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M. Aurada, M. Feischl, M. Karkulik , D. Praetorius �

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
a r t i c l e i n f o

Article history:

Received 25 February 2011

Accepted 27 July 2011
Available online 8 October 2011

Keywords:

Finite element-boundary element coupling

Local mesh-refinement

Adaptive algorithm
97 & 2011 Elsevier Ltd.

016/j.enganabound.2011.07.017

esponding author.

ail addresses: Markus.Aurada@tuwien.ac.at (M

.Feischl@tuwien.ac.at (M. Feischl),

.Karkulik@tuwien.ac.at (M. Karkulik),

etorius@tuwien.ac.at (D. Praetorius).

S: http://www.asc.tuwien.ac.at/~mkarkulik (M

ww.asc.tuwien.ac.at/~dirk (D. Praetorius).

Open access under CC B
a b s t r a c t

Only very recently, Sayas [The validity of Johnson–Nédélec’s BEM-FEM coupling on polygonal

interfaces. SIAM J Numer Anal 2009;47:3451–63] proved that the Johnson–Nédélec one-equation

approach from [On the coupling of boundary integral and finite element methods. Math Comput

1980;35:1063–79] provides a stable coupling of finite element method (FEM) and boundary element

method (BEM). In our work, we now adapt the analytical results for different a posteriori error

estimates developed for the symmetric FEM–BEM coupling to the Johnson–Nédélec coupling. More

precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and

different versions of (h�h/2)-based error estimators. In numerical experiments, we use these

estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches.

& 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The FEM–BEM coupling is often used for interface problems in
unbounded domains, where, e.g. non-linearities are present in a
bounded domain and the material is isotropic in the exterior,
cf. [22,24,36,34]. The symmetric FEM–BEM coupling was pro-
posed and analyzed by Costabel [22] and attracted most attention
in the mathematical literature. In engineering, however, more
often the coupling procedure proposed by Johnson and Nédélec
[37] is used since it only involves two integral operators instead
of four. Only very recently, Sayas [46] proved that the Johnson–
Nédélec coupling is well-posed even on polygonal domains,
whereas numerical evidence of this was already known for many
years, cf. e.g. [23].

To the best of our knowledge, the numerical analysis of a
posteriori FEM–BEM error estimators has only been derived for
the symmetric coupling. Most of the results follow the concept of
two-level error estimation introduced in [42], see also the recent
work [39] and the references therein. Other approaches include
residual-based error estimators which have first been studied in
[20], and recently also (h�h/2)-based error estimators [5].

In this work, we transfer these three classes of a posteriori
error estimators from the symmetric coupling to the Johnson–
Nédélec coupling. As model problem serves, for the ease of
. Aurada),

. Karkulik),

Y-NC-ND license.
presentation, the interface problem for the Laplacian in two
dimensions with an inhomogeneous volume force in the interior.
We then formulate adaptive mesh-refining algorithms for each of
these three approaches. In numerical experiments, we finally
compare the effectiveness.

The detailed outline of this work reads as follows: In Section
2.1, we state our model problem and fix the notation of the
integral operators involved. Section 2.2 introduces the Galerkin
discretization and sketches the result of Sayas [46]. For some
implementational reasons, we also discretize the given boundary
data to which integral operators are applied. This allows to work
with discrete integral operators, i.e. matrices, in the implementa-
tion and leads to some perturbed Galerkin formulation given in
Section 2.3.

Section 3 is the heart of this work and contains the a posteriori
error analysis. First, we collect the necessary notation in Sections
3.1 and 3.2. The a posteriori error control of the approximation
error for the boundary data is discussed in Section 3.3. In Section
3.4, we study the residual error estimator R‘ from [20]. In Section
3.5, we recall the (h�h/2)-error estimator m‘ from [5] and discuss
the so-called saturation assumption, whereas Section 3.6 is con-
cerned with the two-level error estimator t‘ from [42]. With
certain modifications of the analysis from [5,20,42], we transfer
these error estimators from the symmetric coupling to the
Johnson–Nédélec coupling and can formulate and prove the
according results. However, we stress that, first, our version of R‘
is improved in the sense that it involves volume oscillations
instead of the volume residual terms and, second, we also prove
global equivalence m‘Ct‘ of (h�h/2)- and two-level error estima-
tor. Finally, a short Section 3.7 provides local relations of t‘ and R‘.

Section 4 considers an experiment from the literature for
which uniform and adaptive mesh-refinement are compared with
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respect to empirical convergence rate and computational time.
Finally, we conclude our work in Section 5 with an overview on
the analytical and numerical results of this paper. Moreover, we
state possible generalizations of our results for 3D problems and
pose some questions for further research.
2. Johnson–Nédélec coupling

2.1. Model problem

We consider the linear interface problem

�Duint ¼ f in Oint :¼ O,

�Duext ¼ 0 in Oext :¼ R2
\O,

uint�uext ¼ u0 on G,

@nuint�@nuext ¼f0 on G,

uextðxÞ ¼Oð9x9�1
Þ as 9x9-1:

8>>>>>>><
>>>>>>>:

ð1Þ

Here, O is a bounded Lipschitz domain in R2 with boundary G :¼ @O
and exterior unit normal vector n. The given data satisfy f AL2ðOÞ,
u0AH1=2ðGÞ, and f0AH�1=2ðGÞ. The space H1=2ðGÞ is precisely the
space of all traces of functions from H1ðOÞ, and H�1=2ðGÞ is the dual
of H1=2ðGÞ with respect to the extended L2ðGÞ-scalar product. To
guarantee the solvability of (1), we need the data to satisfy
/f0,1SGþ/f ,1SO ¼ 0. As usual, (1) is understood in the weak
sense, and the sought solutions satisfy uintAH1ðOÞ and uextA
H1
‘ocðO

ext
Þ¼fv : Oext-R : 8K �Oext compact vAH1ðKÞg with ruextA

L2ðOext
Þ.

Problem (1) is equivalently stated via the Johnson–
Nédélec FEM–BEM coupling proposed in [37]: Find u :¼
ðu,fÞAH :¼ H1ðOint

Þ � H�1=2ðGÞ such that

/ru,rvSO�/f,vSG ¼/f ,vSOþ/f0,vSG for all vAH1ðOint
Þ,

/c, 1
2�K
� �

uþVfSG ¼/c,ð12�KÞu0SG for all cAH�1=2ðGÞ: ð2Þ

Here, V denotes the simple-layer potential and K denotes the
double-layer potential. With

GðzÞ :¼ �
1

2p log9z9 for zAR2
\f0g ð3Þ

the fundamental solution of the 2D Laplacian, these integral
operators formally read for xAG as follows:

ðVcÞðxÞ ¼
Z
G

Gðx�yÞcðyÞ dGðyÞ, ð4Þ

ðKvÞðxÞ ¼

Z
G
@nðyÞGðx�yÞvðyÞ dGðyÞ: ð5Þ

By continuous extension, these definitions provide linear bound-
ary integral operators VALðH�1=2ðGÞ;H1=2ðGÞÞ and KALðH1=2

ðGÞ;H1=2ðGÞÞ. By scaling of O, we may assume that diamðOÞo1
to ensure the uniform ellipticity of V, i.e.

