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For any prime p. the sequence of Bell exponential numbers B, is shown to have 
p- 1 consecutive values congruent to zero (modp). beginning with B,, where 

m = 1 - (pp - I)/( p - 1)’ (mod(pP - 1 )/(p - 1)). This is an improvement over 
previous results on the maximal strings of zero residues of the Bell numbers. Similar 

results are obtained for the sequence of generalized Bell numbers A, generated by 
e~‘*‘-~~=~~=:=,, A,s.r”/n!. 1 1985 Academic Press. Inc 

1. INTRODUCTION AND HISTORICAL BACKGROUND 

We consider the linear congruence 

Q,,+,(~~)-a,,+, (s)+ m,,(s) (mod y). (1.1) 

where p is a prime and s is an integer. The congruence is satisfied by the 
numbers a,,(s) generated by 

(1.2) 

When s = 1, the numbers B, = a,( 1) are the Bell exponential numbers 
studied by Bell [2, 31 and many others. For integer values of s (s # 1) we 
will refer to the numbers a,(s) as generalized Bell numers. The congruence 
properties of the Bell numbers and generalized Bell numbers have been 
investigated by several authors [4, 8, 11, 123. 

One aspect of these investigations has been the determination of the con- 
gruence periods I such that 

a,,+,(s) = a,(s) (mod P). 
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Hall [6] showed that the Bell numbers have the periodicity 

B n + N,, - 4, (mod Ph (1.4) 

where 

N =pP-l 
p p-l’ (1.5) 

a result rediscovered by Williams [ 121. Chinthayama and Gandhi [4] 
showed that a period for a,(s) is given by 

1= (N,) ord,( s). (1.6) 

Since the minimality of these periods was not established, Levine and 
Dalton [S] searched for periods of the Bell numbers among the divisors of 
N, and found that for p < 17 the minimum period is exactly N, and that 
for p d 47 no known proper divisior I? of N,, with N < 104’, can be a 
period. 

The rather extreme length of the periods makes the congruence (1.1) of 
interest as a possible pseudorandom number generator. Zierler [13] has 
investigated the autocorrelation functions of the residues in an m-sequence, 
that is, a sequence with the maximum possible minimum period pp - 1. 
Since the Bell numbers have a period which divides N, = ( pP - 1 )/(p - 1 ), 
they clearly do not constitute an m-sequence. However, if s is a primitive 
root of p, so that the order of s (mod p) is p- 1, then by (1.6) the only 
known period is 1 =pP - 1 and thus an m-sequence solution of ( 1.1) is an 
open possibility in this case. 

Of interest in connection with the problem of the minimal periods of the 
generalized Bell numbers (modulo p) is the problem of the determination 
and location of maximal strings of zero residues. In Section 3, we give a 
new approach to this problem and obtain stronger results than known 
previously. 

For combinatorial interpretations of the B,, see [7]. A large 
bibliography is given in Rota [lo]. 

In addition to the special case s = 1, which yields the Bell numbers, the 
case s = - 1 holds considerable interest. The author, with Prather, has 
shown [7] a connection between the a,( - 1) and several problems in com- 
plex function theory. Results on the maximal strings of zeros of the a,( - 1) 
(mod p) are obtained in Section 4. 
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2. PRELIMINARIES 

We will need certain additional properties of the generalized Bell num- 
bers and their congruences. Comtet [S] gives 

sa,(s) = [d”a/Js)lk=, 1 (2.1) 

where A” is the nth difference taken with respect to k. It follows easily from 
(2.1) and (1.1) that 

(2.2) 

and 

s~u,+,-~(s) (modp). 

In the next section we make use of the following result, 

Lemma 1. B,,, = BP,, (mod p), for n = 0, 1, 2 ,..., where p is any prime. 

Proof From (2.4), with s = 1, we have 

and the desired conclusion follows from (2.2). 

3. MAXIMAL STRINGS OF CONSECUTIVE ZEROS 

The maximum possible number of consecutive zeros of a,(s) (modp) is 
obviously p - 1 since, for any greater number, the recurrence (1.1) would 
generate the trivial sequence consisting entirely of zero residues. It is not 
immediately clear, however, that such a maximal string of p - 1 zeros 
actually occurs for each p. Proof of the existence of such maximal strings 
for B, and, in addition, the determination of their precise location in the 
sequence, is therefore of interest. Radoux [9] has shown that, for those p 
for which the minimal period is N,, one period of the sequence B, (modp) 
contains exactly one string of p - 1 consecutive zeros, He also obtains the 
location of such a string. In this section we show by an entirely different 
method that this result holds without the hypothesis that N, is the minimal 
period. 
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THEOREM 1. Let M be an integer and p a prime. Then a necessary and 
sufficient condition that B, + k 3 0 (modp) for k = 0, l,..., p - 2, is that 
B M+k- B M+pk (modp)for k= 1, 2 ,..., p- 1. 

Proof By (2.4) we have 

B M+kp= for k = 0, 1, 2 ,.... (3.1) 

Therefore, if B, + k = 0 for k = 0, l,..., p - 2, we clearly have B, + pk = 0 and 
hence, trivially, BM+k = B,,,,+pk. When k =p - 1 and B,,,+k = 0 for 
k=O, l,..., p-2, (3.1) reduces to B,,, 1 = B,,,++,),,. 

Conversely, if B, + k = B, fpk (modp) for k= 1, 2 ,..., p- 1, (3.1) is 
equivalent to 

B 
k I k 

Mtk= B ,w+k+ c i B,v+i (modp) 
0 

for k = 1, 2 ,..., p - 1, 
i=O 

which reduces to 

fork=1,2 ,..., p-l. (3.2) 

The system (3.2) is triangular with diagonal coefficients (‘;). The coefficient 
matrix is therefore nonsingular with determinant (p - 1 )! E -1 (mod p), by 
Wilson’s theorem. Thus the only solution is given by 

B M+i=O (modpI, i = 0, 1 ,..., p - 2. 

