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SUMMARY

Crosstalk and complexity within signaling pathways
and their perturbation by oncogenes limit compo-
nent-by-component approaches to understanding
human disease. Network analysis of how normal
and oncogenic signaling can be rewired by drugs
may provide opportunities to target tumors with
high specificity and efficacy. Using targeted inhibi-
tion of oncogenic signaling pathways, combined
with DNA-damaging chemotherapy, we report that
time-staggered EGFR inhibition, but not simulta-
neous coadministration, dramatically sensitizes
a subset of triple-negative breast cancer cells to gen-
otoxic drugs. Systems-level analysis—using high-
density time-dependent measurements of signaling
networks, gene expression profiles, and cell pheno-
typic responses in combination with mathematical
modeling—revealed an approach for altering the
intrinsic state of the cell through dynamic rewiring
of oncogenic signaling pathways. This process
converts these cells to a less tumorigenic state that
is more susceptible to DNA damage-induced cell
death by reactivation of an extrinsic apoptotic
pathway whose function is suppressed in the onco-
gene-addicted state.
INTRODUCTION

Standard therapies for the treatment of human malignancies

typically involve the use of chemotherapy or radiation therapy,

which function by damaging DNA in both normal and cancerous

cells (Lichter and Lawrence, 1995). Our growing understanding

of this process suggests that the DNA damage response (DDR)

functions as part of a complex network controlling many cellular

functions, including cell cycle, DNA repair, and various forms of
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cell death (Harper and Elledge, 2007). The DDR is highly inter-

connected with other progrowth and prodeath signaling

networks, which function together to control cell fate in

a nonlinear fashion due to multiple levels of feedback and cross-

talk. Thus, it is difficult to predict a priori how multiple, often

conflicting signals will be processed by the cell, particularly by

malignant cells in which regulatory networks often exist in atyp-

ical forms. Predicting the efficacy of treatment and the optimal

design of combination therapy will require a detailed under-

standing of how the DDR and other molecular signals are inte-

grated and processed, how processing is altered by genetic

perturbations commonly found in tumors, and how networks

can be ‘‘rewired’’ using drugs individually and in combination

(Sachs et al., 2005).

In many forms of breast cancer, aberrant hormonal and/or

growth factor signaling play key roles in both tumor induction

and resistance to treatment (Hanahan and Weinberg, 2000).

Moreover, the identification of molecular drivers in specific

breast cancer subtypes has led to the development of more effi-

cacious forms of targeted therapy (Schechter et al., 1984;

Slamon et al., 1987). In spite of these advances, there are

currently no targeted therapies and no established molecular

etiologies for triple-negative breast cancers (TNBC), which are

a heterogeneous mix of breast cancers defined only by the

absence of estrogen receptor (ER) or progesterone receptor

(PR) expression and lack of amplification of the HER2 oncogene

(Perou et al., 2000). Patients with TNBCs have shorter relapse-

free survival and a worse overall prognosis than other breast

cancer patients; however, they tend to respond, at least initially,

to genotoxic chemotherapy (Dent et al., 2007). Triple-negative

patients generally do well if pathologic complete response is

achieved following chemotherapy.When residual disease exists,

however, the prognosis is typically worse than for other breast

cancer subtypes (Abeloff et al., 2008). Thus, identifying new

strategies to enhance the initial chemosensitivity of TNBC cells

may have substantial therapeutic benefit. Wewondered whether

a systems biology approach, focused on examining and manip-

ulating the interface between growth factor signaling pathways

and DNA damage signaling pathways in tumor cells, could
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modulate the therapeutic response of this recalcitrant tumor

type. We report here that pretreatment, but not cotreatment or

posttreatment, of a subset of TNBCs with Epidermal Growth

Factor Receptor (EGFR) inhibitors can markedly synergize their

apoptotic response to DNA-damaging chemotherapy through

dynamic rewiring of oncogenic signaling networks and unmask-

ing of suppressed proapoptotic pathways. These results may

have broader implications for the testing, design, and utilization

of combination therapies in the treatment of malignant disease.

RESULTS

A Critical Order and Time Dependency for Enhanced
EGFR Inhibition/DNA Damage-Mediated Cell Death
Signaling networks can respond to, and can be functionally

rewired by, exposure to specific ligands or drugs (Janes et al.,

2005, 2008). It is increasingly clear that these responses are

time dependent. We reasoned that it should, in principle, be

possible to dynamically rewire the DDR network in an insensitive

cell through prior exposure to a drug that modulates the network,

thereby rendering the cell sensitive to DNA-damaging agents. To

test this hypothesis, we systematically investigated a series of

drug combinations for synergism or antagonism in breast cancer

cells using protocols that changed both the order and timing of

drug addition.

We combined genotoxic agents with small molecule inhibitors

targeting common oncogenic signaling pathways (Figure 1A).

We included drugs that are known to be clinically useful in other

cancers but are known to lack efficacy in TNBC individually or in

combination (Bosch et al., 2010; Winer and Mayer, 2007).

Previous studies using cell culture models of TNBC, for example,

reported that EGFR inhibitors in combination with genotoxic

compounds such as cisplatin resulted in less than a 10% survival

benefit (Corkery et al., 2009), whereas a randomized phase II trial

in TNBC patients reported that addition of cetuximab to carbo-

platin did not improve outcome (Carey et al., 2008). However,

emerging understanding of the complex nonlinear and time-

dependent interplay between signaling networks argues that

a more systematic assessment exploring not only dosage, but

also the order of drug presentation, scheduling, and dose dura-

tion might uncover cross-pathway effects and efficacious inter-

actions that were missed previously (Fitzgerald et al., 2006). An

initial combination screen was therefore performed in a panel

of canonical breast cancer cell lines representing those

that are hormone sensitive (MCF7), HER2 overexpressing

(MDA-MB-453), or triple negative (BT-20) (Neve et al., 2006). A

first pass of the screen, scoring for viability, was performed in

BT-20 cells, and a subset of combinations was then explored

more thoroughly, scoring for viability, proliferation, and apoptotic

responses in the panel of three cell lines (Figures 1B–1E and Fig-

ure S1 available online).

