phase
M during which the cell divides.
Each phase is characterized by the activity of two major types of proteins: CYCs

and CDK. Experiments show a correlation between the phase and concentrations of
cyclins of speciGc types. CDK activity requires binding to a cyclin, and is controlled by
speciGc inhibitors and by stimulatory or inhibitory phosphorylations by several kinases
or phosphatases which in turn may produce positive feedback loops.
At any particular phase, a given CDK · CYC complex will be dominant and busy

verifying that some conditions are met and, if they are, will activate the global shift
of the cell to the next phase.
Apart from being arguably the most important biological process, the cell cycle

is extremely well documented at the molecular level. It is a signiGcant challenge to
understand how the higher-level functions emerge from this vast network of reactions.
With the language introduced above, we are going to provide a few formal glimpses
of our current knowledge of this mechanism.
To facilitate reading, we will use an equivalent notation for complexes and write

A · B〈x; y〉 instead of A〈x〉 · B〈y〉. Another convention we take for the examples is
that when a reaction occurs independently of the values of some internal states of the
partners, we replace these with boolean variables written x, y, z.

3.1. Cyclin · CDK bindings

Let us Grst examine the formation of CDK · CYC complexes. CYCD can pair with
CDK4 2

CDK4〈x; y〉;CYCD〈z〉 −→ CDK4 · CYCD〈x; y; z〉:
2 · · · and CDK6 but these two are indistinguishable as for their interactive properties so we do not make

any further mention of CDK6.

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 31

CYCA and CYCE compete in binding with CDK2

CDK2〈x; y〉;CYCA〈〉 −→ CDK2 · CYCA〈x; y; 〉;
CDK2〈x; y〉;CYCE〈z〉 −→ CDK2 · CYCE〈x; y; z〉:

Likewise, CYCA binds CDK1 in competition with CYCB. But here there is a slight
twist, namely that CDK1’s third phosphorylation site is required for the formation of
a stable complex with CYCA

CDK1〈x; y; 1〉;CYCA〈〉 −→ CDK1 · CYCA〈x; y; 1; 〉;
CDK1〈x; y; z〉;CYCB〈〉 −→ CDK1 · CYCB〈x; y; z; 〉:

3.2. Cyclin · CDK inhibition

Then speciGc cyclin · CDK inhibitors step in. P16 inhibits by binding CDK4/6 in
competition with CYCD

CDK4〈x; y〉;P16〈〉 −→ CDK4 · P16〈x; y; 〉;
whereas P21 binds the complex CDK4 · CYCD and prevents its activity

P21〈〉;CDK4 · CYCD〈x; y; z〉 −→ P21 · CDK4 · CYCD〈; x; y; z〉:
What do we mean formally by saying that P16 and P21 are inhibitors? We mean that
none of the reactions involve CDK4 · P16 or CYCD ·CDK4 · P21; therefore, once P16
(resp. P21) reacts with CDK4 (resp. CYCD · CDK4), CDK4 (resp. CYCD · CDK4)
becomes unavailable for any further reaction.
These are end products. Take note that the formalism does not allow any distinction

between not knowing that a reaction takes place and knowing that it does not. One
could remedy this easily by adding ‘non-reactions’ such as

CDK4 · P16〈x; y; 〉;CYCD〈z〉 �−→ CDK4 · P16 · CYCD〈x; y; z〉:

3.3. Introducing MPF:CDK1 · CYCB

The complex CDK1 ·CYCB, also known as MPF, is the one in charge of the actual
division of the cell or mitosis. It is born inactive and is activated by other phosphatases
(a protein taking a phosphate group) and kinases. All CDKs (and in particular CDK1)
are activated by a phosphorylation of some speciGc amino-acid Thr160 (or Thr161),
carried out by CYCH · CDK7 (also known as CAK).

CDK7 · CYCH〈0; 〉[CDK1〈x; y; 0〉 −→ CDK1〈x; y; 1〉];
CDK7 · CYCH〈0; 〉[CDK1 · CYCB〈x; y; 0; 〉 −→ CDK1 · CYCB〈x; y; 1; 〉]:

CDK1 can be inhibited by a phosphorylation on amino-acids Thr14 and/or Tyr15
performed by WEE1 or MYT1. This phosphorylation is possible only when CDK1 is

32 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

already bound to CYCB (or CYCA).

WEE1〈0〉[CDK1 · CYCB〈x; 0; y; 〉 −→ CDK1 · CYCB〈x; 1; y; 〉];
MYT1〈〉[CDK1 · CYCB〈0; x; y; 〉 −→ CDK1 · CYCB〈1; x; y; 〉]:

Then CDK1 inhibits its inhibitor

CDK1:CYCB〈0; 0; 1; 〉[WEE1〈0〉 −→ WEE1〈1〉]:
A positive feedback loop involves CDC25C and CDK1 ·CYCB. CDC25C is activated
in its N-terminal domain as follows:

CDK1 · CYCB〈0; 0; 1; 〉[CDC25C〈0; x〉 −→ CDC25C〈1; x〉]:
Once activated CDC25C dephosphorylates Thr14/Tyr15 of CDK1, which activates
MPF, and the positive loop is closed (provided MPF third’s site was set at 1 in a
preceding interaction with CAK).