JcJ2
H�1=2ðGÞt/c,VcSG for all cAH�1=2ðGÞ:

In particular, /f,cSV :¼ /f,VcSG is a scalar product, and

JcJ2
V :¼ /c,VcSG for cAH�1=2ðGÞ

defines an equivalent norm on H�1=2ðGÞ. The reader is referred to
e.g. [41] for proofs and further details on these integral operators.
The link between (1) and (2) is provided by u¼ uint and f¼ @nuext,
and uext is then given by the third Green’s formula

uextðxÞ ¼ ~Kðu�u0ÞðxÞ� ~VfðxÞ for xAOext, ð6Þ

where the potentials ~V and ~K formally denote the operators V

and K, but are now evaluated in Oext instead of G. Note carefully
that we do not use a notational difference for the function
uAH1ðOÞ and its trace uAH1=2ðGÞ, for which we compute the
boundary integral ð12�KÞu in (2).

We stress that the second equation of the Johnson–Nédélec
FEM–BEM coupling (2) is the same as for the mathematically
well-studied symmetric coupling. It has already been proved in
[37] that problem (2) is well-posed on the continuous level, i.e. it
admits a unique solution u¼ ðu,fÞAH.

2.2. Galerkin discretization

Let T ‘ be a regular triangulation of O into triangles TjAT ‘ and
EG‘ a partition of the coupling boundary G into piecewise affine
line segments EjAEG‘ . Throughout, the index ‘AN0 indicates the
current step of the adaptive loop considered below. We use a
conforming discretization with continuous and T ‘-piecewise
affine finite elements in O and EG‘ -piecewise constants on G, i.e.
the discrete spaces read

X ‘ :¼ S1
ðT ‘Þ � P0ðEG‘ Þ �H1ðOÞ � H�1=2ðGÞ ¼H: ð7Þ

We stress that our analysis does not enforce any coupling of EG‘
and T ‘ . However, for the ease of presentation and implementa-
tion, we will assume throughout that the boundary mesh
EG‘ ¼ T ‘9G is obtained by restriction of the triangulation T ‘ to
the boundary G.

The Galerkin formulation of (2) then reads as follows: Find U%

‘ :
¼ ðU%

‘ ,F%

‘ ÞAX ‘ such that

/rU%

‘ ,rV‘SO�/F
%

‘ ,V‘SG ¼/f ,V‘SOþ/f0,V‘SG,

/C‘ ,ð12 �KÞU%

‘ þVF%

‘SG ¼/C‘ ,ð12�KÞu0SG ð8Þ

for all V‘ :¼ ðV‘ ,C‘ÞAX ‘. Only very recently [46, Theorem 2], it has
been proven that the discrete formulation (8) is well-posed and
admits a unique Galerkin solution U%

‘ AX ‘. We stress that the
following result applies, in particular, also to the continuous
formulation (2) and provides an alternate proof for the existence
and uniqueness of a solution of the Johnson–Nédélec FEM–BEM
coupling.

Proposition 1 (Sayas [46]). Suppose that X‘ is a closed subspace of

H1ðOÞ and Y‘ is a closed subspace of H�1=2ðGÞ which satisfy

1AX‘ as well as 1AY‘ , ð9Þ

i.e. the discrete spaces contain the constant functions. With

X ‘ :¼ X‘ � Y‘ , the linear operator H : X ‘-Xn

‘

ðHU‘ÞðV‘Þ :¼ /rU‘ ,rV‘SO�/F‘ ,V‘SG

þ/C‘ ,ð12�KÞU‘þVF‘SG ð10Þ

for U‘ ¼ ðU‘ ,F‘Þ, V‘ ¼ ðV‘ ,C‘ÞAX ‘ defines an isomorphism, where

the bounds of the operator norms JHJ and JH�1J depend only on O,
but not on the chosen spaces X‘ and Y‘. In particular, the variational

form (8) admits a unique solution U%

‘ AX ‘. Moreover, there holds the

Céa-type quasi-optimality

:9u�U%

‘ :9rCopt min
V‘ AX ‘

:9u�V‘:9 ð11Þ

with :9v:92
:¼ JvJ2

H1ðOÞ þJcJ
2
V for v¼ ðv,cÞAH, and the constant

Copt40 depends only on O, but not on X ‘ or the given data f, f0,
and u0.

2.3. Perturbed Galerkin discretization

The right-hand side of (8) involves the evaluation of Ku0,
which can be computed by methods proposed in [19,44,45]. In
this work, we will follow another approach. We propose to
approximate at least the given trace data u0AH1=2ðGÞ by appro-
priate discrete functions. One reason for this is that so-called fast

methods for boundary integral operators usually deal with discrete
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functions, cf. [43]. Another reason for this, which is related with
the question of convergence of adaptive methods, is discussed at
the end of Section 5.4. Following [5,6], we assume additional
regularity u0AH1ðGÞ, and consider the nodal interpolant

U0,‘ :¼ I‘u0 ¼
Xn

j ¼ 1

u0ðzjÞzjAS1
ðEG‘ Þ, ð12Þ

where zjAG denotes a node of EG‘ and where zj is the associated
EG‘ -piecewise linear and continuous hat function, i.e. zjðzkÞ ¼ djk.
Now, the perturbed Galerkin formulation reads as follows: Find
U‘ :¼ ðU‘ ,F‘ÞAX ‘ such that

/rU‘ ,rV‘SO�/F‘ ,V‘SG ¼/f ,V‘SOþ/f0,V‘SG,

/C‘ ,ð12 �KÞU‘þVF‘SG ¼/C‘ ,ð12�KÞU0,‘SG, ð13Þ

for all ðV‘ ,C‘ÞAX ‘ . Compared to (8), the only difference is that
(13) involves the approximate data U0,‘ instead of u0 on the right-
hand side. Consequently, Proposition 1 applies and proves that
(13) has a unique solution U‘AX ‘ .
3. A posteriori error control

3.1. Notation

Let T ‘ be a regular triangulation of O into triangles which is
obtained by adaptive local refinement of an initial triangulation
T 0. Then, EG‘ ¼ T ‘9G denotes the induced partition of G, i.e. the set
of all boundary edges. Let EO‘ denote the set of all edges of the
volume triangulation T ‘ which lie inside O, i.e. for EAEO‘ exist
unique elements Tþ ,T�AT ‘ with E¼ Tþ \ T�. We then denote the
corresponding edge patch by o‘,E :¼ Tþ [ T�. Furthermore, we
denote by K‘ the set of nodes of T ‘. For zAK‘ , denote by E‘,z the
set of all edges E0AEO‘ [ EG‘ which have z as a node.

To exclude some pathological cases, we restrict ourselves to
meshes T ‘ which meet the following conditions:
�

Fig
mi

fol

spl
each element TAT ‘ has at most one edge on the boundary G,

�
 each interior edge EAEO‘ has at most one node on the boundary G.

We stress that these assumptions are essentially conditions on
the initial triangulation T 0.

Let diamðoÞ denote the Euclidean diameter of a set o�R2. For
xAtAT ‘ [ EG‘ , we define the local mesh-width function by
h‘ðxÞ :¼ diamðtÞ. This definition provides functions h‘AL1ðOÞ as
well as h‘AL1ðGÞ and h‘AL1ð

S
EO‘ Þ, where

S
EO‘ denotes the

interior skeleton of T ‘.