Consistent with previous reports, we found that inhibition of

EGFR using the compound erlotinib (ERL) was not a potent

apoptotic stimulus in TNBC cells when used alone or when

added at the same time as or shortly before doxorubicin (DOX)

(Figure 1B, left bars 1–6). Surprisingly, however, combinations

in which erlotinib was added at least 4 hr prior to doxorubicin

showed a markedly enhanced apoptotic response, with cell
killing increasing by as much as 500% (Figure 1B, middle bars

7–10). When the order of drug presentation was reversed—

doxorubicin given before erlotinib—cell killing was not enhanced

relative to treatment with doxorubicin or erlotinib alone

(Figure 1B, right bars 11 and 12). The efficacy of the time-

sequenced erlotinib-doxorubicin treatment was analyzed for

doxorubicin dose-effect relationships using the Chou-Talalay

method (Chou and Talalay, 1984) and was found to vary sig-

nificantly across breast cancer subtypes (Figures 1C–1E

and 1G). Whereas chronic EGFR inhibition was synergistic

with doxorubicin in killing TNBC BT-20 cells, the same treat-

ment regimen antagonized doxorubicin sensitivity in HER2-

overexpressing MDA-MB-453 cells. All temporal erlotinib-

doxorubicin combinations tested were merely additive in luminal

MCF7 cells. The order and timing of drug addition had little effect

in Hs578Bst, a cell line derived from normal peripheral breast

tissue, which was generally drug resistant (Figure 1F).

Furthermore, this enhanced treatment effect in BT-20 cells

was not limited to combinations of doxorubicin and erlotinib.

Synergistic killing was also observed following time-staggered

pretreatment of BT-20 cells with either erlotinib, gefitinib, or lapa-

tinib (all EGFR inhibitors) in combination with the DNA-damaging

agent camptothecin, as well as with doxorubicin (Figures S1A–

S1C) (Wood et al., 2004).

Sustained EGFR Inhibition Suppresses Oncogenic
Signatures and Rewires the Intrinsic State of the Tumor
Cells to a More Chemosensitive Form
Although erlotinib inhibits EGFR and downstream signaling

within minutes (Figures S2A and S2B), enhanced cell death in

response to DNA-damaging agents required pretreatment with

erlotinib for several hours. To verify that this was indeed due to

on-target inhibition of EGFR, in addition to testing other EGFR

inhibitors (above), we knocked down EGFR using two different

small interfering RNAs (siRNAs). Like the time-staggered erloti-

nib-doxorubicin treatment, strong proapoptotic responses

were observed in BT-20 cells following EGFR knockdown with

delayed doxorubicin treatment (Figures 1H and 1I). Importantly,

the addition of erlotinib to EGFR knockdown cells had no addi-

tional effect, arguing against an off-target effect of the drug. As

a further test, we also examined coadministration of higher

concentrations of erlotinib instead of time-staggered doses

without observing increased apoptosis (Figure S2C). Taken

together, these data indicate that enhanced cell death observed

using time-staggered erlotinib-doxorubicin combinations is

directly mediated by sustained EGFR inhibition.

Potential explanations for the increased sensitivity of cells to

doxorubicin following sustained EGFR inhibition includemodula-

tion of cell-cycle progression, altered rates of doxorubicin influx/

efflux, or changes in levels of DNA damage itself. To examine

these, we monitored cell-cycle progression at five time points

over 24 hr in our panel of breast cancer cell lines. Although doxo-

rubicin and erlotinib altered cell-cycle dynamics depending on

the cell type, cells that received both drugs had similar cell-cycle

profiles regardless of the dosing regimen (Figures 2A–2D and

S2D). In particular, there is no evidence that cells exposed to

the ERL/DOX protocol accumulate in S/G2, the cell-cycle

stage during which doxorubicin may be most effective. Thus,
Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc. 781
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Figure 1. A Screen for Novel Combination Treatment Reveals Dosing Schedule-Dependent Efficacy for Killing TNBC Cells

(A) Schematic of combinations tested. Seven genotoxic drugs and eight targeted signaling inhibitors were tested in pair-wise combinations, varying dose, order of

presentation, dose duration, and dosing schedule.

(B) Apoptosis in BT-20 cells. Cleaved-caspase 3/cleaved-PARP double-positive cells were quantified using flow cytometry (bottom). In cells treated with DMSO,

erlotinib (ERL), or doxorubicin (DOX), apoptosis measurements were performed 8 hr after drug exposure or at the indicated times. D/E, ERL/DOX, and DOX/

ERL refer to DOX and ERL added at the same time, ERL given at the indicated times before DOX, and DOX given at the indicated times before ERL, respectively.

For each, apoptotic measurements were made 8 hr after the addition of DOX. Erlotinib and doxorubicin were used at 10 mM. Mean values ±SD of three inde-

pendent experiments, each performed in duplicate, are shown (top).

(C–F) Apoptosis in different subtypes of breast cancer. Apoptosis was measured as in (B). (D and E) E/D and D/E refer to DOX and ERL added at the same

time, ERL given 24 hr before DOX, and DOX given 4 hr before ERL, respectively. Data are mean values ±SD of three independent experiments.

(G) Dose-response profiles of erlotinib/doxorubicin drug combinations. Apoptosis was measured as in (B). Drugs were added at a 1:1 ratio, and combination

index (CI) was calculated according to the Chou-Talalay method.

(H) Knockdown of EGFR in BT-20 cells measured 48 hr after addition of the indicated siRNA by immunoblotting (left). EGFR expression relative to ‘‘no RNA’’

control is quantified on right.

(I) Apoptosis in BT-20 cells ± EGFR knockdown measured as in (B). Scrambled RNAi shown as control. Data shown are the mean ±SD of both siRNAs, each

performed in biological duplicate.

See also Figure S1.
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Figure 2. Prolonged Treatment with Erlotinib Does Not Change Cell-Cycle Profile, Doxorubicin Influx/Efflux, or the Level of DNA Damage

(A–D) Quantitative cell-cycle analysis. DNA content and the percentage of mitotic cells were measured by FACS. (A) Example FACS plots from untreated BT-20

cells. (B–D) Cell-cycle stage quantified from three experiments, each performed in duplicate. Cells were treated as in Figure 1, and data were collected at 6, 8, 12,

24, and 48 hr after DOX treatment. 8 hr data shown for each cell type.