CDC25C〈1; x〉[CDK1 · CYCB〈x; 1; y; 〉 −→ CDK1 · CYCB〈x; 0; y; 〉];
CDC25C〈1; x〉[CDK1 · CYCB〈1; x; y; 〉 −→ CDK1 · CYCB〈0; x; y; 〉]:

3.4. CYC · CDK vs. PRB

When a CYC · CDK complex becomes active, it impacts indirectly on the synthesis
of other proteins. CYCD · CDK4 begins by phosphorylating PRB at its Grst site

CDK4 · CYCD〈0; 1; x〉[PRB〈0; x〉 −→ PRB〈1; x〉];
then CYCE · CDK2 can act on semi-phosphorylated PRB generating fully phosphory-
lated PRB:

CDK2 · CYCE〈0; 1; x〉[PRB〈1; 0〉 −→ PRB〈1; 1〉]
that cannot bind any longer to E2F1 · DP.

PRB〈z; 0〉;E2F1 · DP1〈x;y〉 −→ PRB · E2F1 · DP1〈z; 0; x;y〉:
PRB has a di5erent behavior in all its three possible states: when in state 〈0; 0〉 it binds
and inhibits the transcription of some proteins downstream; and when in the interme-
diate state 〈1; 0〉 it has a weaker inhibiting e5ect; when completely phosphorylated,
i.e. in state 〈1; 1〉, it does not bind to E2F1 ·DP1 at all, and faster synthesis of di5erent
products including, of course, cyclins themselves happens.
We see that the formalism provides a straightforward representation of these highly

constrained sequences of reactions. Talking about transcription, we Gnish our tour of
protein interactions with an example, involving PRB again, of how protein regulate
protein synthesis.

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 33

3.5. Transcriptional regulation

This example shows a simple and typical narrative of protein synthesis. First protein
JUN binds protein C-FOS

JUN〈〉;C-FOS〈〉 −→ JUN · C-FOS〈; 〉:
Then JUN · CFOS stimulates the synthesis of ERCC1 (a protein involved in DNA
repair):

JUN · CFOS〈; 〉; ERCC1 −→ JUN · CFOS〈; 〉 · ERCC1;

JUN · CFOS〈; 〉 · ERCC1[−→ ERCC1〈〉]+:
Unphosphorylated PRB binds JUN.

PRB〈0; 0〉; JUN〈〉 −→ PRB · JUN〈0; 0; 〉:
This enhances the binding of the JUN family members to C-FOS (but we cannot say
this in the absence of a quantitative dynamics) and stimulates further—hence the ++
below—transcriptional activation by the JUN · C-FOS complex.
We observe that there are many ways leading to the construction of the tri-complex

PRB · JUN · C-FOS formation and ultimately to its binding to the ERCC1 binding site

PRB〈0; 0〉; JUN · C-FOS〈〉 −→ PRB · JUN · C-FOS〈0; 0; ; 〉;
PRB · JUN〈x; y; 〉;C-FOS〈〉 −→ PRB · JUN · C-FOS〈x; y; ; 〉;

PRB · JUN · C-FOS〈x; y; ; 〉; ERCC1−→ PRB · JUN · C-FOS〈x; y; ; 〉
· ERCC1;

PRB · JUN · C-FOS〈x; y; ; 〉 · ERCC1[−→ ERCC1〈〉]++:

Again the language expresses this in a clear way. We also see that to do justice
to transcription, it seems one needs a quantitative semantics, or at least quantitative
enough to express a few di5erent rates of synthesis.

4. Temporal logic as query language

The use of formal languages to represent complex molecular networks is motivated
not only by an expected gain in descriptive and explanatory power, but also by the
promise of biologically relevant analyses of the dynamical behavior of these networks,
both quantitative and qualitative. The latter type is especially important at this stage in
the development of computational biology, for at least two reasons:
• regulatory, signaling and metabolic networks are very complex mechanisms which
are far from being understood on a global scale; qualitative analyses hold the promise
of providing logical/computational interpretation of the role of biologically relevant

34 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

subparts of these networks—abstracting away from their detailed dynamics—which
in turn may help reverse-engineer through a modular approach;

• data on both the existence and the dynamics of molecular interactions is rare and
unreliable; dynamical models which are too sensitive to the exact network structure
or some parameter values (e.g. continuous ODE-based representations) may not be
the best suited to analyze and predict behavior in such settings.
In this part, we explore the use of automated methods for querying qualitative models

of biomolecular networks. First, we give a brief introduction to the CTL which we
propose to use to formulate queries about the dynamic properties of the system of
interest. Next, we show how the set of reactions presented in the previous sections can
be turned into an appropriate structure for CTL queries, namely concurrent transition
systems. Finally, we discuss several examples of biologically relevant queries together
with their formalization in CTL.