3.2. Local mesh-refinement

For the local refinement of the volume mesh T ‘ , we use
newest vertex bisection with the following conventions, cf.
Fig. 1: for marked triangles, we mark all three edges, and all
. 1. For each triangle TAT ‘ , there is one fixed reference edge, indicated by the doubl

dpoint becomes a new node. The reference edges of the son triangles T 0AT ‘þ1 are op

lows: We assume that certain edges of T, but at least the reference edge, are marked

it into 2, 3, or 4 son triangles (bottom).
marked edges are bisected. We refer to [49, Chapter 5] for details
on newest vertex bisection. By others, this mesh-refinement
ensures uniform shape regularity of T ‘. More precisely, the shape
regularity constant

sðT ‘Þ :¼ max fdiamðTÞ2=9T9 : TAT ‘g ð14Þ

depends only on the initial mesh T 0, i.e.

sup
‘AN

sðT ‘ÞrC sðT 0Þ, ð15Þ

where C40 depends only on the labeling of the reference edges
in T 0. Marking of an element EAEG‘ ¼ T ‘9G means marking of
certain edges of some triangles TAT ‘ for newest vertex bisection.
We stress that this guarantees that marked edges E are split into
two sons of half length. Moreover, due to uniform shape regular-
ity (15) of T ‘ , there automatically holds

sup
‘AN

kðEG‘ ÞrC kðEG0 Þ ð16Þ

for the K-mesh constant (or: local mesh-ratio)

kðEG‘ Þ :¼ maxfdiamðEÞ=diamðE0Þ : E,E0AEG‘ with E \ E0a|g, ð17Þ

and the constant C40 depends only on T 0. Finally, there holds
nestedness S1

ðT ‘ÞDS1
ðT ‘þ1Þ, P0ðEG‘ ÞDP0ðEG‘þ1Þwhence consequently

X ‘DX ‘þ1:

3.3. Error control of data approximation

In the following, we consider a continuous auxiliary problem,
where the right-hand side is given as in (13): Find u‘ :¼
ðu‘ ,f‘ÞAH such that

/ru‘ ,rvSO�/f‘ ,vSG ¼/f ,vSOþ/f0,vSG,

/c,ð12 �KÞu‘þVf‘SG ¼/c,ð12�KÞU0,‘SG ð18Þ

for all v¼ ðv,cÞAH. By definition, U‘AX ‘ then is a Galerkin
approximation of u‘AH so that the quasi-optimality (11) holds
with u and U%

‘ replaced by u‘ and U‘ , respectively.
For the symmetric FEM–BEM coupling for some non-linear

interface problem, the following result is already stated in [5,
Proposition 1]:

Proposition 2. With u,u‘AH the continuous solutions of (2) and

(18) and U%

‘ ,U‘AX ‘ the corresponding Galerkin solutions of (8) and

(13), it holds

C�1
1 :9U%

‘�U‘:9r:9u�u‘:9rC2 oscG,‘ with oscG,‘ :¼ Jh
1=2
‘ ðu0�U0,‘Þ

0JL2ðGÞ,

ð19Þ

where ð�Þ0 denotes the arclength derivative along G. While C140
depends only on O, the constant C240 depends additionally on

sðT 0Þ.

Proof. According to linearity, U%

‘�U‘AX ‘ is the Galerkin approx-
imation of u�u‘AH. Therefore, the quasi-optimality (11) proves

:9U%

‘�U‘:9r:9ðu�u‘Þ�ðU
%

‘�U‘Þ:9þ:9u�u‘:9t:9u�u‘:9:
e line (left, top). Refinement of T is done by bisecting the reference edge, where its

posite to this newest vertex (left, bottom). To avoid hanging nodes, one proceeds as

for refinement (top). Using iterated newest vertex bisection, the element is then
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Recall that the linear mapping H : H-Hn from (10) is an
isomorphism. Therefore, there holds

:9u�u‘:9CJHu�Hu‘JHn CJu0�U0,‘JH1=2ðGÞ

since only the trace data differ. By definition, there holds
u0�U0,‘ ¼ ð1�I‘Þu0. Nodal interpolation on the one-dimensional
manifold G satisfies

C�1
3 Jv�I‘vJH1=2ðGÞrJh1=2

‘ ðv�I‘vÞ
0JL2ðGÞrJh1=2

‘ v0JL2ðGÞ

for all vAH1ðGÞ, ð20Þ

see [12, Theorem 1; 16, Corollary 3.4; 28, Lemma 2.2], where the
constant C340 depends only on G and an upper bound of the
local mesh-ratio kðEG‘ Þ. &

3.4. Residual-based error estimator

Let ½@nU‘�9E denote the jump of @nU‘ over the edge EAEO‘ . We
assume additional regularity f0AL2ðGÞ for the given data and
define the edge jump contributions by

g2
‘ :¼

X
EAEO‘

g‘ðEÞ
2 with g‘ðEÞ :¼ Jh1=2

‘ ½@nU‘�JL2ðEÞ

as well as the edge oscillations by

osc2
O,‘ :¼

X
EAEO‘

oscO,‘ðEÞ
2 with oscO,‘ðEÞ :¼ Jh‘ðf�fEÞJL2ðo‘,EÞ

,

where fE ¼ 9o‘,E9
�1R

o‘,E
f dx denotes the integral mean of f over

o‘,E.

Lemma 3. The following local estimates hold:
(i)
 oscO,‘ðEÞrC4Jh‘f JL2ðo‘,EÞ
for all EAEO‘ ,
(ii)
 Jh‘f JL2ðTÞrC5ðg‘ðE‘,zÞþoscO,‘ðE‘,zÞÞ for all zAðK‘ \ TÞ\G,
where we abbreviate e.g. g‘ðE‘,zÞ2 ¼
P

EAE‘,zg‘ðEÞ
2. The constants

C4,C540 depend only on the shape regularity sðT 0Þ of the initial

mesh.

Proof. The first estimate follows by the best approximation
property of fE. The proof of the second estimate is found e.g. in
[33, Lemma 4] and relies on certain inverse-type estimates as well
as on the fact that newest vertex bisection only leads to finitely
many shapes of triangles. &

We now have the following reliability result for a residual-
based a posteriori error estimate.

Theorem 4. Suppose that u‘AH is the unique solution of (18) and

U‘AX ‘ is its Galerkin approximation (13). Assume additional reg-

ularity f0AL2ðGÞ. Then, there holds

C�1
6 :9u‘�U‘:9rR‘ :¼ ðosc2

O,‘þg
2
‘ þJh1=2

‘ ðf0þF‘�@nU‘ÞJ
2
L2ðGÞ

þJh1=2
‘ ðð

1
2�KÞðU0,‘�U‘Þ�VF‘Þ

0J2
L2ðGÞÞ

1=2, ð21Þ

where the constant C640 depends only on O and sðT 0Þ.