(E–H) Doxorubicin retention measured by flow cytometry. (E) Sample time course of BT-20 cells treated with 10 mM DOX for the indicated times. (F–H) Cells

treatedwith doxorubicin or pretreatedwith erlotinib for 24 hr prior to DOX (E/D). Cells were collected at 1, 4, or 8 hr after DOX exposure as indicated, and internal

doxorubicin fluorescence was measured.

(I and J) Quantitative microscopy of the early DNA double-stranded break response. (I) Example image of cells treated with DOX for 1 hr and stained for gH2AX,

53BP1, or nuclear content (DAPI). (J) Integrated intensity per nucleus of gH2AX and 53BP1 foci was measured in BT-20 cells after the indicated treatments and

times. Mean values ± SD from triplicate experiments shown.

(K) Western blot analysis of gH2AX in BT-20 cells. b-actin shown as a loading control.

See also Figure S2.
cell-cycle modulation cannot explain the unique efficacy of

sequential drug exposure. Some membrane pumps can be

modulated by EGFR inhibitors (Lopez et al., 2007; Turner et al.,

2006) and are responsible for multidrug resistance in at least

some breast cancers (Woehlecke et al., 2003). We therefore

measured the intracellular accumulation of doxorubicin by flow

cytometry and found that prior treatment with erlotinib did not

alter the intracellular doxorubicin concentration (Figures 2E–

2H). Next, as pharmacodynamic markers of doxorubicin action,

we assayed two indicators of DNA double-stranded breaks:

phosphorylation of histone H2AX at S139 and formation of

53BP1-containing nuclear foci. Both assays showed similar

responses across all treatment conditions (Figures 2I–2K). Taken

together, these data indicate similar levels of DNA damage and

early DNA damage-related signaling in DOX- and ERL/DOX-

treated cells independent of the efficacy of the combination in

cell killing.

The absence of demonstrable changes in cell-cycle states,

intracellular doxorubicin concentrations, or doxorubicin-induced
DNA damage suggested that prolonged EGFR inhibition neces-

sary for effective tumor cell killing might result from rewiring of

the signaling networks that control responses to genotoxic

stress. To investigate this idea, we measured changes in gene

expression in cells treated with erlotinib alone. In triple-negative

BT-20 cells, EGFR inhibition for 30 min resulted in few differen-

tially expressed genes (DEGs) (Figure S3A). Following 6 hr of

erlotinib treatment, however, we observed >1,200 DEGs, and

following 24 hr of treatment, when doxorubicin sensitivity was

maximally enhanced, we observed >2,000 DEGs (Figures 3A

and S3B). By comparison, in the HER2+ MDA-MB-453 cells,

which were desensitized to doxorubicin by erlotinib exposure,

we observed only 235DEGs following 24 hr exposure to erlotinib,

and in hormone-sensitive MCF7 cells, only one gene was

significantly altered (Figures 3B and 3C). Thus, the triple-

negative BT-20 cells exhibited progressive and large-scale

changes in gene expression following EGFR inhibition that

were not observed in cell lines insensitive to the time-staggered

ERL/DOX combination.
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Figure 3. Triple-Negative BT-20 Cells Are Driven by Oncogenic EGFR Signaling

(A–C) DEGs following erlotinib treatment for 24 hr versus untreated cells. Cut-off for DEGwasR 2-fold change and a p value% 0.05 (genes that meet both criteria

are colored red). B score is the log of the odds of differential expression.

(D) DEGs classified using GeneGO ‘‘pathway maps.’’ Heatmap (left) colored according to –log (p value); (right) p value cut-off was 0.05 (dotted red line).

(E and F) Microarray analysis using GSEA reveals loss of oncogene signatures in BT-20 cells after sustained EGFR inhibition. Ras oncogenic signature and false

discovery rate (FDR)-adjusted p values are shown in (E). Eleven oncogenic signatures from the Molecular Signatures Database (MSigDB) are shown in (F). Boxes

are colored according to normalized enrichment score (NES).
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To examine which cellular processes were altered by long-

term erlotinib treatment, DEGs in BT-20 cells were categorized

by cellular process according to the GeneGO pathway annota-

tion software (Ekins et al., 2007). Significant changes were

observed in 16 of 34 GeneGO cellular networks, including those

that mediate the DDR, apoptosis, and inflammation (Figure 3D).

In contrast, DEGs in MDA-MB-453 were not only fewer in

number, but also lay in networks that did not overlap with those

altered in BT-20 cells (Figure 3D). We further analyzed gene

expression data using gene set enrichment analysis (GSEA),

a tool for identification of enrichment or depletion of defined

gene expression signatures within a rank-ordered gene list

(Subramanian et al., 2005). The most statistically significant

changes in BT-20 cells upon sustained erlotinib exposure were

loss of the Ras and MYC oncogenic signatures (Figure 3E).

These signatures were not significantly altered in MDA-MB-453

or MCF7 cells treated with erlotinib for 24 hr or in BT-20 cells

exposed to erlotinib for 30 min (Figure 3E). Within the GSEA

molecular signatures database, there exist 11 oncogenic signa-

tures (Subramanian et al., 2005). GSEA of EGFR-inhibited BT-20

cells showed a similar depletion pattern for all 11 oncogenic

signatures (Figure 3F). These changes were not consistently

observed in either MDA-MB-453 cells or MCF7 cells following

exposure to erlotinib.

Distinct gene expression patterns have been used to define

breast cancer subtypes. BT-20 cells, like most triple-negative

cells, display a ‘‘basal-like’’ gene expression signature (Neve

et al., 2006). Strikingly, analysis of our expression data set

revealed that chronic erlotinib treatment of BT-20 cells caused

progressive time-dependent loss of basal-like gene expression

with concomitant gain in luminal A-like gene expression, a breast

cancer subtype with the least aggressiveness and best overall

prognosis (Figure 3G). In contrast, no such switch in breast

cancer subtype patterns of gene expression was observed in

HER2-overexpressing MDA-MB-453 cells or hormone-sensitive

MCF7 cells following erlotinib exposure.