4.1. CTL

CTL is a logic for describing properties of computation trees and non-deterministic
transition systems [9]. CTL is a temporal logic which abstracts from duration values
and describes the occurrence of events in the two dimensions of the system: time and
non-determinism. CTL basically extends either propositional or 8rst-order logic [15]
with two path quantiGers for non-determinism: A, meaning “for all transition paths”,
and E, meaning “for some transition path”, and with several temporal operators: X
meaning “next time”, F meaning “eventually in the future”, G meaning “always”, U
meaning “until”.
A “safety” property, specifying that some situation described by a formula � can

never happen, is expressed by the CTL formula AG¬�, i.e. on all paths � is always
false. A “liveness” property, specifying that something good will eventually happen,
is expressed by the formula AF . Note that by duality we have EF�=¬AG¬� and
EG�=¬AF¬� for any formula �.

Formally, CTL formulas are divided into state formulas and path formulas. Let AP
be a set of atomic propositions, describing states. A state formula is either an atomic
proposition, or a path formula preGxed by a path quantiGer, or a logical combination
of such formulas. The set of path formulas is the closure of the set of state formula
by the temporal operators and logical connectives. This is summarized in the following
grammar (ordinary boolean connectives are not shown):

� := � ∈ AP|E |A ;

 := �|X |F |G | U :

Arbitrary state and path formulas are permitted in CTL∗ but not in CTL which is
deGned as the syntactic fragment of CTL∗, where temporal operators G, F , X and U
must be immediately preGxed by a path quantiGer A or E. For instance, A(FG�) and
E(F� ∧ G) are CTL∗ formula which are not in CTL. Another well-known fragment
is LTL, where only formulas of the form A� where � contains no path quantiGer are
allowed. For example, AG(EF�) is not an LTL formula. Since the biological queries

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 35

of interest, described in Section 4.4, can be expressed in CTL but not all in LTL, our
proposal is to use CTL as a query language for biochemical systems and we shall
focus on this fragment in this paper.
The semantics of CTL and transition systems are given by Kripke structures. A

Kripke structure K is a triple (S; R; L) where S is a set of states, R ⊆ S × S is a total
relation (i.e. for any state s ∈ S there exists a state s′ ∈ S such that (s; s′) ∈ R), and
L : S→2AP is a function that associates to each state the set of atomic propositions true
in that state. A path in K from a state s0 is an inGnite sequence of states � = s0; s1; : : :
such that (si; si+1) ∈ R for all i¿0. We denote by �i the suJx of � starting at si.
Now, given a Kripke structure K , the inductive deGnition of the truth relation stating
that a CTL formula � is true at state s, written s |= �, or true along path �, written
� |= �, is as follows (clauses for ordinary boolean connectives are omitted):
• s |= � i5 � ∈ L(s),
• s |= E i5 there is a path � from s such that � |= ,
• s |= A i5 for every path � from s, � |= ,
• � |= � i5 s |= � where s is the starting state of �,
• � |= X i5 �1 |= ,
• � |= F i5 there exists k¿0 such that �k |= ,
• � |= G i5 for every k¿0, �k |= ,
• � |= U ′ i5 there exists k¿0, such that �k |= ′ and �j |= for all 06j¡k.
Following [15], assuming a Kripke structure K , it is convenient to identify a CTL

formula � to the set of states which satisfy it, i.e. {s ∈ S|s |= �}. In particular, we
will write init ∈ � (resp. Init ⊆ �) to express that a CTL formula � holds in an initial
state init (resp. in all initial states in the set Init).

4.2. Concurrent transition systems

Concurrent transition systems have been introduced in [29] as a formal tool to reason
about concurrent programs. They o5er a simple language of reaction rules for mod-
eling concurrent programs and specifying Kripke structures. We will thus use them
to formalize the Kripke semantics of our core modeling language, and give a precise
meaning to the idea of querying in CTL biochemical models.
A concurrent transition system (CTS for short) is a triple (x̃; I; R) where x̃ is a

tuple of state variables, I is an initial state (deGned by the initial values of the state
variables), and R is a set of condition–action rules. The rules have the following
syntax:

condition c action x′
1 = e1; : : : ; x′

n = en;

where c is a logical formula over state variables which denotes the condition under
which the rule can be applied, and the primed version of the variables denotes the new
values, given by expression ei, of the variables after the rule is applied. By convention,
the variables which are not modiGed in the right-hand side of the rule keep their value
unchanged.