Proof. We consider the isomorphism H : H-Hn from (10) and
the functional F‘AHn defined by

F‘ðvÞ :¼ /f ,vSOþ/f0,vSGþ/c,ð12�KÞU0,‘SG for v¼ ðv,cÞAH:
ð22Þ

Note that (18) is equivalently stated by

ðHu‘ÞðvÞ ¼ F‘ðvÞ for all vAH,

whereas the Galerkin (13) reads

ðHU‘ÞðV‘Þ ¼ F‘ðV‘Þ for all V‘AX ‘:
This and the fact that H is an isomorphism yields

:9u‘�U‘:9C sup
vAH\f0g

9F‘ðvÞ�HU‘ðvÞ9
:9v:9

¼ sup
vAH\f0g

9F‘ðv�V‘Þ�HU‘ðv�V‘Þ9
:9v:9

ð23Þ

for all V‘AX ‘. To estimate the right-hand side, let v¼ ðv,cÞAH
and V‘ ¼ ðJ‘v,0ÞAX ‘ , where J‘ : H1ðOÞ-S1

ðT ‘Þ is a Clément-type
quasi-interpolation operator, see e.g. [1,49]. Note that

F‘ðv�V‘Þ�HU‘ðv�V‘Þ ¼/f ,v�J‘vSO�/rU‘ ,rðv�J‘vÞSO

þ/f0þF‘ ,v�J‘vSG

þ/c,ð12�KÞðU0,‘�U‘Þ�VF‘SG: ð24Þ

With standard arguments [1,49], we infer

9F‘ðv�V‘Þ�HU‘ðv�V‘Þ9

tJvJH1ðOÞJh‘f JL2ðOÞ þJvJH1ðOÞJh1=2
‘ ½@nU‘�JL2

S
EO‘

� �
þJvJH1ðOÞJh1=2

‘ ðf0þF‘�@nU‘ÞJL2ðGÞ

þJcJH�1=2ðGÞJð
1
2�KÞðU0,‘�U‘Þ�VF‘JH1=2ðGÞ

r:9v:9ðJh‘f JL2ðOÞ þg‘þJh1=2
‘ ðf0þF‘�@nU‘ÞJL2ðGÞ

þJð12�KÞðU0,‘�U‘Þ�VF‘JH1=2ðGÞÞ: ð25Þ

With Lemma 3, we see

Jh‘f JL2ðOÞtoscO,‘þg‘:

Finally, it remains to estimate the last term in (25). To this end,
we need the following 2D BEM result from [12, Theorem 1], see
also [29,47]: Provided that the function wAH1ðGÞ has at least one

zero on each element EAEG‘ , there holds

JwJH1=2ðGÞrC7Jh1=2
‘ w0JL2ðGÞ, ð26Þ

where the constant C740 depends only on G and an upper bound of

kðEG‘ Þ. We apply this result to w :¼ ð12�KÞðU0,‘�U‘Þ�VF‘ . First,
note that U0,‘�U‘AH1ðGÞ. Second, note that F‘AL2ðGÞ. Third,
recall that V : Hs�1=2ðGÞ-Hsþ1=2ðGÞ and K : Hsþ1=2ðGÞ-Hsþ1=2ðGÞ
are bounded linear operators for all �1=2rsr1=2. Consequently,
the case s¼ 1=2 proves wAH1ðGÞ, and the Sobolev inequality on
one-dimensional manifolds implies that w is continuous. Due to
the second equality in (13), we see thatZ

E
w dG¼ 0 for all EAEG‘ ,

where we simply choose C‘ ¼ wEAP0ðEG‘ Þ to be a characteristic
function. Consequently, the continuous function w has at least
one zero on each EAEG‘ . Now, [12, Theorem 1] yields

Jð12 �KÞðU0,‘�U‘Þ�VF‘JH1=2ðGÞtJh1=2
‘ ðð

1
2�KÞðU0,‘�U‘Þ�VF‘Þ

0JL2ðGÞ:

This concludes the proof of (21). &

Due to the triangle inequality and the aforegoing propositions,
we have the following result.

Corollary 5. Suppose that uAH is the solution of (2), whereas

U‘AX ‘ solves the perturbed Galerkin scheme (13). Then,

C�1
8 :9u�U‘:9rR‘ :¼ ðR

2
‘ þosc2

G,‘Þ
1=2, ð27Þ

where oscG,‘ and R‘ are defined in Proposition 2 and Theorem 4. The

constant C840 depends only on O and sðT 0Þ. &

3.5. (h�h/2)-type error estimator

In [5], we recently introduced some simple (h�h/2)-based
error estimators for the symmetric FEM–BEM coupling. The
ðh�h=2Þ-error estimation strategy is a well-known technique
for the a posteriori estimation of the error in the energy
norm :9u�U‘:9; see [35] in the context of ordinary differential
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equations, and the works of Bank [7–9] or the monograph
[1, Chapter 5] in the context of the finite element method.

Suppose that U‘AX ‘ is the Galerkin solution (13) for some
given mesh T ‘ . Let bT ‘ be the uniform refinement of T ‘ , i.e. all
edges EAEO‘ [ EG‘ are halved. Let bU‘A bX ‘ be the Galerkin solution
(13) with respect to bT ‘ , i.e.

bX ‘ :¼ S1
ðbT ‘Þ � P0ðbEG‘ Þ,

where bEG‘ :¼ bT ‘9G denotes the induced boundary partition. We
define the computable quantity

Z‘ :¼ :9bU‘�U‘:9: ð28Þ

Since the analysis of [5] is only based on the quasi-optimality
estimate (11) as well as on approximation results and inverse
estimates, the results directly carry over to the Johnson–
Nédélec FEM–BEM coupling. The following theorem recalls some
results from [5].

Theorem 6. Let u,u‘AH be the exact solutions of (2) and (18),
respectively. Let U‘AX ‘ and bU‘A bX ‘ be the Galerkin solution of (13),
whereas U%

‘ AX ‘ and bU%

‘ A bX ‘ denote the non-perturbed Galerkin

solutions (8). Then, the (h�h/2)-error estimator Z‘ satisfies

Z‘rC9:9u‘�U‘:9: ð29Þ

In particular, Z‘ is always efficient in the sense that

C�1
10 Z‘r:9u�U‘:9þoscG,‘: ð30Þ

Under the saturation assumption

:9u�bU%

‘ :9rCsat:9u�U%

‘ :9
with some ‘-independent constant 0oCsato1 ð31Þ

for the non-perturbed problem, there holds reliability

C�1
11 :9u�U‘:9rZ‘þoscG,‘: ð32Þ

Finally, the (h�h/2)-type error estimator

m2
‘ :¼ JrðbU ‘�I‘ bU ‘ÞJ

2
L2ðOÞ þJh1=2

‘ ð
bF‘�P‘

bF‘ÞJ
2
L2ðGÞ ð33Þ

with I‘ : CðOÞ-S1
ðT ‘Þ the nodal interpolation operator and P‘ :

L2ðGÞ-P0ðEG‘ Þ the L2-projection, is equivalent to Z‘ , i.e.

C�1
12 Z‘rm‘rC13Z‘: ð34Þ

The constant C940 depends only on O. The constants

C10,C12,C1340 depend only on O and sðT 0Þ, whereas C1140
additionally depends on the saturation constant Csat. &

We remark that the saturation assumption (31) dates back to
the early work [7], but may fail to hold in general [10,26].
However, it essentially states that the numerical scheme has
reached an asymptotic phase [32]. For lowest-order FEM, it can be
proven, if the given data are sufficiently resolved, see [26]. We
stress that the saturation assumption (31) is usually observed in
numerical experiments [5,32], but still remains mathematically
open in the context of BEM and the FEM–BEM coupling.

