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Abstract

In this note we investigate the solutions of a class of difference equations and prove tha
jectures 4.8.2, 4.8.3, 5.4.6 and 6.10.3 proposed by M. Kulenovic and G. Ladas in [M. Kule
G. Ladas, Dynamics of Second Order Rational Difference Equations, with Open Problems an
jectures, Chapman & Hall/CRC Press, 2002] are true.
 2005 Elsevier Inc. All rights reserved.
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M. Kulenovic and G. Ladas in [1] proposed the following four conjectures:

Conjecture 4.8.2. Show that the equation

yn+2 = yn

1+ yn+1
, n = 1,2, . . . ,

has a solution which converges to zero.
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Conjecture 4.8.3. Show that the equation

yn+2 = a + yn

yn+1
, a ∈ (0,+∞), n = 1,2, . . . ,

possesses a solution {yn}∞n=1 which remains above the equilibrium for all positive integer n.

Conjecture 5.4.6. Show that the equation

yn+2 = (1+ yn)/yn+1, n = 1,2, . . . ,

has a nontrivial positive solution which decreases monotonically to the equilibrium of the
equation.

Conjecture 6.10.3. Assume a ∈ (0,+∞). Show that the equation

yn+2 = (a + yn)/(1+ yn+1), n = 1,2, . . . ,

has a positive and monotonically decreasing solution.

In this note we shall show that the above four conjectures are true. To do this we
the following definition and some notations.

Definition 1. Let A be a closed subset of(−∞,+∞) × (−∞,+∞). A is called a simple
closed arc if there exists a homeomorphismf from [0,1] to A. E(A) = {f (0), f (1)} is
called the set of end points ofA.

Write X = [0,+∞) (or (0,+∞)). Let f :X × X → X be continuous such that th
equationx = f (x, x) has the only solutionp ∈ X andgi : [p,+∞) → X (i = 1,2) be
continuous and satisfy:

(1) p = gi(p) (i = 1,2) andg1(x) � p;
(2) x > g1(x) > g2(x) > 0 for all x > p.

Put

D1 = {
(x, y): g1(x) � y � x

}
,

D2 = {
(x, y): g2(x) � y � x

}
,

P = {
(x, y): y = g1(x)

}
,

Q = {
(x, y): y = x, x � p

}
,

L = {
(x, y): y = g2(x)

}
.

The following theorem is the key theorem for the proofs of the above four conject

Theorem 1. If F(x, y) = (y, f (x, y)) is a homeomorphism from D1 to D2 satisfying
F(P ) = Q and F(Q) = L, then the equation

yn+2 = f (yn, yn+1), n = 1,2, . . . ,
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has a nontrivial positive solution {yn}∞n=1 which converges to p such that (yn, yn+1) ∈
D1 − P ∪ Q for all positive integer n.

Proof. At first we have the following claim.

Claim 1. Let A ⊂ D1 be a simple closed arc with (p,p) /∈ A and E(A) = {a, b} with a ∈ P

and b ∈ Q. Then there exists a simple closed arc A1 ⊂ A such that F(A1) ⊂ D1 is also a
simple closed arc and F(E(A1)) ∩ P �= ∅ and F(E(A1)) ∩ Q �= ∅.

Proof of Claim 1. Let g : [0,1] → A be a homeomorphism witha = g(0) andb = g(1).
Write h = F ◦ g. ThenF(A) = h([0,1]) ⊂ D2 is also a simple closed arc withh(0) =
F(a) ∈ Q andh(1) = F(b) ∈ L. SinceF(A) is a connected closed set, we see thatF(A)∩
P �= ∅ andF(A) ∩ P is also a closed set. Let

t = min
{
x: h(x) ∈ P

}
.

Thenh(t) ∈ P andh([0, t]) ⊂ D1. Let A1 = g([0, t]) andu : [0,1] → [0, t] be a homeo-
morphism with 0= u(0) andt = u(1), thenA1 = g ◦ u([0,1]) ⊂ A is a simple closed arc
F(A1) = h ◦ u([0,1]) ⊂ D1 andh ◦ u(0) ∈ Q andh ◦ u(1) ∈ P . Claim 1 is proven. �

Let

B1 = {
(x, y): x = p + 1, g1(p + 1) � y � p + 1

}
.