36 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

Clearly, a CTS deGnes a Kripke structure, where the set of states is the set of all
tuples of values for the state variables, and the transition relation is the union 3 (i.e.
disjunction) of the relations between the states of all instances of the condition-action
rules.
Now the core modeling language described in the Grst part of this paper, can be

turned in a CTS by a simple transformation in order to comply with the state variables
format of CTSs. Indeed state patterns such as CDK4〈0; x〉 need be fully instantiated
with (ground) terms such as CDK4〈0; 0〉 in order to be represented by state variables.
The di5erent internal states of a given protein are thus viewed in the associated CTS
as di5erent macromolecules and each is associated with a unique state variable.
State variables of the CTS can be chosen to take values in di5erent domains cor-

responding to di5erent levels of abstraction. In the reGned notion of state of our core
modeling language, the values of state variables are integers representing the mul-
tiplicity of each elementary component, protein or complexes in the cell. In more
abstract models, we can choose as well to valuate state variables with real numbers
representing concentrations, or with boolean values representing simply the presence
or absence of the compounds in the cell. Whatever choice is made, it is worth noticing
that the temporal evolution of the system is modeled in this setting by the transition
steps 4 and the di5erent transition paths model the non-deterministic behavior of the
system.

4.3. Example of the mammalian cell-cycle control

Now that we have developed enough of the logical aspect of a5airs, we return to
our benchmark example of the mammalian cell-cycle control.
As written above, the state of experimentally derived knowledge on the dynamics of

the mammalian cell cycle (e.g. reaction rates), shows that it is somewhat premature to
attempt reasoning with quantities of proteins in mammalian cells. Instead, it is more
appropriate and interesting in this example to reason qualitatively on all possible be-
haviors of the system. Sets of states could be represented by partial information on the
actual numerical values of state variables, using for instance intervals or constraints
between variables. We shall choose however a simpler route, that of the boolean ab-
straction of the model, where state variables are boolean variables representing the
presence/absence of proteins. In this case, the set of states is Gnite and its cardinality
is 2n, where n is the number of state variables. In our example, we have n=532
corresponding to the di5erent forms of the 165 basic proteins and genes involved in
the model.

3 Concurrent transition systems are asynchronous in the sense that one rule is executed at a time (inter-
leaved semantics), hence the transition relation is the union of the relations associated to the rules. On the
other hand, synchronous programs, that are not considered in this paper, have their transition relation deGned
by intersection.

4 Hybrid dynamics combining discrete transition time with continuous time, can also be handled in this
setting by turning a hybrid system into a concurrent transition system using Euler’s method for discretizing
di5erential equations [5].

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 37

We consider accordingly, the concurrent transition system over Boolean state vari-
ables deGned by the following rule schemas:
1. ModiGcation: A; B→C; B,

A is modiGed under the action of a catalyst B, and transformed into C, a phosphory-
lated form of A for example. Obviously, other state changes can be encoded in a
similar manner.

2. Complexation: A; B→A:B,
A and B bind together to form a complex A:B.

3. Synthesis: A→A; B,
B is synthesized by the activated transcription factor A.

4. Degradation: A; B→A,
B is degraded by the degradation factor A.

In the complexation rule schema, A:B stands for a propositional variable denoting the
complex which results from the binding of the molecules denoted by A and B. An
instance of this schema is the rule:

CDK7;CYCH −→ CDK7 · CYCH;

where CYCH, CDK7 and CYCH.CDK7 are three boolean variables representing, re-
spectively, CYCH, CDK7 and the dimer CYCH.CDK7 each in a given internal state.
Likewise, one can introduce a variable named CDK1(pThr14).CYCB, to represent a

phosphorylated form of the dimer CDK1.CYCB at site Thr14 of CDK1. The phosphory-
lation of this dimer by MYT1 is modeled by the following instance of the modiGcation
rule

CDK1 · CYCB;MYT1 −→ CDK1(pThr14) · CYCB · MYT1:

These boolean rules denote condition action rules with the following conventions.
The left-hand side of a rule is just its condition. The right-hand side is a formula which
expresses which variables are made true or false in the action, with the convention
that the variables which denote components with varying quantities (not promoters)
and which appear in the left-hand side and not in the right-hand side of the schema,
may take arbitrary values.
This is necessary to deGne a correct boolean abstraction that is an over-approximation

of the set of all possible behaviors of the system, ignoring numerical quantities and re-
action rates. For instance, the rule of complexation is a shorthand for the four condition–
action rules
condition A ∧ B action (A:B)′ = true; A′ = true; B′ = true,
condition A ∧ B action (A:B)′ = true; A′ = false; B′ = true,
condition A ∧ B action (A:B)′ = true; A′ = true; B′ = false,
condition A ∧ B action (A:B)′ = true; A′ = false; B′ = false.

The condition–action rules make explicit the possible disappearance of molecules A or
B by complexation, and their combination guarantees the correctness of the boolean
abstraction w.r.t. all possible behaviors of the system. This method is implemented in
the system BIOCHAM currently under development [4].