Whereas the (h�h/2)-error estimator Z‘ involves the non-local
norm J � JVCJ � JH�1=2ðGÞ, the error estimator m‘ is the sum of
(weighted) local L2-norms and can thus easily be used to steer
an adaptive mesh-refinement. Moreover, since a numerical imple-
mentation will always return the improved Galerkin solution bU‘

instead of U‘ , it is another advantage of m‘ that the computation of
U‘ is not needed. Finally, we stress that the Galerkin approxima-
tions U%

‘ and bU%

‘ are only used for theoretical reasons in Theorem
6 to formulate the saturation assumption (31).

Corollary 7. With the error estimator m‘ from Theorem6 and the

data oscillations from Proposition2, it holds

m‘ :¼ ðm2
‘ þosc2

G,‘Þ
1=2rC14:9u�U‘:9þoscG,‘: ð35Þ
Under the saturation assumption (31), it holds

:9u�U‘:9rC15m‘: ð36Þ

The constant C1440 depends only on O and sðT 0Þ, whereas C1540
additionally depends on the saturation constant Csat. &

3.6. Two-level error estimator

To abbreviate notation, let X‘ ¼ S1
ðT ‘Þ and bX ‘ ¼ S1

ðbT ‘Þ as well
as Y‘ ¼P0ðEG‘ Þ and bY ‘ ¼P0ðbEG‘ Þ. Let K‘ and bK‘ denote the set of
nodes for T ‘ and bT ‘ , respectively.

By definition of bT ‘ , each node zA bK‘\K‘ is the midpoint of an
edge EAEO‘ [ EG‘ , where EO‘ again denotes the set of all interior
edges of the triangulation T ‘. For EAEO‘ [ EG‘ , let zEA bX ‘\X‘ denote
the fine-mesh hat function associated with the midpoint z of E.
Let
�
 PO
‘ : H1ðOÞ-X‘
�
 PO
‘,E : H1ðOÞ-spanfzEg
denote the H1-orthogonal projections onto these discrete spaces.
The following result is a consequence of [50, Theorem 4.1] and
explicitly stated in [42, Lemma 3.1].

Lemma 8. For each function bV ‘A bX ‘ , it holds

C�1
16 J

bV ‘J
2
H1ðOÞrJPO

‘
bV ‘J

2
H1ðOÞ þ

X
EAEO‘ [EG‘

JPO
‘,E
bV ‘J

2
H1ðOÞrC17JbV ‘J

2
H1ðOÞ,

ð37Þ

where the constants C16,C1740 depend only on diamðOÞ and

sðT 0Þ. &

For each boundary edge EAEG‘ , let jEA
bY ‘\Y‘ denote a two-

level basis function with suppðjEÞ ¼ E and L2-orthogonality
/jE,wESG ¼ 0, where wE denotes the characteristic function on
E, i.e. the Haar function jE with value 71 on the first resp. second
half of E. Let
�
 PG
‘ : H�1=2ðGÞ-Y‘
�
 PG
‘,E : H�1=2ðGÞ-spanfjEg
denote the orthogonal projections with respect to the / � , �SV-scalar
product. Then, there holds the following norm equivalence, see e.g.
[27, Proposition 4.5].

Lemma 9. For discrete functions bC‘A bY ‘ , it holds

C�1
18 J

bC‘J
2
VrJPG

‘
bC‘J

2
Vþ

X
EAEG‘

JPG
‘,E
bC‘J

2
VrC19V2J bC‘J

2
V, ð38Þ

where the constants C18,C1940 depend only on G and the K-mesh

constant kðE0Þ. &

Following [42] and with the help of the aforegoing two
lemmata, we now introduce the two-level error estimator t‘ .

Theorem 10. For each interior edge EAEO‘ , we define the refinement

indicators

t‘ðEÞ :¼
9/f ,zESO�/rU‘ ,rzESO9

JzEJH1ðOÞ
, ð39Þ

whereas, for boundary edges EAEG‘ , we define

t‘ðEÞ :¼
9/f ,zESO�/rU‘ ,rzESOþ/f0þF‘ ,zESG9

JzEJH1ðOÞ

þ
9/jE,ðK�1

2ÞðU‘�U0,‘Þ�VF‘SG9
JjEJV

: ð40Þ
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Then, the two-level error estimator

t‘ :¼
X

EAEO‘ [EG‘

t‘ðEÞ2
0
@

1
A1=2

ð41Þ

is equivalent to the (h�h/2)-error estimator Z‘ , i.e. there holds

C�1
20 Z‘rt‘rC21Z‘: ð42Þ

The constants C20,C2140 depend only on O and sðT 0Þ.

Proof. We define the scalar product

0u,vT :¼

Z
O
ru � rv dxþ

Z
O

uv dxþ/f,VcS

for all u¼ ðu,fÞ, v¼ ðv,cÞAH

and note that 0 � , �T induces the norm :9 � :9 on H, i.e.
:9v9J2

¼0v,vT for all vAH. The Riesz theorem, applied to bX ‘ ,
guarantees the existence of a unique bE‘ ¼ ð

bE‘ ,be‘ÞA bX ‘ with

0bE‘ ,bV‘T¼ F‘ðbV‘Þ�HU‘ð
bV‘Þ for all bV‘A bX ‘ , ð43Þ

where F‘AHn is defined in (22). Recall that (13) is equivalently
stated by

HU‘ðV‘Þ ¼ F‘ðV‘Þ for all V‘AX ‘: ð44Þ

Moreover, there holds

:9bE‘:9¼ JF‘�HU‘JbX n

‘

¼ JHðbU‘�U‘ÞJbX n

‘

C:9bU‘�U‘:9,

where we have used that H : bX ‘-bX n

‘ is an isomorphism as well
as that HbU‘ð

bV‘Þ ¼ F‘ðbV‘Þ for all bV‘A bX ‘ is equivalent to HbU‘ ¼ F‘ inbX n

‘ . Let P‘ : H-X ‘ denote the orthogonal projection in H, where
orthogonality is understood with respect to the scalar product
0 � , �T. According to the symmetry of P‘ , definition (43) and (44)
we observe

:9P‘
bE‘9J

2
¼0P‘

bE‘ ,P‘
bE‘T¼0bE‘ ,P‘

bE‘T

¼ F‘ðP‘
bE‘Þ�HU‘ðP‘

bE‘Þ ¼ 0:

Since P‘ ¼ ðP
O
‘ ,PG

‘ Þ, we may apply Lemmas 8 and 9 to see

:9bU‘�U‘9J2C
X

EAEO‘

JPO
‘,E
bE‘J2

H1ðOÞ þ
X

EAEG‘

ðJPG
‘,E
be‘J2

VþJP
O
‘,E
bE‘J2

H1ðOÞÞ:

ð45Þ

The right-hand side is, in fact, the two-level error estimator t‘
defined in (39) and (40). Therefore, (45) proves that the two-level
error estimator t‘ is equivalent to the (h�h/2)-error estimator
Z‘ ¼ :9bU‘�U‘:9 from Theorem 6, where the equivalence constants
depend only on O and sðT 0Þ. This concludes the proof. &

Corollary 11. With the two-level error estimator t‘ from Theorem

10 and the data oscillations from Proposition2, it holds

t‘ :¼ ðt2
‘ þosc2

G,‘Þ
1=2rC22ð:9u�U‘:9þoscG,‘Þ: ð46Þ

Under the saturation assumption (31), it holds

:9u�U‘:9rC23t‘: ð47Þ

The constant C2240 depends only on O and sðT 0Þ, whereas C2340
additionally depends on the saturation constant Csat.

