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Abstract

In this paper, we propose a new nonmonotone Armijo type line search and prove that the MBFGS method proposed by Li and
Fukushima with this new line search converges globally for nonconvex minimization. Some numerical experiments show that this
nonmonotone MBFGS method is efficient for the given test problems.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the following unconstrained optimization problem:

min f (x), x ∈ Rn, (1.1)

where f : Rn
→ R is a continuously differentiable function whose gradient will be denoted by g.

Monotone methods for solving (1.1) require that f (xk) ≤ f (xk−1) hold at each iteration. But this does not
necessarily hold at some iterations for nonmonotone methods. The nonmonotone line search technique was first
introduced by Grippo et al. in 1986 [5]. They considered the following general nonmonotone line search sketch :
Given constants a > 0, δ, ρ ∈ (0, 1) and nonnegative integer M , select stepsize αk = max{aρ0, aρ1, . . .} satisfying

f (xk + ρ
madk) ≤ max

0≤ j≤M
f (xk− j )+ δρ

magT
k dk . (1.2)

When M = 0, it becomes standard Armijo line search. An advantage of the nonmonotone line search is that the
stepsize αk can be selected as loosely as possible.

Extensive numerical experiments have showed that the nonmonotone line search technique is very efficient [6,12,
15–19]. This technique was originally applied to Newton’s methods [5] and has been applied to conjugate gradient

I Supported by the NSF (10701018) of China. Part work of the first author was done while he was visiting Hirosaki University.
∗ Tel.: +86 07312309200; fax: +86 07312309200.

E-mail addresses: weijunzhou@126.com (W. Zhou), zl606@tom.com (L. Zhang).

0377-0427/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.12.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82402599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:weijunzhou@126.com
mailto:zl606@tom.com
http://dx.doi.org/10.1016/j.cam.2007.12.011


W. Zhou, L. Zhang / Journal of Computational and Applied Mathematics 223 (2009) 40–47 41

methods and quasi-Newton methods [2,4,7,9–11]. In particular, Han and Liu [7] proposed a nonmonotone Wolfe type
line search for BFGS method: Compute stepsize αk such that

f (xk + αkdk) ≤ max
0≤ j≤M

f (xk− j )+ ε1αk gT
k dk,

and

dT
k g(xk + αkdk) ≥ max{ε2, 1− (αk‖dk‖)

p
}gT

k dk,

where ε1 ∈ (0, 1), ε2 ∈ (0, 1
2 ), p ∈ (−∞, 1). Under suitable assumptions, Han and Liu [7] proved that the BFGS

method with this nonmonotone Wolfe line search converges globally for convex objective functions.
Dai [3] constructed an example to show that the BFGS method with Wolfe line search may diverge for nonconvex

unconstrained optimization problems. Moreover, Mascarenhas [13] also showed that the BFGS method even with
exact line search does not convergence for nonconvex functions. So it is impossible for us to prove the standard BFGS
method with nonmonotone line search converges globally for nonconvex minimization.

Fortunately, Li and Fukushima [8] proposed a modified BFGS method (MBFGS) and proved that the MBFGS
methods with Armijo or Wolfe line search converges globally even for nonconvex minimization. But it is not known
whether the MBFGS method with nonmonotone line search such as (1.2) converges for nonconvex objective functions.
The purpose of the paper is to study this problem.

In this paper, we first propose a new nonmonotone Armijo type line search and then apply it to the MBFGS method.
In the next section, we present this concrete algorithm. In Section 3, we prove the global convergence of the proposed
method for nonconvex minimization. In Section 4, we report some numerical results.

2. Algorithm

It is noted that global convergence of one algorithm with the nonmonotone line search (1.2) is often required some
strong assumptions. For example, it needs the sufficient descent condition gT

k dk ≤ −c1‖gk‖
2, where c1 is a positive

constant. Moreover the relation formula limk→∞ ‖sk‖ = 0 plays an important role in the global convergence analysis.
But the sufficient descent condition is difficult to be satisfied by the BFGS method. In order to ensure that

limk→∞ ‖sk‖ = 0 for the BFGS method, we construct a new nonmonotone Armijo type line search. Now we state our
method which we call the MBFGS method as follows:

Algorithm 2.1 (MBFGS Method with Nonmonotone Line Search).

Step 1 : Given x0 ∈ Rn , B0 = I , δ1, ρ ∈ (0, 1), δ2 > 0 and nonnegative integer M . Let k := 0. In this paper, for
simplicity, we always set M := min(k,M).