38 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

4.4. Biological queries

The biological queries one can consider about a boolean model of the cell-cycle
control are of di5erent kinds. Below we enumerate a list of biological queries of
interest and discuss their expression in CTL. Most of these queries are relative to an
initial state or a set of initial states described by a logical formula.
About reachability

(1) Given an initial state init, is there a series of reactions that will produce some
compound P?
This query translates into the formula init ∈ EF(P), where P is the boolean
variable representing the product P.

(2) Which are the states from which a set of products P1; : : : ; Pn can be produced
simultaneously?
The query translates into the formula EF(P1 ∧ · · · ∧ Pn). Indeed, CTL formulas
can be identiGed to the set of states which satisfy them, and the model checking
tools described in the next section actually provide facilities for showing the set
of states satisGed by a CTL formula.

About pathways
(3) Given an initial state init, can the cell reach a state s while passing by another

state s2?
init ∈ EF(s2 ∧ EFs).

(4) Is state s2 a necessary checkpoint for reaching state s?
init ∈ ¬E((¬s2)Us). We express here the contrapositive of the query, that is there
does not exist a path reaching s without passing by s2.

(5) Is it possible to produce P without creating nor using some Q?
init ∈ E(¬QUP).

(6) More generally, one can ask whether a state s is reachable under a certain con-
straint c from a set of initial states Init:
Init ⊆ E(cU s).

About stability properties
(7) Is a certain (partially described) state s of the system a stable state? s ∈ AG(s)

or s ⊆ AG(s) where s is a set of states described by a logical formula noted also
s by abuse of notation.
A stable state in the strong sense is indeed a state in which the system stays
indeGnitely with no possibility of escaping; a steady state, in which the system
might stay indeGnitely but might also not, can be modeled by s ⊆ EG(s),

(8) Can the system reach a given stable state s from the initial state init?
init ∈ EF(AG(s)). It is worth noticing that this query is not expressible in LTL.

(9) Must the system reach a given stable state s from the initial state init?
init ∈ AF(AG(s)).

(10) What are the stable states?
The set of stable states of the system cannot be represented by a CTL query. In
CTL, it is only possible to check whether a given (partially described) state is a
stable state. One approach to computing the set of stable states (or checkpoints,
etc.) of a biochemical network would be to combine model checking methods

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 39

with search methods. This is an interesting open problem that has been recently
investigated in other contexts for the design of CTL query languages [6,19,17].

(11) Can the system exhibit a cyclic behavior w.r.t. the presence of a product P?
init ∈ EG((P ⇒ EF¬P) ∧ (¬P ⇒ EF P)).
This formula is not expressible in LTL. It expresses that there exists a path
where at all time points whenever P is present it becomes eventually absent, and
whenever it is absent it becomes eventually present.

About durations
(12) How long does it take for a molecule to become activated?
(13) In a given time, how many Cyclins A can be accumulated?
(14) What is the duration of a given cell-cycle’s phase?

Time in temporal logic CTL is a purely qualitative notion, based on a single prece-
dence relation. Reasoning about durations is thus not expressible with the temporal
operators of CTL. Nevertheless, if the state description logic underlying CTL is not
propositional but Grst-order logic, it is to model time intervals by adding to all atomic
propositions extra numerical arguments representing their starting time and duration.
Constraint-based model checking presented in Section 5.3 provides an automatic method
for evaluating such queries. On the other hand, symbolic model checking techniques
have also been extended to incorporate speciGcally duration data [22].
About the correctness of the model

(15) Can one see the inaccuracies of the model, and correct them?
When an intended property is not veriGed, the pathways leading to a counterexample

help the user to reGne the model. Similarly, when an unintended property is satisGed,
the pathway leading to a witness helps the user to reGne his model by enforcing extra
conditions in rules, or, if the property is not known to be biologically true or false,
the witness may suggest biological experiments in order to validate or invalidate that
property of the model. In biology (as in any natural science as opposed to computer
science), the standard loop between modeling and model validation becomes a threefold
loop between modeling, querying the model and doing biological experiments.
It is worth noticing also that the boolean abstraction of the model introduces inaccu-

racies which would correspond to inaccurate quantities or inaccurate reaction rates in
a quantitative model. The explored combinatorics of the underlying quantitative mod-
els may thus correspond to non standard situations which are biologically relevant.
These inaccuracies can nevertheless be corrected by adding boolean conditions in the
rules.

5. Automated query evaluation

5.1. Symbolic model checking

Model checking is an algorithm for computing, in a given Kripke structure K , the
set of states which satisfy a given CTL formula �, i.e. the set {s ∈ S|s |= �}. For the
sake of simplicity, we consider only the CTL fragment of CTL?, and use the fact that
(by duality) any CTL formula can be expressed in terms of ¬; ∨; EX; EU and EG.