Proof. The proof follows from t‘CZ‘þoscG,‘ and estimates
(30)–(32) from Theorem 6. &

3.7. Local estimates for residual and two-level indicators

According to Theorems 4, 6, and 10, it holds that

t‘CZ‘t:9u‘�U‘:9tR‘:
In this section, we prove that the estimate t‘tR‘ holds even
locally. To that end, we write the residual error estimator R‘ from
(21) as sum

R2
‘ ¼

X
EAEO‘

R‘ðEÞ
2
þ
X

EAEG‘

R‘ðEÞ
2

ð48Þ

of certain local contributions. For an interior edge EAEO‘ , we
define

R‘ðEÞ
2 :¼ g‘ðEÞ

2
þoscO,‘ðEÞ

2, ð49Þ

whereas for a boundary edge EAEG‘ , there holds

R‘ðEÞ
2 :

¼ Jh1=2
‘ ðf0þF‘�@nU‘ÞJ

2
L2ðEÞ þJh1=2

‘ ðð
1
2�KÞðU0,‘�U‘Þ�VF‘Þ

0J2
L2ðEÞ:

ð50Þ

Comparing these with the local contributions t‘ðEÞ from
(39)–(40), we obtain the following result.

Theorem 12. For each interior edge EAEO‘ , it holds

C�1
24 t‘ðEÞrR‘ðE‘,zÞ for all zAðE \K‘Þ\G: ð51Þ

For each boundary edge EAEG‘ and the unique element TAT ‘ with

E¼ @T \ G, it holds

C�1
25 t‘ðEÞrR‘ðEÞþR‘ðE‘,zÞ with z¼ ðT \K‘Þ\G: ð52Þ

The constants C24,C2540 depend only on O and sðT 0Þ.

Proof. According to uniform shape regularity, we first note that

JzEJL2ðOÞCdiamðTÞ, JzEJL2ðEÞCdiamðEÞ1=2, JrzEJL2ðOÞC1,

where TAT ‘ is an arbitrary element with E� @T . The constants in
the latter estimates depend only on an upper bound of sðT ‘Þ.

For an interior edge E¼ Tþ \ T�AEO‘ , piecewise integration by

parts shows

t‘ðEÞr
Jf JL2ðTþ [T�ÞJzEJL2ðTþ [T�ÞþJ½@nU‘�JL2ðEÞJzEJL2ðEÞ

JrzEJL2ðOÞ

tJh‘f JL2ðTþ [T�Þþg‘ðEÞ: ð53Þ

For each node zAðE \K‘Þ\G, Lemma 3 yields Jh‘f JL2ðTþ [T�Þt
g‘ðE‘,zÞþoscO,‘ðE‘,zÞ ¼ R‘ðE‘,zÞ. This and g‘ðEÞrR‘ðEÞtR‘ðE‘,zÞ con-

clude (51).

For a boundary edge E¼ T \ GAEG‘ , we use integration by parts

and norm equivalence JjEJH�1=2ðGÞCJjEJV to estimate

t‘ðEÞr
Jf JL2ðTÞJzEJL2ðTÞ þJf0þF‘�@nU‘JL2ðEÞJzEJL2ðEÞ

JrzEJL2ðTÞ

þJ
1

2
�K

� �
ðU0,‘�U‘Þ�VF‘JL2ðEÞ

JjEJL2ðEÞ

JjEJV

tJh‘f JL2ðTÞ þJh1=2
‘ ðf0þF‘�@nU‘ÞJL2ðEÞ

þ h�1=2
‘

1

2
�K

� �
ðU0,‘�U‘Þ�VF‘

� �����
����

L2ðEÞ

, ð54Þ

where we used an inverse estimate Jh1=2
‘ jEJL2ðGÞtJjEJH�1=2ðGÞ for

jEA
bY ‘\Y‘. By use of the second equation in (13), we obtainZ

E
w dG¼/wE,wSG ¼ 0 for w :¼ ð12�KÞðU0,‘�U‘Þ�VF‘AH1ðGÞ:

Therefore, we may apply the Poincaré inequality on E to see

h�1=2
‘

1

2
�K

� �
ðU0,‘�U‘Þ�VF‘

� �����
����

L2ðEÞ

r
1

p h1=2
‘

1

2
�K

� �
ðU0,‘�U‘Þ�VF‘

� �0����
����

L2ðEÞ

: ð55Þ

The combination of (54)–(55) thus proves

t‘ðEÞtJh‘f JL2ðTÞ þR‘ðEÞ:
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Finally, Lemma 3 gives Jh‘f JL2ðTÞtR‘ðE‘,zÞ with z¼ ðT \K‘Þ\T the

interior node of T. &

To state the final theorem, let P‘ denote the L2-orthogonal
projections P‘ : L2ðGÞ-P0ðEG‘ Þ and P‘ : L2ðOÞ-P0ðT ‘Þ, respec-
tively. Furthermore, we define the mesh quantities

h‘,max :¼ maxfdiamðEÞ : EAEG‘ g

and

h‘,min :¼ minfdiamðEÞ : EAEG‘ g:

With these ingredients, we have the following efficiency-type
estimate in case that the boundary partition EG‘ is quasi-uniform.
The proof follows by adaption of the arguments of [11] to the
Johnson–Nédélec coupling. Since the details are, however, quite
lengthy and technical and since the result is comparably weak
(cf. the discussion in Section 5), we refer to the preprint [4].

Theorem 13. We assume that the exact solution u¼ ðu,fÞ of (2)
satisfies the additional regularity assumption u9GAH1ðGÞ and

fAL2ðGÞ. Then, it holds that

C�1
26 R‘r

h1=2
‘,max

h1=2
‘,min

:9u�U‘:9þ
h‘,max

h1=2
‘,min

ðJf�P‘fJL2ðGÞ þJu�I‘uJH1ðGÞÞ

þJh‘ðf�P‘f ÞJL2ðOÞ þJh1=2
‘ ðf0�P‘f0ÞJL2ðGÞ þh1=2

‘,maxJðu0�U0,‘Þ
0JL2ðGÞ,

where the constant C2640 depends only on O, the shape regularity

constant sðT ‘Þ, and the K mesh constant kðEG‘ Þ. &

4. Numerical experiments

In this section, we present a numerical example to compare
the different error estimators and demonstrate the advantages of
adaptive mesh refinement compared with uniform refinement. At
first, we consider the error estimator n‘ which is a placeholder for
the presented estimators R‘ , m‘ , or t‘. The adaptive algorithms
(cf. Algorithm 14–16) use Dörfler marking [25] with an adaptivity
parameter yAð0,1Þ, i.e.