It follows from Claim 1 that for any positive integern, there exist simple closed ar
Bi ⊂ D1 (i = 1,2, . . . , n) and Ci ⊂ Bi (i = 1,2, . . . , n − 1) such thatF(Ci−1) =
Bi (i = 2, . . . , n). Write Sn = F−(n−1)(Bn), thenSn �= ∅ is a closed subset ofB1 and
S1 = B1 ⊃ S2 ⊃ S3 ⊃ · · · ⊃ Sn ⊃ · · · . LetD = ⋂∞

n=1 Sn, thenD �= ∅. Choose(y1, y2) ∈ D,
we can show that for all positive integern,

Fn(y1, y2) = (yn+1, yn+2) ∈ Bn+1 ⊂ D1 and p < yn+1 < yn.

Let limn→∞ yn = e, thene = f (e, e). Hencee = p sincex = f (x, x) has the only solution
p ∈ X. �
Proof of Conjecture 4.8.2. Let p = 0 andf (x, y) = x/(1+ y) (x � 0 andy � 0). Write

D1 =
{
(x, y):

√
x + 1

4
− 1

2
� y � x

}
,

D2 =
{
(x, y):

x

1+ x
� y � x

}
,

P =
{
(x, y): y =

√
x + 1

4
− 1

2
, x � p

}
,

Q = {
(x, y): y = x, x � p

}
,

L =
{
(x, y): y = x

, x � p

}
.

1+ x
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It is easy to see thatF(x, y) = (y, x/(1 + y)) is a homeomorphism fromD1 to D2
satisfyingF(P ) = Q and F(Q) = L. Then it follows from Theorem 1 that the equ
tion yn+2 = yn/(1 + yn+1) has a nontrivial positive solution{yn}∞n=1 which converges to
p = 0. �
Proof of Conjecture 4.8.3. Let p = a + 1 andf (x, y) = a + x/y (x > 0 andy > 0).
Write

D1 =
{
(x, y):

√
x + a2

4
+ a

2
� y � x

}
,

D2 = {
(x, y): p � y � x

}
,

P =
{
(x, y): y =

√
x + a2

4
+ a

2
, x � p

}
,

Q = {
(x, y): y = x, x � p

}
,

L = {
(x, y): y = p, x � p

}
.

It is easy to see thatF(x, y) = (y, a +x/y) is a homeomorphism fromD1 to D2 satisfying
F(P ) = Q and F(Q) = L. Then it follows from Theorem 1 that the equationyn+2 =
a + yn/yn+1 has a nontrivial positive solution{yn}∞n=1 which decreases monotonica
to p. �
Proof of Conjecture 5.4.6. Let p = (

√
5 + 1)/2 andf (x, y) = (1 + x)/y (x > 0 and

y > 0). Write

D1 = {
(x, y):

√
x + 1� y � x

}
,

D2 =
{
(x, y):

x + 1

x
� y � x

}
,

P = {
(x, y): y = √

x + 1, x � p
}
,

Q = {
(x, y): y = x, x � p

}
,

L =
{
(x, y): y = 1+ x

x
, x � p

}
.

It is easy to see thatF(x, y) = (y, (1 + x)/y)) is a homeomorphism fromD1 to D2 sat-
isfying F(P ) = Q and F(Q) = L. Then it follows from Theorem 1 that the equati
yn+2 = (1 + yn)/yn+1 has a nontrivial positive solution which decreases monotonic
to p. �
Proof of Conjecture 6.10.3. Let p = √

a and f (x, y) = (a + x)/(1 + y) (x � 0 and
y � 0). Write

D1 =
{
(x, y):

√
x + a + 1

4
− 1

2
� y � x

}
,

D2 =
{
(x, y):

x + a � y � x

}
,

x + 1
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P =
{
(x, y): y =

√
x + a + 1

4
− 1

2
, x � p

}
,

Q = {
(x, y): y = x, x � p

}
,

L =
{
(x, y): y = x + a

x + 1
, x � p

}
.

It is easy to see thatF(x, y) = (y, (a + x)/(1 + y)) is a homeomorphism fromD1 to D2
satisfyingF(P ) = Q andF(Q) = L. Then it follows from Theorem 1 that the equati
yn+2 = (a + yn)/(1+ yn+1) has a nontrivial positive solution which decreases monot
cally top. �
Remark 1. After we submitted this paper, we became aware that some results of the
have already been published by J.T. Hoag and C.M. Kent in the last two years (see
pointed out to us by the referee(s)).

Remark 2. After we submitted this paper, using arguments different to ones develop
the proof of Theorem 1, we showed that the equation

yn+k+1 = a + yn

yn+k

, a ∈ (0,+∞), n = 1,2, . . . ,

which is the more general case of the equationyn+2 = a + yn

yn+1
, has also nontrivial positiv

solutions which decrease monotonically to the equilibriuma + 1 of the equation, wher
k ∈ {1,2, . . .}. This new result will be published in J. Differ. Equations Appl. soon.
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