Step 2 : Compute dk by the following linear equations

Bkd + gk = 0. (2.1)

Step 3 : Compute stepsize αk = max{ρ0, ρ1, . . .} satisfying

f (xk + ρ
mdk) ≤ max

0≤ j≤M
f (xk− j )+ δ1ρ

m gT
k dk − δ2‖ρ

mdk‖
2. (2.2)

Step 4 : Let xk+1 = xk + αkdk .
Step 5 : Update Bk to get Bk+1 by the following MBFGS formula proposed by Li and Fukushima [8]:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
zk zT

k

zT
k sk

, (2.3)

where sk = xk+1 − xk , yk = gk+1 − gk ,

zk = yk + C‖g(xk)‖
r sk +max

{
0,−

yT
k sk

‖sk‖
2

}
sk, (2.4)

where C, r > 0 are given constants.
Step 6 : Let k := k + 1 and go to Step 1.
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Remark. The MBFGS update formula (2.3) has an attractive property that for each k, it always holds that

zT
k sk ≥ C‖g(xk)‖

r
‖sk‖

2 > 0, (2.5)

which ensures that Bk+1 inherits the positive definiteness of Bk . This property is independent of the convexity of
f as well as the line search used. Thus the search direction defined by (2.1) is always a descent direction of the
objective function, namely, gT

k dk < 0. The following result shows that the nonmonotone Armijo line search (2.2) is
well defined.

Proposition 2.1. Algorithm 2.1 is well defined.

Proof. In fact, we only need to prove that steplength αk can be obtained in finite steps. If it is not true, then for all
sufficiently large positive integer m, we have

f (xk + ρ
mdk) ≥ max

0≤ j≤M
f (xk− j )+ δ1ρ

m gT
k dk − δ2‖ρ

mdk‖
2
≥ f (xk)+ δ1ρ

m gT
k dk − δ2‖ρ

mdk‖
2. (2.6)

Let m →∞ in (2.6), then

gT
k dk ≥ δ1gT

k dk,

which implies that gT
k dk ≥ 0 since δ1 ∈ (0, 1). This yields a contradiction. So Algorithm 2.1 is well defined. �

3. Global Convergence

In this section, we prove the global convergence of Algorithm 2.1 under the following assumptions.

Assumption A. (1) The level set Ω = {x ∈ Rn
| f (x) ≤ f (x0)} is bounded.

(2) In some neighborhood N of Ω , f is continuously differentiable and its gradient is Lipschitz continuous, namely,
there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (3.1)

It is clear that the sequence {xk} generated by Algorithm 2.1 is contained in Ω . In addition, we get from
Assumption A that there is a constant γ1 > 0, such that

‖g(x)‖ ≤ γ1, ∀ x ∈ Ω . (3.2)

From now on, we always suppose that the conditions in Assumption A hold. Without specification, we let {xk} and
{dk} be the iterative sequence and the direction sequence generated by Algorithm 2.1, respectively.

The following lemma comes from Theorem 2.1 of [1] and is very useful to prove the global convergence of the
BFGS method.

Lemma 3.1. Let Bk be updated by the BFGS formula (2.3). Suppose that B0 is symmetric and positive definite. If
there are positive constants m ≤ M1 such that for all k ≥ 0, zk and sk satisfy

zT
k sk

‖sk‖
2 ≥ m,

‖zk‖
2

zT
k sk
≤ M1, (3.3)

then for any κ ∈ (0, 1), there exist constants β1, β2, β3 > 0 such that for any k ≥ 1, inequalities

‖B j s j‖ ≤ β1‖s j‖, β2‖s j‖
2
≤ sT

j B j s j ≤ β3‖s j‖
2 (3.4)

hold for at least dκke values of j ∈ [1, k].

For every k, we define index sets Kk and K as follows:

Kk = {i ≤ k| (3.4) hold}, K =
∞⋃

k=0

Kk . (3.5)
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Since sk = αkdk , if we replace sk by dk , then inequality (3.4) still holds. In addition, we have from (2.1) and the
inequality (3.4) that

‖gk‖ = ‖Bkdk‖ ≤ β1‖dk‖,

and

β2‖dk‖
2
≤ ‖dT

k Bkdk‖ = ‖d
T
k gk‖ ≤ ‖dk‖‖gk‖.

Then it follows from the above inequalities that

β2‖dk‖ ≤ ‖gk‖ ≤ β1‖dk‖, ∀k ∈ K , (3.6)

where β1, β2 are same as that of (3.4).
The following lemma shows that limk→∞ ‖sk‖ = 0. Its proof is similar to Theroem 3.1 of [5], for completeness,

we give the proof.