yn2
‘ :¼ yðn2

‘ þosc2
G,‘Þr

X
tAM‘

n‘ðtÞ2þ
X

EAM‘\EG‘

oscG,‘ðEÞ
2, ð56Þ

where M‘DT ‘ [ EO‘ [ EG‘ is the set of marked elements and the
local contributions n‘ðtÞ are defined in the respective Sections
4.2–4.4. The local data oscillations are defined by

oscG,‘ðEÞ :¼ Jh1=2
‘ ðu0�U0,‘Þ

0JL2ðEÞ for all EAEG‘ : ð57Þ

We prescribe the exact solution ðuint,uextÞ of the transmission
problem (1), and the data ðu0,f0,f Þ are computed from there. Note
that the contribution Jf�F‘JV to the error :9u�U‘:9 can hardly be
computed analytically. However, with the quasi-optimality (11) it
holds that

:9u�U‘:9t:9u�U%

‘ :9þoscG,‘tJu�U‘JH1ðOÞ þ min
C‘ AP0ðEG‘ Þ

Jf�C‘JVþoscG,‘

with u¼ ðu,fÞ and U‘ ¼ ðU‘ ,F‘Þ. In our experiment, the exterior
normal derivative has additional regularity fAL2ðGÞ. We there-
fore obtain

min
C‘ AP0ðEG‘ Þ

Jf�C‘JVrJð1�P‘ÞfJVtJh1=2
‘ ð1�P‘ÞfJL2ðGÞ

rJh1=2
‘ ðf�F‘ÞJL2ðGÞ

with P‘ : L2ðGÞ-P0ðT ‘Þ being the L2-orthogonal projection, see
[15, Theorem 4.1]. Altogether, we see that

:9u�U‘:9tJu�U‘JH1ðOÞ þJh1=2
‘ ðf�F‘ÞJL2ðGÞ þoscG,‘

¼: err‘ðuÞþerr‘ðfÞþoscG,‘ ¼: err‘ ð58Þ
provides a computable upper bound for the energy error. In the
same spirit, the error estimator n‘ is split into

n2
‘ ¼

X
tAT ‘[EO‘

n‘ðtÞ2þ
X

EAEG‘

n‘ðEÞ2 ¼: n‘ðuÞ2þn‘ðfÞ2: ð59Þ

Empirically, we have evidence that for all three estimators it holds

n‘ :¼ n‘ðuÞþn‘ðfÞþoscG,‘t:9u�U‘:9þoscG,‘

tn‘ðuÞþn‘ðfÞþoscG,‘ ¼ n‘ , ð60Þ

where we can prove the lower bound for m‘ and t‘ (Theorems 6 and
11). However, for R‘ the lower bound is only proven on quasi-
uniform meshes (Theorem 13). The upper bound holds for R‘
without restrictions (Theorem 5) whereas it holds for m‘ and R‘
only under the saturation assumption (Theorem 6 and 11).

In the following, we plot the five quantities err‘ðuÞ, err‘ðfÞ,
n‘ðuÞ, n‘ðfÞ, and oscG,‘ from (58)–(59) over the number N¼ T ‘ of
triangles, where both axes are scaled logarithmically. We consider
uniform mesh-refinement T ‘ ¼ T ðunifÞ

‘ with T ðunifÞ
‘ :¼ bT ‘�1, cf.

Section 3.2, as well as adaptive mesh-refinement, where the
sequence of meshes T ‘ ¼ T ðadapÞ

‘ is generated by the Algorithms
14–16 with y¼ 0:25. Note that a decay with slope �a indicates
some dependence OðN�aÞ. For uniform meshes with mesh-size h,
this corresponds to Oðh2aÞ. We stress that, by theory, an overall
slope of a¼ 1=2 is thus optimal with P1-finite elements.

For the adaptive mesh-refinement of Algorithms 15 and 16,
recall that all integral operators have to be computed with respect to
the fine mesh bT ‘. Consequently, we then consider doscG,‘ ¼ Jh1=2

‘

ðu0�
bU0,‘Þ

0JL2ðGÞ instead of oscG,‘ . We stress that all results of this
paper hold with oscG,‘ replaced bydoscG,‘ as well. Moreover, although
U‘ is not needed by Algorithm 15, we nevertheless plot err‘ to give a
fair comparison of uniform and adaptive mesh-refinement.

Besides the experimental convergence rates, we plot err‘ðuÞ,
err‘ðfÞ, n‘ðuÞ, n‘ðfÞ, and oscG,‘ (resp. doscG,‘Þ over the computa-
tional time t‘ .
�
 For uniform mesh-refinement, t‘ ¼ tðunifÞ
‘ is the time needed for

‘ uniform refinements of the initial mesh T 0 to obtain T ‘ , plus
the time for building and solving the Galerkin system with
respect to X ‘.

For adaptive mesh-refinement, T ‘ depends on the entire history
of preceding meshes (and solutions). Therefore, the computa-
tional time has to be defined differently. Set tðadapÞ

�1 :¼ 0.
�
 For adaptive mesh-refinement, t‘ ¼ tðadapÞ
‘ is the sum of the

time tðadapÞ
‘�1 elapsed in prior steps of the adaptive algorithm,

plus the time for performing one adaptive step on the ‘-th
mesh, i.e. steps (i)–(vi) of Algorithms 15 and 16 or steps (i)–
(v) of Algorithm 14.

Although this definition seems to favor uniform mesh-refinement,
adaptive mesh-refinement will empirically turn out to be superior.
All experiments are conducted by use of MATLAB (Release 2009b)
running on a common 64 Bit Linux system with 32 GB of RAM.
Throughout, the occurring linear systems are solved by use of the
MATLAB backslash operator. For the computation of the boundary
integral operators, we use the MATLAB BEM library HILBERT, cf. [2];
see http://www.asc.tuwien.ac.at/abem/hilbert/ for details.

4.1. The problem

We consider the Z-shaped domain visualized in Fig. 2.
We prescribe the exact solution of (1) as

uintðx,yÞ ¼ r4=7sinð47jÞ in Oint,

http://www.asc.tuwien.ac.at/abem/hilbert/
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uextðx,yÞ ¼
xþyþ0:25

ðxþ0:125Þ2þðyþ0:125Þ2
in Oext, ð61Þ

where ðr,jÞ are the polar coordinates of ðx,yÞAR2 with respect to
(0,0). Recall that ðu,fÞ denotes the exact solution of (2) and note
that u¼ uint has a generic singularity at the reentrant corner,
whereas f¼ruext � n is piecewise smooth. Note that
�Duint ¼ 0¼�Duext, whence oscO,‘ ¼ 0 for all ‘AN.
4.2. Experiment with residual-based error estimator R‘

For the residual-based error estimator R‘ , we define the local
contributions as follows:

R‘ðEÞ
2 :¼ oscO,‘ðEÞ

2
þg‘ðEÞ

2 for all EAEO‘ ,

R‘ðEÞ
2 :¼ Jh1=2

‘ ðf0þF‘�@nU‘ÞJ
2
L2ðEÞ

þJh1=2
‘ ðð

1
2�KÞðU0,‘�U‘Þ�VF‘Þ

0J2
L2ðEÞ for all EAEG‘ : ð62Þ
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Fig. 2. Z-shaped domain and initial triangulation T 0 for the numerical

experiment.
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Fig. 3. Estimators err‘ðuÞ, err‘ðfÞ, R‘ðuÞ and R‘ðfÞ from (58)–(59) as well as data os

computational time (right).
The adaptive algorithm for the residual-based error estimator R‘
reads as follows:

Algorithm 14. INPUT: Initial meshes ðT 0,E0Þ for ‘ :¼ 0, adaptivity
parameter yA ð0,1Þ.
(i)
10

10

10

10−

10−

10−

cillati
Compute discrete solution U‘AX ‘.