These expression data suggest that the oncogenic potential of

BT-20 cells is maintained by chronic EGFR-driven patterns of

gene expression and that this cell state could be remodeled

through sustained inhibition of EGFR. To directly test this, we

examined the ability of BT-20 cells to form colonies in soft

agar, a classic test of transformation that typically shows good

correlation with tumorigenic potential in vivo (Montesano et al.,

1977). Consistent with the predictions derived from our GSEA,

sustained EGFR inhibition with erlotinib potently inhibited soft

agar colony formation (Figure 3H).

Creation of a Data-Driven Model for Combined EGFR
Inhibition/DNA Damage
To better understand the biochemical changes in signaling that

accompany time-staggered ERL/DOX treatment, we used

quantitative high-throughput reverse-phase protein microarrays
(G) GSEA reveals a switch from basal to luminal A genetic signature in BT-20 cells

cancer subtype-specific genetic signatures as defined by Sørlie et al. (2001).

(H) BT-20 cells lose the ability to form colonies in soft agar upon EGFR inhibition.

colony formation 21 days later.

See also Figure S3.
and quantitative western blotting to measure the levels or acti-

vation states of 35 signaling proteins within multiple signaling

pathways at 12 time points following exposure to erlotinib

and doxorubicin both individually and in combination (Figures

4A–4D and see Figure S4 for a description of the selection of

35 proteins for analysis) (MacBeath, 2002). Oncogenic signaling

networks typically exhibit multiple levels of feedback and

crosstalk with other networks, rendering single protein

measurements ineffective in predicting complex cellular

responses to drugs such as those leading to DNA damage-

induced apoptosis (Fitzgerald et al., 2006). We therefore con-

structed a multifactorial data-driven mathematical model

relating signaling ‘‘inputs’’ to phenotypic ‘‘outputs.’’ In addition

to examining signaling pathways known to contribute to the

DDR, we used our list of differentially expressed genes (Fig-

ure 3) to identify other proteins that might function as critical

signaling nodes. This DEG-expanded list of signaling proteins

extends far beyond the canonical components of the DDR,

including proteins involved in apoptotic and nonapoptotic

death, growth and stress responses, and cytokine/inflamma-

tory signaling (Figure S4A). Specific proteins, whose measure-

ment was motivated by gene expression data, included Bcl2-

interacting mediator of cell death (BIM), BH3-interacting

domain (BID), capase-8, 4E-BP1, S6K, Stat3, DUSP6, and

inhibitor of kappa B (IKB). Phenotypic responses, including

cell-cycle arrest and progression, autophagy, and apoptotic

and nonapoptotic cell death, were scored at six time points

using luminescent microplate assays, flow cytometry, and

automated microscopy (Figures 4E and S4C–S4F). All signaling

and phenotypic response measurements were performed in

biological and experimental triplicate in BT-20, MDA-MB-453,

and MCF7 cells. In total, this data set comprised more than

45,000 measurements of molecular signals and 2,000 measure-

ments of cellular responses (Figures 4A and 4E), revealing

many changes in cell state and phenotype associated with

drug exposure.

Several mathematical modeling approaches were employed

to relate signaling data to cell phenotypes. Initial modeling efforts

used principal component analysis (PCA) to identify covariation

between signals, whereas partial least-squares (PLS) regression

was used to identify statistically significant covariation between

molecular signals and corresponding cellular responses (Fig-

ure S4B) (Janes and Yaffe, 2006). In both PCA and PLS

modeling, vectors were constructed whose elements contained

quantitative measures of the level, state, and/or activity of

specific signaling proteins. The vectors were then reduced to

a set of principal components, calculated so that each additional

PCA or PLS dimension maximally captures information not

captured by preceding components. This processwas iteratively

repeated until additional principal components ceased to

capture meaningful data, as judged relative to experimental

noise.
following sustained EGFR inhibition. Expression analyzed as in (F) using breast

Cells were untreated or treated with ERL, grown in soft agar, and monitored for

Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc. 785



A B

C

D

E

Figure 4. A Systems-Level Signal-Response Data Set Collected Using a Variety of High-Throughput Techniques

(A–D) (A) The complete signaling data set for three different breast cancer subtypes following combined EGFR inhibition and genotoxic chemotherapy treatments

as in Figure 1. Each box represents an 8 or 12 point time course of biological triplicate experiments. Time course plots are colored by response profile, with early

sustained increases in signal colored green, late sustained increases colored red, and transient increases colored yellow. Decreases in signal are colored blue.

Signals that are not significantly changed by treatment are shaded gray to black with darkness reflecting signal strength. Numbers to the right of each plot report

fold change across all conditions and/or cells. (B) Sample detailed signaling time course from (A), highlighted by dashed box and asterisk, showing p-ERK

activation in BT-20 cells. Mean values ±SD of three experiments are shown. (C) Forty-eight-sample western blots analyzed using two-color infrared detection.

Each gel contained an antibody-specific positive control (P) for blot-to-blot normalization. The example shown is one of three gels for total p53 in MCF7 cells (p53

in green; b-actin in red). (D) Reverse-phase protein lysate microarrays were used to analyze targets of interest when array-compatible antibodies were available.

The slide shown contains �2,500 lysate spots (experimental and technical triplicates of all of our experimental samples, and control samples used for antibody

calibration), probed for phospho-S6.

(E) The complete cellular response data set, colored as in (A).

See also Figure S4 and Table S1.
Following PCA, multiplex data from MDA-MB-453 cells pro-

jected negatively along principal component one (PC1), data

from BT-20 cells projected positively along PC1, and MCF7

data were largely neutral (Figures 5A and S5A). Thus, the first

principal component captured cell type-specific variance in the

data. In contrast, data from all cell types projected similarly along

PC2 but in a manner that was drug dependent. Data from

DMSO- or erlotinib-treated cells not exposed to doxorubicin

projected negatively along PC2, whereas data from cells
786 Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc.
cotreated with doxorubicin and erlotinib or exposed sequentially

to ERL/DOX projected positively along PC2. Finally, data from

cells treated with doxorubicin alone or DOX/ERL were largely

neutral along PC2. Thus, the second principal component

captured signaling variance from treatment-specific modulation

of the signaling networks regardless of cell type (Figure 5A).