Lemma 3.2. Let Assumption A hold, if steplength αk > 0 is computed by the nonmonotone line search (2.2), then we
have

lim
k→∞

αkdk = 0, lim
k→∞

αk gT
k dk = 0. (3.7)

Proof. Let h(k) be an integer satisfying

k − M ≤ h(k) ≤ k, f (xh(k)) = max
0≤ j≤M

f (xk− j ). (3.8)

It follows from (2.2) that the sequence { f (xh(k))} is decreasing. In fact, note that gT
k dk < 0, we have from (2.2)

that

f (xk+1) ≤ max
0≤ j≤M

f (xk− j ) = f (xh(k)).

Then we get from the above inequality that

f (xh(k+1)) = max
0≤ j≤M

f (xk+1− j )

= max( max
0≤ j≤M−1

f (xk− j ), f (xk+1))

≤ max( max
0≤ j≤M−1

f (xk− j ), f (xk−M ), f (xk+1))

= max( max
0≤ j≤M

f (xk− j ), f (xk+1))

= max( f (xh(k)), f (xk+1))

= f (xh(k)).

We have from the last inequality, (2.2) and (3.8) that

f (xh(k)) = f (xh(k)−1 + αh(k)−1dh(k)−1)

≤ max
0≤ j≤M

f (xh(k)−1− j )+ δ1αh(k)−1gT
h(k)−1dh(k)−1 − δ2‖αh(k)−1dh(k)−1‖

2

= f (xh(h(k)−1))+ δ1αh(k)−1gT
h(k)−1dh(k)−1 − δ2‖αh(k)−1dh(k)−1‖

2.

Since { f (xh(k))} is decreasing and bounded from below from Assumption A, let k →∞ in the above inequality, we
have

lim
k→∞

αh(k)−1dh(k)−1 = 0. (3.9)

Denote ĥ(k) = h(k + M + 2). Now by induction, we prove that for any j ≥ 1, the following two formulae hold:

lim
k→∞

αĥ(k)− j dĥ(k)− j = 0, (3.10)

lim
k→∞

f (xĥ(k)− j ) = lim
k→∞

f (xh(k)). (3.11)
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For j = 1, since {ĥ(k)} ⊂ {h(k)}, it follows from (3.9) that (3.10) holds, which shows that ‖xĥ(k)− xĥ(k)−1‖ → 0.
As f (x) is uniformly continuous in the level set, (3.11) holds for j = 1.

Now we suppose that (3.10) and (3.11) hold for given j . It follows from (2.2) that

f (xĥ(k)− j ) ≤ f (xh(ĥ(k)− j−1))+ δ1αĥ(k)− j−1gT
ĥ(k)− j−1

dĥ(k)− j−1 − δ2‖αĥ(k)− j−1dĥ(k)− j−1‖
2.

Let k →∞, we get from (3.11) that

lim
k→∞

αĥ(k)−( j+1)dĥ(k)−( j+1) = 0,

which implies that ‖xĥ(k)− j − xĥ(k)−( j+1)‖ → 0. Since f (x) is uniformly continuous in the level set,

lim
k→∞

f (xĥ(k)−( j+1)) = lim
k→∞

f (xĥ(k)− j ) = lim
k→∞

f (xh(k)).

Thus (3.10) and (3.11) hold for any j ≥ 1.
Now for any k, it holds that

xk+1 = xĥ(k) −

ĥ(k)−k−1∑
j=1

αĥ(k)− j dĥ(k)− j . (3.12)

Since ĥ(k)− k − 1 = h(k + M + 2)− k − 1 ≤ k + M + 2− k − 1 = M + 1, we have from (3.10) and (3.12) that

lim
k→∞
‖xk+1 − xĥ(k)‖ = 0.

We get from the uniform continuity of f (x) that

lim
k→∞

f (xk) = lim
k→∞

f (xĥ(k)).

It follows from (2.2) that

f (xk+1) ≤ f (xh(k))+ δ1αk gT
k dk − δ2‖αkdk‖

2.

Let k →∞, we have

lim
k→∞

αkdk = 0, lim
k→∞

αk gT
k dk = 0.

This finishes the proof. �

By the use of Lemmas 3.1 and 3.2, we can prove the following global convergence theorem for the MBFGS method.

Theorem 3.3. We have

lim inf
k→∞

‖gk‖ = 0.