40 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

When K has a Gnite set of states, the model checking algorithm, in its simplest
form, works with an explicit representation of K as a transition graph, and labels each
state with the set of subformulas of � which are true in that state. First, the states are
labeled with the atomic propositions of � which are true in those states. Labeling with
more complex formulas is done iteratively, following the syntax of the subformulas of
�. Formulas of the form ¬� label those states which are not labeled by �. Formulas of
the form �∨ are added to the labels of the states labeled by � or . Formulas EX�
are added to the labels of the immediate predecessor states of the states labeled by �.
Formulas E(�U) are added to the hereditary predecessor states of while they satisfy
�. Formulas EG� involve the computation of the strongly connected components of
the subgraph of transitions restricted to the states satisfying �. The states labeled by
EG� are the states in this subgraph for which there exists a path leading to a state
in a non-trivial strongly connected component. The complexity of this algorithm is
O(|�| ∗ (|S| + |R|)) where |�| is the size of the formula, |S| is the number of states,
and |R| is the number of transitions [9].
Symbolic model checking is a more eJcient algorithm that uses a symbolic rep-

resentation of Gnite Kripke structures with boolean formulas. In particular, the whole
transition relation is encoded as a single (disjunctive) boolean formula, sets of states
are encoded by boolean formulas, and ordered binary decision diagrams (OBDDs)
are used as canonical forms for the boolean formulas. The symbolic model checking
algorithm computes an OBDD representing the set of states satisfying a given CTL
formula. The computation involves the iterative computation of the least Gxed point
(for EF) and the greatest Gxed point (for EG) of simple predicate transformers asso-
ciated to the temporal connectives [9]. In our experiments reported below, we used the
state-of-the-art symbolic model checker NuSMV [8].

5.2. Computational results

Table 1 presents some performance Ggures concerning the evaluation of CTL queries
in the boolean abstraction of the mammalian cell-cycle control model described in
Section 4.3.
The boolean model used in these experiments comprises 732 reaction rules over

165 proteins and genes, and 532 variables taking into account the di5erent compounds
of the system. The queries concern the pathways leading to the mitosis of the cell
described in Section 3.3 on the complex MPF, and on the cyclic presence of CYCA.
The initial state corresponds to the gap phase G2 prior to the mitosis of the cell. The
two Grst columns indicate the query and its type. The third column indicates the CPU
time taken by NuSMV to answer the query. The fourth column indicates the CPU
time taken for explaining the answer, that is for showing a pathway or a witness (the
negation of the query is asked for no answers). The CPU times are given in seconds
and have been measured on a processor Intel Pentium 3 at 600 MHz under Linux.
When compared to a simpler Prolog-based implementation of model checking, the

timings obtained with the NuSMV model checker show the eJciency of the symbolic
representation of states by binary decision diagrams (BDDs) [5]. These timings are,
however somewhat slower than what is usual in the program veriGcation community

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 41

Table 1
Evaluation of CTL queries in the mammalian cell-cycle control model with NuSMV

Query Query NuSMV NuSMV
type answer time show time
number in (s) in (s)

compiling 47.5 —
2 EF SL1(p) 29 124
2 EF CYCE 2 22
2 EF CYCD 1.9 11.5
2 EF PCNA.CYCD 1.7 48.7

4 ¬E(¬ CDC25C(Nterm) 2.2 49.22
U CDK1-CYCB(Thr161))

11 EG (CYCA ⇒ EF¬ CYCA 31.8 —
∧¬ CYCA ⇒ EF CYCA)

for a model of only a few hundreds of rules and variables. One fundamental reason
is the overall structure of transition graphs modeling biochemical networks. Such tran-
sition systems are indeed highly non-deterministic due to the “soup” aspect of molec-
ular interactions and thus di5er signiGcantly in this respect from the transition graphs
obtained from circuits or programs. It would be worth investigating further whether
speciGc optimizations of model-checking algorithms are possible in this context, es-
pecially concerning the ordering of variables for the internal BDD representation of
states [31].

5.3. Quantitative models and constraint-based model checking

As mentioned in previous sections, CTL queries can in principle be applied to quan-
titative models of molecular interactions. In particular, we have seen that the multiset
rewriting core modeling of the cell-cyle control given in the Grst part of this paper,
can be translated in a concurrent transition system over integer variables denoting the
multiplicity of molecules in the cell.
Concurrent transition systems with variables ranging over unbounded or continuous

numerical domains deGne, however, Kripke structures with an inGnite set of states
which cannot be handled by the symbolic model checking algorithm. On the other hand,
constraint-based model checking applies to inGnite state systems. In this approach, a
constrained state is a Gnite representation using constraints, of a Gnite or inGnite set
of states. In the scheme of Delzanno and Podelski [13], inGnite state Kripke structures
are represented by constraint logic programs, and the CTL formulas, that are based on
a fragment of Grst-order logic, are identiGed to the least Gxed point and greatest Gxed
point of constraint logic programs.
Constraint-based model checking over integers (using constraint logic programs over

Gnite domains technology) could thus be used to evaluate quantitative queries about
the cell-cycle control. This has not been done in the mammalian cell-cycle example by

42 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

lack of numerical data, but has been shown in [5] on a simple quantitative model of
gene expression using constraint based model checking over reals.