These data suggest that, although significant differences in the

state of the networks exist between cell lines, the drugs that

we applied modulated signaling networks in similar ways across



Figure 5. A PLS Model Accurately Predicts Phenotypic Responses from Time-Resolved Molecular Signals

(A) Principal components analysis of covariation between signals. Scores plot represents an aggregatemeasure of the signaling response for each cell type under

each treatment condition at a specified time, as indicated by the colors and symbols in the legend.

(B and C) Scores and loadings for a PLS model. (B) Scores calculated and plotted as in (A), except the principal components now reflect covariation between

signals and responses. (C) PLS loadings plotted for specific signals and responses projected into principal component space.

(D–I) BT-20 cell line-specific model calibration. (D) R2, Q2, and RMSE for BT-20 models built with increasing numbers of principal components. (E and F) Scores

and loadings plots, respectively, for a two-component model of BT-20 cells. (G–I) Apoptosis as measured by flow cytometry or as predicted by our model using

jack-knife cross-validation. R2 reports model fit, and Q2 reports model prediction accuracy. (G) Final refined model of apoptosis in BT-20. (H) BT-20 model minus

targets identified as DEGs in microarray analysis. (I) Model using only the top four signals: c-caspase-8, c-caspase-6, p-DAPK1, and pH2AX.

See also Figure S5.
all lines examined. PLS analysis linking signals to responses

gave similar results, with differences between the cell lines

now captured in both PC1 and PC2 and treatment-specific vari-

ance emerging in the third principal component, PC3 (Figures 5B

and S5B–S5E). The expected differences that we observed

between these cell types, captured by both PCA and PLS anal-

yses, confirm that the signaling molecules we measured can be

used to define both the cell-type-specific and drug treatment-

specific differences between these cells.

Based on these cell-type-specific differences in the global

PCA/PLS model, we next built models for each cell line in
isolation, focusing primarily on triple-negative BT-20 cells. To

optimize the BT-20 PLS model, we compared fitness measures

such as R2 (percent of variance captured by model), Q2 (percent

of variance predicted by the model using a leave-one-out cross-

validation approach), and root-mean-square error (rmse; the

mean deviation between model and data) across models

containing increasing numbers of principal components. With

BT-20 data alone, >97% of the variance linking signals to

responses under different conditions of drug treatment was

captured by two principal components. Incorporation of addi-

tional components actually reduced the predictive ability of the
Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc. 787



model (Figure 5D), a common finding reflecting the addition of

noise when components with little predictive value are added.

Similar trends were observed for each of the other cell lines.

To derive molecular understanding from the models, we pro-

jected the loading vectors (i.e., individual signals and responses)

into PLS component space. We observed a strong anticorrela-

tion between the apoptotic and proliferative responses (Figures

5C and 5F) that was captured by the first principal component

in the BT-20 model (Figure 5F) and by the second principal

component in the aggregate cell line model (Figure 5C). To

further test model quality, we compared each measured cellular

response in isolation to that predicted by the model using jack-

knife-based cross-validation (Figures S5F–S5L). Our model

was particularly accurate at predicting apoptosis following

treatment (Figure 5G) and was moderately good at predicting

proliferation and autophagy (Figures S5K and S5L). Other

responses (G1, G2, and S) were not predicted as accurately,

likely due to the limited dynamic range in our cell-cycle response

data set (Figures S5G–S5J).

PLS Modeling Reveals that Chemosensitization
following Network Rewiring Is Driven by Caspase-8
Activation
Because PLS models of individual cell lines could accurately

predict apoptosis, we analyzed the models to identify specific

proteins or signals that might account for the enhanced sensi-

tivity of BT-20 cells to doxorubicin following EGFR inhibition.

The BT-20 two-component PLS model identified four signals

(cleaved caspase-8, cleaved-caspase-6, phospho-DAPK1, and

phospho-H2AX) that were highly covariant with apoptosis (Fig-

ure 5F). Remarkably, a model including only these four signals

was just as accurate at predicting apoptosis as the complete

35-signal model (Figures 5G–5I). Notably, of these signals, only

pDAPK1 would have been identified using the aggregate cell

line PLS model (Figure 5C). We reasoned that the enhanced

sensitivity of BT-20 cells to doxorubicin, mediated by erlotinib

pretreatment, likely involved one of these molecular signals.

We therefore calculated and plotted the ‘‘variable importance

in the projection’’ (VIP) score for each signal (Figure 6A). The

VIP score reports the sum (over all model dimensions) of each

variable x (molecular signals in this case), weighted by the

amount of the cellular response y (apoptosis) explained by vari-

able x. Strikingly, caspase-8, an initiator caspase in death

receptor-mediated apoptosis, was the single most important

variable for predicting apoptosis in BT-20 cells and was simulta-

neously among the least important variables in MDA-MB-453

and MCF7 cells. Caspase-8 has previously been implicated in

cell death mediated by EGFR inhibition in other contexts (Kang

et al., 2010; Morgillo et al., 2011); however, erlotinib alone did

not cause death in any of our cell types. Instead, apoptosis in

these cells and the potential importance of caspase-8 resulted

from their exposure to the genotoxic agent doxorubicin. In

most cells, DNA damage activates cell-intrinsic apoptosis medi-

ated through caspase-9 (c.f., Figure 5C), not caspase-8 (Kim,

2005). Thus, the strong influence of caspase-8 was unexpected.