Proof. We suppose that the conclusion is not true. Then there exists a constant ε > 0 such that for any k ≥ 0, it holds
that

‖gk‖ ≥ ε. (3.13)

From the above inequality, (2.4), (2.5), (3.1) and (3.2), there exists a constant C2 > 0 such that

zT
k sk ≥ C‖gk‖

r sT
k sk ≥ Cεr sT

k sk
4
= C2sT

k sk, (3.14)

‖zk‖ ≤ ‖yk‖ + C‖gk‖
r
‖sk‖ +

‖yk‖‖sk‖
2

‖sk‖
2 ≤ (2L + Cγ r

1 )‖sk‖. (3.15)

By (3.14) and (3.15), we have

zT
k zk ≤ (2L + Cγ r

1 )
2
‖sk‖

2
≤
(2L + Cγ r

1 )
2

C2
zT

k sk
4
= C3zT

k sk .

Therefore the conditions (3.4) and (3.6) in Lemma 3.1 are satisfied, so the conclusions of Lemma 3.1 hold.
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If lim infk∈K , k→∞ αk > 0, it follows from (3.6) and (3.7) that

lim inf
k→∞

‖gk‖ = 0.

This yields a contradiction.
If lim infk∈K , k→∞ αk = 0, then for sufficiently large k ∈ K , it holds that

f

(
xk +

αkdk

ρ

)
≥ max

0≤ j≤M
f (xk− j )+ δ1

αk

ρ
gT

k dk − δ2

(
αk

ρ

)2

‖dk‖
2,

which implies that

f

(
xk +

αkdk

ρ

)
≥ f (xk)+ δ1

αk

ρ
gT

k dk − δ2

(
αk

ρ

)2

‖dk‖
2.

By the mean-value theorem, there exists tk ∈ (0, 1) such that

(g(uk))
T dk ≥ δ1gT

k dk − δ2

(
αk

ρ

)
‖dk‖

2, (3.16)

where uk ∈ [xk, xk +
αk dk
ρ
]. Let {xk}K is a subsequence which converges to x∗ such that

lim
k∈K , k→∞

xk = x∗, lim
k∈K , k→∞

dk

‖dk‖
= d∗.

Then it also holds that

lim
k∈K , k→∞

uk = x∗.

Let k ∈ K and k →∞ in (3.16), we have

gT (x∗)d∗ ≥ δ1gT (x∗)d∗.

Since 1− δ1 > 0, we have

gT (x∗)d∗ ≥ 0. (3.17)

But (2.1), (3.4), (3.6) and (3.13) imply

gT
k dk = −dT

k Bkdk ≤ −β2‖dk‖
2
≤ −

β2

β1
‖gk‖‖dk‖ ≤ −

β2

β1
ε‖dk‖. (3.18)

Let k ∈ K and k →∞ in (3.18), we have

(g(x∗))T d∗ < 0,

which contradicts (3.17). The proof is then completed. �

4. Numerical experiments

In this section, we report some numerical experiments. We test Algorithm 2.1 with different values of M and the
standard BFGS method on some problems in [14].

All codes were written in Matlab code. We stop the iteration if the total number of iterations exceeds 4 × 103 or
‖g(xk)‖ ≤ 10−5. We set parameters in Algorithm 2.1 as follows: δ1 = δ2 = 0.1, C = 10−6, r = 2, ρ = 0.4.

The test problems include some nonconvex functions such as the following “band” and “jensam” functions.

• Band function (n = 10):

f (x) =
n∑

i=1

[
xi (2+ 15x2

i )+ 1−
∑
j∈Ji

x j (1+ x j )

]2

,
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Table 1
Test results on the MBFGS method with different M

Problem n BFGS(M = 0) MBFGS(M = 0) MBFGS(M = 3) MBFGS(M = 5)
iter / fn / gn iter / fn / gn iter / fn / gn iter / fn / gn