6. Conclusion

We have designed a simple language that has proven to be rich enough to describe
biomolecular networks at the level of protein interactions. In particular, the combina-
torics of complexation, activation, synthesis and degradation are easily expressed, as
we have shown using Kohn’s description of the mammalian cell-cycle control as our
expressiveness benchmark.
We have also shown how symbolic model checking techniques could be applied to

the querying and validation of boolean abstractions of networks of molecular inter-
actions. First, we have shown that the temporal logic CTL is expressive enough to
formalize a wide variety of biological queries of interest about a molecular network:
ranging from pure reachability queries on the possibility of synthesizing a particular
protein under pathway constraints, to the existence of checkpoints, and to the anal-
ysis of steady states and cyclic behaviors. Second, CTL querying applies to highly
non-deterministic systems, by investigating all possible behaviors of the system, in
situations where simulation can be ill-deGned or unfeasible. Third, symbolic methods
make it possible to group large sets of states into small state expressions which provide
formal proofs of reachability, pathway, checkpoint and stability properties.
For all these reasons, we believe that, beyond simulation, veriGcation tools such as

model checking will become indispensable for querying and validating complex models
in systems biology.

Acknowledgements

This work has been done in the Cooperative Research Initiative ARC CPBIO. 5 We
are grateful to our colleagues of the ARC CPBIO, especially to Magali Roux-RouquiYe,
Julien Renner and GrYegory Sautejeau from Institut Pasteur, for interesting discussions
on Systems Biology and relevant bits of Molecular Biology, Sylvain Soliman from the
Contraintes group at INRIA Roqcuencourt and Alexander Bockmayr, Arnaud Courtois
and Damien Eveillard from the ModBio group at LORIA Nancy, for fruitful discussions
on quantitative models. We also acknowledge the support from Alessandro Cimatti and
the NuSMV team from the IRST in Trento.

References

[1] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, J. Schug, Hybrid modeling
and simulation of biomolecular networks, in: Hybrid Systems: Computation and Control, Lecture Notes
in Computer Science, Vol. 2034, Springer, Berlin, 2001, pp. 19–32.

5 http://contraintes.inria.fr/cpbio.

http://contraintes.inria.fr/cpbio

N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44 43

[2] A. Bockmayr, A. Courtois, Using hybrid concurrent constraint programming to model dynamic
biological systems, in: 18th Internat. Conf. on Logic Programming, Copenhagen, Springer, Berlin, 2002,
pp. 85–99.

[3] L. Cardelli, Brane calculi, ENTCS Proc. of Bio-Concur, 2003, to appear.
[4] N. Chabrier, F. Fages, The biochemical abstract machine BIOCHAM, in: C. Christophe, H.P. Lenhof,

M.F. Sagot (Eds.), Proc. European Conf. Computational Biology, ECCB’03, Paris, France, September
2003, pp. 597–599. System available at http://contraintes.inria.fr/BIOCHAM.

[5] N. Chabrier, F. Fages, Symbolic model checking of biochemical networks, in: C. Priami (Ed.), Proc.
Internat. Workshop on Computational Methods in Systems Biology, CMSB’03, Rovereto, Italy, Lecture
Notes in Computer Science, Springer, Berlin, February 2003, pp. 149–162.

[6] W. Chan, Temporal logic queries, in: Proc. 12th Internat. Conf. Computer Aided VeriGcation CAV’00,
Chicago, USA, Lecture Notes in Computer Science, Vol. 1855, Springer, Berlin, 2000, pp. 450–463.

[7] M. Chiaverini, V. Danos, A formalization of Kohn’s molecular map; available at www.pps.
jussieu.fr/∼bioconcu/kohn map.html, July 2002.

[8] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV 2: an opensource tool for symbolic model checking, in: Proc. Internat.
Conf. Computer-Aided VeriGcation, CAV’2002, Copenhagen, Denmark, July 2002.

[9] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[10] V. Danos, J. Krivine, Formal molecular biology done in CCS, in: Proc. BIO-CONCUR’03, Marseille,

France, Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam, 2003, to appear.
[11] V. Danos, C. Laneve, Core formal molecular biology, in: Proc. 12th European Symp. on Programming,

ESOP’03, Lecture Notes in Computer Science, Vol. 2618, Springer, Berlin, April 2003, pp. 302–318.
[12] V. Danos, C. Laneve, Graphs for formal molecular biology, in: Proc. First Internat. Workshop on

Computational Methods in Systems Biology, CMSB’03, Lecture Notes in Computer Science, Vol. 2602,
Springer, Berlin, February 2003, pp. 34–46.