As an in silico test for the importance of caspase-8 in particular

erlotinib/doxorubicin protocols, we set caspase-8 activity to

zero in the model and left all other variables unchanged. The
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BT-20 model specifically predicted a dramatic decrease in the

enhanced sensitivity to doxorubicin following sustained erlotinib

treatment (Figure 6B), with much smaller decreases in apoptosis

occurring under all other treatments. In contrast, the apoptosis

model for MDA-MB-453 cells predicted no change following

loss of caspase-8 activity under any conditions (Figure 6C). To

test these predictions experimentally, two separate caspase-8

siRNAs were used in both BT-20 cells and MDA-MB-453 cells

(Figures 6D and 6E). In excellent agreement with the model,

knockdown of caspase-8 mitigated the enhanced cell death

following erlotinib treatment in BT-20 cells while having minimal

effect on apoptosis following other treatment combinations (Fig-

ure 6F). Furthermore, caspase-8 knockdown had little effect on

apoptosis in MDA-MB-453 under any condition (Figure 6G). To

further assess model predictions and evaluate the relative

importance of caspase-8 in the enhanced doxorubicin-induced

apoptosis, we tested several other model-generated predic-

tions, including proteins predicted to contribute strongly

(caspase-6), moderately (Beclin-1), or weakly (RIP1) to apoptosis

in BT-20 cells. Based on the VIP plot and loadings projections,

caspase-6 is predicted to be a strong driver of the apoptotic

response in BT-20 and MDA-MB-453 cells, but not MCF7 cells;

Beclin-1 is predicted to be moderately antiapoptotic in BT-20

cells but has no role in the other cell lines; and RIP1 is predicted

to be weakly antiapoptotic in BT-20 and MDA-MB-453 cells but

strongly antiapoptotic in MCF7 cells. As shown in Figure S6, we

were able to confirm these cell type dependences using siRNA

and confirm the relative magnitude of the effect of each target

on the apoptotic response following various combinations of

erlotinib and/or doxorubicin. Importantly, although caspase-6

contributed strongly to cell death in BT-20 cells, caspase-8

remained the strongest predictor. None of the other targets

tested modulated the apoptotic response to the same extent

as caspase-8, further highlighting its importance. Thus, the

increased cell killing by ERL/DOX treatment in BT-20 cells

appears to involve rewiring of the DNA damage response,

allowing activation of both cell-intrinsic and -extrinsic apoptotic

programs to contribute to cell death.

Time-Staggered Inhibition of EGFR Enhances Apoptotic
Response in a Subset of TNBC Cells and Other
Oncogene-Driven Cells
To examine whether the efficacy of time-staggered ERL/DOX

treatment was unique to BT-20 cells or potentially amore general

phenomenon of TNBC cells, we examined a handful of other

triple-negative cell lines (Neve et al., 2006). The selected cell

lines have markedly different growth rates, EGFR expression

levels, and p53 states (Figure S7A). Despite these differences,

sustained EGFR inhibition enhanced sensitivity to doxorubicin

in nine of ten triple-negative cell lines tested. A synergistic effect,

however, was observed in only four of the ten TNBC lines

(Figures 7A, S7A, and S7B). To identify potential reasons for

this, we measured total EGFR protein levels and basal EGFR

activation by immunoblotting. Our quantitative measurement of

EGFR protein expression was very similar to previously reported

values (Neve et al., 2006) and correlated only very weakly with

sensitivity to ERL/DOX treatment (Figures 7A and 7B). In

marked contrast, the levels of basal EGFR activity exhibited
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Figure 6. Enhanced Sensitivity to Doxorubicin Is Mediated by Caspase-8 Activation

(A) VIP scores for predicting apoptosis plotted for each cell line-specific PLS model. VIP score >1 indicates important x variables that predict y responses,

whereas signals with VIP scores <0.5 indicate unimportant x variables.

(B and C) Model-generated predictions of apoptosis with (blue) or without (red) caspase-8 activation 8 hr after the indicated treatments in BT-20 (B) and 453 (C).

(D and E) Western blot verifying caspase-8 knockdown in BT-20 (D) and 453 (E).

(F and G) Measured apoptosis 8 hr after the indicated treatment in cells expressing control RNA or caspase-8 siRNA. (F) BT-20. (G) 453. In both (F) and (G),

apoptotic values represent mean response ±SD from both siRNAs, each in duplicate.

See also Figure S6.
a much higher correlation (Figures 7A and 7B). Furthermore, in

those TNBC cell lines in which ERL/DOX treatment was syner-

gistic, we consistently observed caspase-8 cleavage following

sequential administration, but not other drug treatments, sug-

gesting a similar mechanism of enhanced apoptosis in these

cells as that observed in BT-20 cells (Figures 7A and 7B). Taken

in context with our observation that EGFR signaling drives

expression of an oncogenic gene expression signature in

BT-20 cells, these findings suggest that a subset of triple-

negative cell lines are similarly driven by aberrant EGFR

signaling. Importantly, however, these cells could not be distin-

guished by measuring EGFR gene amplification or EGFR

abundance. Instead, they are unique in displaying high levels

of activated (phosphorylated) EGFR as a biomarker of response

to time-staggered EGFR inhibition and cytotoxic treatment.

We next investigated whether the initial chemosensitizing

effects of an ERL/DOX protocol could be observed when

treating EGFR-driven triple-negative tumors in vivo. BT-20 cells
were injected into the flanks of nude mice, and tumors were

allowed to form for 7 days before treatment with either doxoru-

bicin alone or erlotinib-doxorubicin combinations. Following

a single dose of doxorubicin alone, a marked reduction in tumor

volume was observed over the first 3 days after treatment.

The residual tumors continued to grow, however, reaching

pretreatment volume after �14 days (Figure 7C). A similar trend

wasobserved for tumorscotreatedwitherlotinibanddoxorubicin,

although the initial reduction in tumor sizewasgreater. Incontrast,

when mice were given erlotinib 8 hr prior to doxorubicin, the

tumors not only exhibited a similar initial reduction in size, but

also failed to regrow throughout the 14 day monitoring period.