bard 3 224/ 1053/ 225 224/ 1053/ 225 48/ 150/ 49 28/ 58/ 29*
box 3 580/ 3189/ 581 583/ 3201/ 584 191/ 779/ 192 93/ 296/ 94*
sing 4 236/ 1190/ 237 237/ 1196/ 238 128/ 519/ 129 71/ 189/ 72*
wood 4 59/ 174/ 60 66/ 120/ 67* 105/ 190/ 106 105/ 190/ 106
rose 2 35/ 50/ 36* 36/ 54/ 37 61/ 99/ 62 60/ 98/ 61
froth 2 11/ 20/ 12 9/ 18/ 10* 9/ 18/ 10* 9/ 18/ 10*
beale 2 15/ 23/ 16* 15/ 23/ 16* 18/ 24/ 19 18/ 24/ 19
jensam 2 8/ 14/ 9 8/ 14/ 9 8/ 14/ 9 8/ 14/ 9
gauss 3 3/ 6/ 4 3/ 6/ 4 3/ 6/ 4 3/ 6/ 4
gulf 3 1/ 4/ 2 1/ 4/ 2 1/ 4/ 2 1/ 4/ 2
kowosb 4 487/ 2965/ 488 487/ 2965/ 488 212/ 956/ 213 175/ 798/ 176*
bd 4 23/ 71/ 24* 50/ 99/ 51 53/ 95/ 54 53/ 95/ 54
osb2 11 203/ 754/ 204 203/ 754/ 204 67/ 115/ 68 66/ 104/ 67*
watson 2 9/ 19/ 10* 9/ 19/ 10* 11/ 20/ 12 11/ 20/ 12
rosex 10 99/ 164/ 100 95/ 159/ 96* 142/ 202/ 143 147/ 209/ 148
band 10 NaN NaN 61/ 135/ 62 61/ 130/ 62*
rosex 50 254/ 573/ 255* 270/ 578/ 271 354/ 626/ 355 375/ 646/ 376
rosex 100 436/ 1036/ 437 408/ 1007/ 409 377/ 948/ 378* 587/ 1127/ 588
singx 20 481/ 2630/ 482 637/ 3902/ 638 492/ 2170/ 493* 799/ 3943/ 800
singx 100 1498/ 10449/ 1499 1276/ 8714/ 1277* 1797/ 9418/ 1798 2665/ 13455/ 2666
trig 100 63/ 134/ 64 63/ 134/ 64 43/ 49/ 44 42/ 47/ 43*
trig 200 59/ 118/ 60 59/ 118/ 60 45/ 55/ 46 45/ 51/ 46*
trig 500 57/ 101/ 58 57/ 101/ 58 46/ 49/ 47* 46/ 49/ 47*
almost 100 4/ 16/ 5* 6/ 18/ 7 6/ 18/ 7 6/ 18/ 7
bv 10 60/ 175/ 61 60/ 175/ 61 19/ 37/ 20 19/ 35/ 20*
bv 50 NaN NaN 2414/ 17944/ 2415 2025/ 14756/ 2026*
bv 100 1052/ 7373/ 1053 1052/ 7373/ 1053 392/ 1870/ 393 298/ 1133/ 299*
bv 200 174/ 842/ 175 174/ 842/ 175 161/ 497/ 162* 178/ 493/ 179
ie 100 10/ 12/ 11 10/ 12/ 11 10/ 12/ 11 10/ 12/ 11
ie 500 11/ 13/ 12 11/ 13/ 12 11/ 13/ 12 11/ 13/ 12
trid 100 98/ 482/ 99* 100/ 489/ 101 143/ 521/ 144 187/ 545/ 188
lin 100 2/ 4/ 3* 3/ 5/ 4 3/ 5/ 4 3/ 5/ 4
lin 500 2/ 4/ 3* 4/ 6/ 5 4/ 6/ 5 4/ 6/ 5

where

Ji = { j : j 6= i,max{1, i − ml} ≤ j ≤ min{n, i + mu}}

and ml = 5, mu = 1.
If we choose two points y = (1, . . . , 1)T and x = (0, . . . , 0)T , then we have

f (y)− f (x)−∇ f (x)T (y − x) = −10 < 0.

This shows that the Band function is not convex.
• Jensam function (n = 2):

f (x) = (4− ex1 − ex2)2 + (6− e2x1 − e2x2)2.

We can get the Hessian matrix of f (x) at x = (0, 0)T

∇
2 f (0, 0) =

(
−18 10
10 −18

)
,

which is not a semi-positive definite matrix. So the Jensam function is nonconvex.

Table 1 lists numerical results. In Table 1, “problem” and “n” stand for the test problem name and the dimension
of the test problem, respectively. “iter/fn/gn” are the total number of the iterations, the function evaluations and the
gradient evaluations, respectively.
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Table 1 shows that the MBFGS method performs similarly as the standard BFGS method when M = 0, but they are
failed to solve the problems “band” and “bv” with n = 50. The MBFGS method with M = 3 or M = 5 solves all the
given problems successfully even for nonconvex functions such as “band” function. This shows that the nonmonotone
methods are more stable than the corresponding monotone methods.

We also can see that the MBFGS method with M = 5 performs best since it can solve about 55% (19 out of 34)
of all test problems with the smallest number of iterations and function evaluations. But for some problems such as
“rose” function, its performance is worse than those of other methods. This also shows that how to choose a suitable
M is very important, but this is a relatively difficult problem.

5. Conclusions

We have presented the MBFGS method with a new nonmonotone Armijo line search. Under suitable conditions,
we proved that the proposed method is globally convergent even for nonconvex functions. Some limited numerical
results are also reported, which show that the nonmonotone method is more efficient than the monotone one.
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