THEOREM 2. For each prime p the sequence B, contains p - 1 consecutive 
zeros 

B ,,+k=O(modP), k = 0, 1 ,..., p - 2, (3.3) 

where 

mp = 1-G (mod N,). 

ProoJ In Lemma 1, let n = M+ k for k = 0, 1, 2 ,..., where M is an 
integer to be determined, to obtain 

B M+k+l ~Bp,v+pk (modp), k = 0, l,.... (3.5) 

By (1.4), (1.5), and Theorem 1, it follows that p- 1 consecutive zeros of B, 
(mod p) will occur, beginning with B,, 1, if 

M + 1~ pM (mod N,), (3.6) 
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or, in other words, if 

M+ 1 =pM+rN, 

for some integer r. Using N, = (pP - 1 )/(p - 1 ), straightforward calculation 
leads to 

Now it can be easily verified that (p” -p)/(p - 1)” is always an integer; in 
fact, for p 2 3, 

&+=p+pf3 (k+ l)pp-k-‘. 
k=O 

Since A4 must be an integer we must have r = 1 + t( p - 1) for some integer 
t. from which it follows that 

Since the p - 1 consecutive zeros begin with B, + , , the proof is complete. 

4. THE NUMBERS a,( - 1) 

For convenience in this section we write A.=a,( - 1). The A, are 
generated by (1.2) with s = - 1: 

,-k--I)- 
-nfoAn$ (4.1) 

The combinatorial and congruence properties given in Sections 1 and 2 
may be written as follows for the A,, 

A An+, n+p= - A, (mod p), (4.2) 

A n+N,,= -A (mod P) where N, = ‘2, 

A,, A, = 1, 

A,,= -PA,. (4.5) 
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The location of maximal runs of consecutive zeros of A, (modp) and the 
minimal period can be established in a manner similar to that used above 
for the B,. 

THEOREM 3. For any prime p, there occur p - 1 consecutive zeros of A, 
(mod p), beginning at n = np, where 

n = G (mod N,). 
p (P-l) 

Prooj By (4.5) and (4.2) we have 

A,, = -(EP)” A, E -A,+, (modp), 

where E is the shift operator defined by EAI, = Ak+ 1. Let n = M + k to 
obtain 

A M+k= -A Mp+pk+ I 

e A N,,+Mp+pk+l by (4.3). 

A straightforward modification of Theorem 1 for the case s = -1 provides 
that p - 1 consecutive zeros of A, (modp) will occur, beginning with A,, 
if 

M- N,+pM+ 1 (mod N,). 

Proceeding as in the proof of Theorem 1, we find that 

M= -rfff$-s 

for some integer r satisfying r z - 1 (mod p - 1). If we write 
r = t(p - 1) - 1, calculation shows that 

MC pp-p 
pp-1 

(P-1-9 P-l 

which completes the proof. 
Theorem 3, together with (4.3) shows that the sequence of the A,, 

(modp) contains at least two strings of p - 1 consecutive zeros. We now 
investigate whether other such strings are possible. Following Radoux, we 
obtain the following useful result: 

THEOREM 4. Let p be a prime and let t be an integer such that 
tAi+,=A,+, (mod p), for r = 0, l,..., p - 1. Then t2 = 1 (mod p). 
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Proof: Suppose that tAi+,k zAi+,(modp) for r=O, l,...,p - 1. Then, 
setting k =j- 1, we have, for all n: 

tA, = An+k (modp). 

It follows that, in general, 

t”A, 3 An+sk (modp) 

and, in particular, 

A,=A n+(p--lFk (modp). 

Therefore the minimal period nP must divide (p - 1) k and, by (4.3) 
&[2(pJ’--l)/(p-1). But (p-i,2(pp-l)/(p-1)=2. Thus &12k and 
so, for all n, 

t2A, - A,, (mod p), 

completing the proof. 
The following result is an immediate consequence of Theorems 3 and 4 

and (4.3). 

THEOREM 5. The sequence A, (modp) contains in one minimal period 
exactly two strings of p - 1 consecutive zeros, one string starting exactly one- 
half period after the other. 

The number A, can be given a combinatorial interpretation. Let E(n) 
and O(n) be the numbers of partitions of n elements into an even number 
of congruence classes and an odd number of congruence classes, respec- 
tively. Then, following Rota [lo], a tedious but straightforward analysis 
shows that A, = E(n) - O(n). 

Numerical calculations of the exact values of A,, have been made, by 
using (4.5), for 0 d n d 110. For 0 d n d 15, the values are 

l(0); -l(l); O(2); l(3); l(4); -2(5); -9(6); -9(7); 
50(8); 267(9); 413(10); -2, 180(11); -17,731(12); 
- 50, 533( 13); 110, 176( 14); 1,966,797( 15). 

A calculation of A,, for 0 <n < 900 has also been made using a double- 
precision algorithm based on (4.5). At n = 110 the calculation agrees with 
the exact calculation to 13 significant places. The value of A,, is 
3.217 x 10’648. 

The regular sign reversal seen in the first few vaues persists, with a 
gradual increase in the interval between successive sign changes from 2 or 3 
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at the beginning values to 6 or 7 for n near 900. For 0 6 n < 900, however, 
only A2 is zero. 

The author wishes to thank H. Rappaport and D. Royster who perfor- 
med some of the numerical calculations. 
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