Thus, the chemosensitizing effect of sequential ERL/DOX treat-

ment seen in culture was also observed in vivo. These results

suggest that time-staggered inhibition of EGFR, in combination

with DNA damaging agents, could be a potentially useful thera-

peutic strategy for treating a subset of triple-negative tumors,

particularly those with high basal levels of phosphorylated EGFR.
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We next examined whether the principle of time-staggered

inhibition would sensitize other breast cancer subtypes to doxo-

rubicin. In contrast to BT-20 cells, MDA-MB-453 cells were not

sensitized by sustained EGFR inhibition but instead were desen-

sitized to DNA-damaging chemotherapy (Figure 1D). However,

MDA-MB-453—and other widely used cell lines like BT-474—

have a well-established oncogene addiction to HER2 (Neve

et al., 2006). We therefore tested time-staggered inhibition of

HER2 using the drug lapatinib (a potent inhibitor of both EGFR

and HER2) in combination with doxorubicin in these cells. In

both MDA-MB-453 and BT-474 cells, in contrast to the desensi-

tization caused by pretreatment with erlotinib, we observed that

lapatinib pretreatment enhanced sensitivity to doxorubicin to

a similar extent as the enhancement observed with erlotinib in

BT-20 and other EGFR-driven TNBC cells (Figures 7C and

S7C). Importantly, whereas all temporal combinations of

lapatinib and doxorubicin were synergistic in HER2-overex-

pressing cells, pretreatment with lapatinib resulted in the largest

increase in apoptosis. Furthermore, caspase-8 cleavage was

only observed following LAP/DOX treatment of HER2-driven

cells, but not by other drug combinations. Knockdown of

caspase-8 in these cells eliminated the specific component of

enhanced cell death observed only in the pretreatment condition

(Figures 7C and S7C), suggesting that this portion of the overall

cell death was driven by caspase-8 activity.

Finally, we examined whether the efficacy of time-staggered

inhibition of EGFR was limited to breast cancer cells. Many

lung cancers, for example, contain either high levels of phos-

phorylated wild-type EGFR or mutations within EGFR itself.

We therefore tested our ERL/DOX treatment protocol on

NCI-H1650 cells, a lung cancer cell that contains an in-frame

deletion that is commonly seen in lung cancers (Sordella et al.,

2004), as well as on A549 and NCI-H358, cells that have high

levels of phosphorylated wild-type EGFR, possibly due to

HER2 amplification (Balko et al., 2006; Diaz et al., 2010; Helfrich

et al., 2006; Rusnak et al., 2007). Remarkably, in all three lung

cancer cell lines, we found that time-staggered inhibition of

EGFR using erlotinib caused a dramatic sensitization to killing

by doxorubicin that was associated with caspase-8 cleavage

(Figures 7E, 7F, and S7D). Furthermore, knockdown of

caspase-8 largely abrogated the enhanced cell death observed
Figure 7. Time-Staggered Inhibition of EGFR Signaling Enhances Apo

Cells

(A) Panel of TNBC cell lines with a wide range of EGFR expression levels. Heatm

relative to DOX alone, and casp-8 cleavage. Apoptosis measured as in Figure 1.

cells. Cleaved casp-8 measured by western blot 8 hr after exposure to DOX.

(B) EGFR activity, but not total EGFR expression, is correlatedwith sensitivity to tim

in E/D relative to DOX alone regressed against total EGFR or p-EGFR (pY1173)

R2 reports the linear fit for each trend line.

(C) BT-20 cells grown as xenograft tumors in nudemice. Arrow indicates intraperit

four animals for each treatment condition.

(D–F) Time-staggered inhibition of HER2 in HER2-driven breast cancer cells (D) or

to DOX. Apoptosis measured as in Figure 1 for cells exposed to a control RNA

activation was monitored 8 hr after doxorubicin treatment (c-casp8, shown benea

the CASP8 siRNA plots. Mean values ±SD of three experiments are shown. (D) H

cancer cells treated with erlotinib. (E) NCI-H1650. (F) A-549.

(G) A model for enhanced cell death after DNA damage by chronic EGFR inhibiti

See also Figure S7.
in the pretreatment condition, exactly as was seen in the setting

of TNBCs. Thus, time-staggered inhibition of EGFR in cells with

highly active EGFR signalingmay be a generalizable approach to

potentiate the effects of DNA damaging chemotherapy.

DISCUSSION

In this study, we describe a systematic time- and dose-depen-

dent approach to identifying drug combinations that are effica-

cious in killing cancer cells, depending on changes in the order

and duration of drug exposure. We found that EGFR inhibition

dramatically sensitizes a subset of TNBCs to DNA damage if

the drugs are given sequentially, but not simultaneously. Further-

more, our transcriptional, proteomic, and computational anal-

yses of signaling networks and phenotypes in drug-treated cells

revealed that the enhanced treatment efficacy results from

dynamic network rewiring of an oncogenic signature maintained

by active EGFR signaling to unmask an apoptotic process that

involves activation of caspase-8. The enhanced sensitivity to

damaging agents that we observed required sustained inhibition

of EGFR because the phenotype did not result from the rapid,

direct inhibition of the oncogene but, rather, from modulation

of an oncogene-driven transcriptional network as indicated

schematically in the model shown in Figure 7G. Furthermore,

our data suggest that it is activity of the EGFR pathway,

rather than EGFR expression per se, that determines whether

time-staggered inhibition will result in synergistic killing.

Because EGFR can be activated through a diverse set of genetic

alterations, some of which do not necessarily include EGFR itself

(Sun et al., 2011), these findings highlight the need to understand

network connectivity and dynamics (Pawson and Linding, 2008).

Conversely, these observations suggest that EGFR phosphory-

lation may constitute a useful biomarker of response to time-

staggered inhibition in at least some tumor types that are

EGFR driven, including some TNBCs and lung cancers.

A key consequence of the erlotinib-dependent dynamic

remodeling of the DDR network is activation of caspase-8

following DNA damage. The mechanism of caspase-8 activation

is unclear because it is generally thought to be specific to

receptor-mediated apoptosis triggered by ligands such as the

tumor necrosis factor (TNF) and TNF-related apoptosis-inducing
ptotic Response in a Subset of TNBC Cells and Other EGFR-Driven

ap for total EGFR expression, p-EGFR (Y1173), percent apoptosis, apoptosis

EGFR and p-EGFR expression are measured by western blotting of untreated

e-staggered ERL/DOX combination. Fold enrichment of cell death observed

as measured in untreated cells for the ten TNBC cell lines shown in Figure 7A.

oneal administration of indicated drugs. Mean tumor volume ±SEM shown from

EGFR in lung cancer cells (E and F) causes casp-8 activation and sensitization

(left in each panel) or siRNA targeting casp-8 (right in each panel). Caspase-8

th the control RNA plots). Validation of caspase-8 knockdown is shown below

ER2-overexpressing MDA-MB-453 cells treated with lapatinib. (E and F) Lung

on in triple-negative breast cancer cells.
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ligand (TRAIL). Possibilities include feedback activation by cas-

pase-3, possibly involving caspase-6 (Albeck et al., 2008); direct

activation of death receptors by DDRproteins (Yoon et al., 2009);

or an autocrine/paracrine mechanism involving an as-yet

unidentified death ligand. Distinguishing between these and

other possibilities will be a focus for future studies.