[13] G. Delzanno, A. Podelski, Model checking in CLP, in: Proc. 5th Internat. Conf. on Tools and Algorithms
for Construction and Analysis of Systems TACAS’99, Lecture Notes in Computer Science, Vol. 1579,
Springer, Berlin, January 1999, pp. 223–239.

[14] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, K. Sonmez, Pathway logic: symbolic analysis
of biological signaling, in: Proc. PaciGc Symp. on Biocomputing, January 2002, pp. 400–412.

[15] E.A. Emerson, in: J. van Leeuwen (Ed.), Temporal and Modal Logic, North-Holland, Amsterdam, MIT
Press, Cambridge, MA, 1990, pp. 995–1072.

[16] R. Ghosh, C. Tomlin, Lateral inhibition through delta-notch signaling: a piecewise aJne hybrid model,
in: Springer (Ed.), Hybrid Systems: Computation and Control, Lecture Notes in Computer Science,
Vol. 2034, Springer, Berlin, 2001, pp. 232–246.

[17] A. GurGnkel, M. Chechik, B. Devereux, Temporal logic query checking: a tool for model exploration,
IEEE Trans. Software Eng. (2003) (Special FSE’02 Issue).

[18] R. Hofest-adt, S. Thelen, Quantitative modeling of biochemical networks, in: In Silico Biology, Vol. 1,
1998, pp. 39–53.

[19] S. Hornus, Ph. Schnoebelen, On solving temporal logic queries, in: Proc. 9th Internat. Conf. Algebraic
Methodology and Software Technology AMAST’02, Saint Gilles les Bains, Reunion Island, France,
Lecture Notes in Computer Science, Vol. 2422, Springer, Berlin, 2002, pp. 163–177.

[20] H. de Jong, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput.
Biol. 9 (1) (2001) 69–105.

[21] K.W. Kohn, Molecular interaction map of the mammalian cell cycle control and DNA repair systems,
Mol. Biol. Cell 10 (8) (1999) 703–734.

[22] F. Laroussinie, N. Marley, Ph. Schnoebelen, On model checking durational Kripke structures, in: Proc.
5th Internat. Conf. on Foundations of Software Science and Computation Structures FOSSACS’02,
Grenoble, France, Lecture Notes in Computer Science, Vol. 2303, Springer, Berlin, 2002, pp. 264–279.

[23] R. Maimon, S. Browning, Diagrammatic notation and computational structure of gene networks, in:
Proc. 2nd Internat. Conf. on Systems Biology, 2001.

[24] H. Matsuno, A. Doi, M. Nagasaki, S. Miyano, Hybrid Petri net representation of gene regulatory
network, in: PaciGc Symp. on Biocomputing, Vol. 5, 2000, pp. 338–349.

http://contraintes.inria.fr/BIOCHAM
http://www.pps.jussieu.fr/~bioconcu/kohn_map.html
http://www.pps.jussieu.fr/~bioconcu/kohn_map.html

44 N. Chabrier-Rivier et al. / Theoretical Computer Science 325 (2004) 25–44

[25] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes I and II, Inform. and Comput.
100 (1992) 1–41, 42–78.

[26] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro, Bioambients: an abstraction for biological
compartments, Theoret. Comput. Sci. (2003) to appear.

[27] A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the
pi-calculus process algebra, in: Proc. PaciGc Symp. of Biocomputing, 2001, pp. 6:459–470.

[28] B. Schoeberl, C. Eichler-Jonsson, E.D. Gilles, G. M-uller, Computational modeling of the dynamics
of the map kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnol.
20 (2002) 370–375.

[29] U.A. Shankar, An introduction to assertionnal reasoning for concurrent systems, ACM Comput. Surveys
3 (25) (1993) 225–262.

[30] D. Thie5ry, R. Thomas, Qualitative analysis of gene networks, in: R.B. Altman, A.K. Dunker,
L. Hunter, T.E. Klein (Eds.), PaciGc Symp. Biocomputing, Vol. 3, World ScientiGc, Singapore, 1998,
pp. 77–88.

[31] D. Wang, E. Clarke, Y. Zhu, J. Kukula, Using cutwidth to improve symbolic simulation and boolean
satisGability, in: Proc. HLDVT’2001, 2001.

	Modeling and querying biomolecular interaction networks
	Introduction
	A core modeling language
	A case for simplicity
	The formalism
	Protein--Protein interaction
	Protein--DNA interaction
	Solutions and reactions
	Comments on the reactions
	Enzymatic notation
	Dynamics

	Representing cell-cycle regulation
	CyclinCDK bindings
	CyclinCDK inhibition
	Introducing MPFCDK1CYCB
	CYCCDK vs. PRB
	Transcriptional regulation

	Temporal logic as query language
	CTL
	Concurrent transition systems
	Example of the mammalian cell-cycle control
	Biological queries

	Automated query evaluation
	Symbolic model checking
	Computational results
	Quantitative models and constraint-based model checking

	Conclusion
	Acknowledgements
	References