Combinatorial drug effects are complex, even for relatively

specific drugs like EGFR inhibitors. Our understanding of

compensation and network rewiring is currently not sufficient

to allow a priori predictions of the cellular response, particularly

in cancer cells in which signaling networks often exist in atypical

forms. Our work highlights the utility of experimental examination

of time-staggered combination treatments for their anticancer

effects, particularly when combined with an analysis of signaling

pathways and responses using mathematical modeling. These

types of approaches may facilitate the identification of effica-

cious drug combinations and new therapeutic targets and also

the design of different types of clinical trials to study the killing

of oncogene-addicted tumors through drug-induced dynamic

rewiring of signaling pathways.

EXPERIMENTAL PROCEDURES

Cellular Response Assays

Apoptosis

Following the treatment time course, cells were washed, trypsinized, fixed in

4% paraformaldehyde for 15 min at room temperature, resuspended in ice-

cold methanol, and incubated overnight at �20�C. Cells were then washed

twice in PBS-Tween and stained with antibodies against cleaved caspase-3

and poly(ADP-ribose) polymerase (PARP). Secondary Alexa-conjugated anti-

bodies were used for visualization in a BD FacsCaliber flow cytometer.

Cell-Cycle Analysis

Cells were fixed in 70% ethanol overnight at�20�C, permeabilized with 0.25%

Triton X-100 for 20 min at 4�C, blocked with 1% BSA, and incubated with anti-

phospho-histone H3. Following washing, cells were incubated with Alexa488-

conjugated secondary antibody on ice, washed, and stained with propidium

iodide (PI) prior to analysis. Data were analyzed using the Dean-Jett-Fox

algorithm.

Cell Viability/Proliferation

Cells were plated at 5,000 cells per well in 96-well plates. Metabolic viability

was determined using CellTiterGlo (Promega) according to the manufacturer’s

protocol.

Western Blotting and Antibodies

Cells were lysed in a manner that would allow samples to be used for both

western blot analysis and reverse-phase protein microarray. See Extended

Experimental Procedures for a detailed description of the cell lysis protocol

and antibodies used in this study.

Data generated by quantitative western blot were preprocessed prior to use

in computational modeling. Raw signals for each protein target of interest were

quantified and background subtracted using the Li-COR Odyssey software

and divided by b-actin signals to normalize for loading differences, and then

each normalized signal was divided by a reference sample contained on

each gel for gel-to-gel normalization.

Reverse-Phase Protein Microarray

Reverse-phase protein microarrays were printed on a fee-for-service basis

through Aushon Biosystems. Validation of antibodies, staining, and analysis

of array data was performed as described previously (Sevecka andMacBeath,

2006).

Immunofluorescence Microscopy

Cells were seeded onto coverslips and treated for the indicated times. For au-

tophagy analysis, cells were stably transfected with an mCHERRY-GFP-LC3
792 Cell 149, 780–794, May 11, 2012 ª2012 Elsevier Inc.
reporter construct. Cells were fixed and stained with primary antibody target-

ing either p-H2AX or 53BP1 and DAPI as above. Data reported are integrated

intensity of pH2AX or 53BP1 foci per nucleus. For autophagy measurements,

cells were scored positive if the number of GFP and mCHERRY puncta signif-

icantly increased relative to untreated cells. Approximately 100 cells were

counted in a double-blind fashion per condition. Each experiment was per-

formed in experimental triplicate.

RNA Expression Analysis by Microarray

RNA was extracted from cells using the RNAeasy Kit (QIAGEN). Affymetrix

Human U133 Plus 2.0 microarrays were hybridized, labeled, and processed

on a fee-for-service basis through the MIT BioMicro Center. Microarray data

were obtained from three independent biological replicates per time point

and analyzed using linear model for microarray (LIMMA).

Computational Modeling and Statistics

Unless otherwise noted, all statistical analyses were performed using Graph-

pad Prism, and graphs were created using Microsoft Excel, Spotfire, Matlab,

DataRail, or SIMCA-P. Analysis of flow cytometry data was performed using

FloJo. Analysis of RNA expressionmicroarray data was performed using either

GSEA or GeneGO as indicated.

Data-Driven Modeling

Data-driven modeling and the application of partial least-squares to biological

data have been described in detail previously (Janes and Yaffe, 2006). All data

were variance scaled to nondimensionalize the different measurements.

Model predictions were made via cross-validation. Model fitness was calcu-

lated using R2, Q2, and RMSE, as described previously by Gaudet et al.

(2005). VIP was calculated following Janes et al. (2008).

Xenograft Tumor Model

For in vivo tumor regression assays, 107 BT-20 cells in PBS were mixed 1:1

with matrigel on ice and injected subcutaneously into the hindflanks of nude

mice (NCR nu/nu, Taconic). Tumors were allowed to form for 7 days. Mice

were then treated intraperitoneally with doxorubicin (4mg/kg) or a combination

of doxorubicin and erlotinib (25 mg/kg), with erlotinib either given at the same

time as doxorubicin (D/E) or given 8 hr prior to doxorubicin (E/D). Tumors

were monitored for 14 days after the treatment phase, and volume was esti-

mated using the ½ L 3 W2 formula. These experiments were approved by

the Massachusetts Institute of Technology Committee on Animal Care (CAC).

ACCESSION NUMBERS

Expression data can be found in the GEO repository under the accession

number GSE30516.
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