(ii)
 Compute refinement indicators R‘ðtÞ for all tAEO‘ [ EG‘ .
(iii)
 Determine set M‘DEO‘ [ EG‘ which satisfies Dörfler marking
(56).
(iv)
 Mark edges EAE‘ \M‘ for refinement.

(v)
 Generate new meshes ðT ‘þ1,EG‘þ1Þ, increase counter ‘/‘þ1,

and goto (i).
OUTPUT: Sequence of error estimators ðR‘Þ‘AN and discrete solu-
tions ðU‘Þ‘AN. &

In Fig. 3, we plot the convergence of the error quantities from
(58)–(59). Since the interior solution has a generic singularity at
the reentrant corner, uniform mesh-refinement leads to a sub-
optimal order of convergence a¼ 2=7, i.e. we observe Oðh4=7Þ. For
err‘ðuÞ and R‘ðuÞ, this asymptotic is observed already on coarse
meshes. For err‘ðfÞ and R‘ðfÞ, a preasymptotic phase occurs. For
adaptive mesh-refinement, we observe the optimal order of
convergence a¼ 1=2 for err‘ðuÞ and R‘ðuÞ. Moreover, the terms
err‘ðfÞ and R‘ðfÞ even converge with order Oðh3=2Þ which is
optimal for the approximation of a smooth function by piecewise
constants with respect to the H�1=2ðGÞ-norm.

The plots of Fig. 3 provide comparisons between uniform and
adaptive mesh-refinement. We plot R from (60) as well as err‘
from (58) over the computational time. Both plots underline that
the proposed adaptive algorithm is superior to uniform mesh-
refinement.
4.3. Experiment with (h�h/2)-type error estimator m‘

With the local contributions of m‘ defined by

m‘ðTÞ
2
¼ Jð1�I‘ÞbU ‘J

2
H1ðTÞ ð63Þ

for triangles TAT ‘ and by

m‘ðEÞ
2
¼ diamðEÞJð1�P‘Þ

bF‘J
2
L2ðEÞ ð64Þ

for line segments EAEG‘ , we consider the convergent adaptive
algorithm proposed in [5].
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Algorithm 15. INPUT: Initial meshes ðT 0,E0Þ for ‘ :¼ 0, adaptivity
parameter yAð0,1Þ.
(i)
Fig. 4
comp

Fig. 5
comp
Generate uniformly refined meshes bT ‘ , bEG‘ .

(ii)
 Compute discrete solution bU‘A bX ‘.
(iii)
 Compute refinement indicators m‘ðtÞ for all tAT ‘ [ EG‘ .

(iv)
 Determine set M‘DT ‘ [ EG‘ which satisfies Dörfler marking

(56).

(v)
 Mark triangles TAT ‘ \M‘ and boundary elements EAEG‘ \
M‘ for refinement.
(vi)
 Generate new meshes ðT ‘þ1,EG‘þ1Þ, increase counter ‘/‘þ1,
and goto (i).
OUTPUT: Sequence of error estimators ðm‘Þ‘AN and discrete solu-
tions ðbU‘Þ‘AN. &

Fig. 4 provides the experimental convergence results for the
experiment. The observations for the convergence rate are the
same as in Section 4.2. The advantage in computational time takes
effect after a long preasymptotic phase.
4.4. Experiment with two-level error estimator t‘

The local contributions t‘ðEÞ for EAEG‘ [ EO‘ are defined in
Theorem 11. Similar to the (h�h/2)-based adaptive algorithm
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for m‘ the algorithm for the two-level error estimator t‘ reads as
follows:

Algorithm 16. INPUT: Initial meshes ðT 0,E0Þ for ‘ :¼ 0, adaptivity
parameter yA ð0,1Þ.
(i)
10

10

10

10−

10−

10−

cillati

10

10

10

10−

10−

10−

illatio
Compute discrete solution U‘AX ‘. G

(ii)
 Generate uniformly refined meshes bT ‘ , bE ‘ .
(iii)
 Compute refinement indicators t‘ðtÞ for all tAEO‘ [ EG‘ .

(iv)
 Determine set M‘DEO‘ [ EG‘ which satisfies Dörfler marking

(56).

(v)
 Mark edges EAE‘ \M‘ for refinement.
(vi)
 Generate new meshes ðT ‘þ1,EG‘þ1Þ, increase counter ‘/‘þ1,
and goto (i).
OUTPUT: Sequence of error estimators ðt‘Þ‘AN and discrete solu-
tions ðU‘Þ‘AN. &

Fig. 5 provides the experimental convergence results.

4.5. Comparison of R‘ , m‘ , and t‘

Now, we want to compare the three proposed estimators in
terms of convergence rate and time consumption. We plot the
quantities

err‘ðnÞ :¼ ðerr‘ðuÞ
2
þerr‘ðfÞ2þosc2

G,‘Þ
1=2 as well as n‘ , ð65Þ
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Fig. 6. Error quantities err‘ðRÞ, err‘ðmÞ, err‘ðtÞ for the three adaptive algorithms and err‘ for uniform mesh-refinement plotted over the number N ¼ T ‘ of triangles (left) and

over the computational time (right).
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where the adaptive algorithm is steered by the estimator n‘ from
(60) and n‘AfR‘ ,m‘ ,t‘g. Note that all three estimators produce the
same rate of convergence, but we observe significant differences
in the plot on the right-hand side, cf. Fig. 6.
5. Conclusions and remarks

5.1. Analytical results

In this work, we have transferred the a posteriori error analysis
for some 2D FEM–BEM model problem from the symmetric
coupling [22] to the Johnson–Nédélec coupling [37]. We have
analytically and numerically studied certain computable upper
(reliable) and lower (efficient) bounds of the FEM–BEM error
:9u�U‘:9 in the energy norm. Altogether, three different types of
a posteriori error estimators and corresponding adaptive mesh-
refinement techniques have been considered.

First, we adapted the weighted-residual approach from the
seminal work [20]. Contrary to the original work, our variant of
the estimator R‘ involves edge oscillations oscO,‘ instead of the
volume residuals Jh‘f JL2ðOÞ. Thus, the interior edge jumps gener-
ically dominate the a posteriori error estimate in the sense that, in
numerical experiments, adaptive mesh-refinement empirically
leads to optimal convergence behavior R‘ ¼OðN�1=2Þ ¼ g‘ for the
interior jumps, whereas the other contributions even appear to be
of higher order. Corollary 5 states reliability of R‘ , i.e. up to data
oscillations R‘ provides an upper bound for the error.

Second, we observed that the (h�h/2)-based approach of [5]
carries over to the Johnson–Nédélec formulation without any
modification. In Theorem 6, we collected the results from [5] on
the canonical estimator Z‘ and its localized and simplified variant
m‘. The latter might be attractive from an implementational point
of view since there is almost no overhead for its realization.

Third, we proved that the two-level error estimation technique
from [42] can be used for the Johnson–Nédélec formulation as
well. For our linear model problem, Theorem 10 states that this
estimator is equivalent to the (h�h/2)-estimator from [5]. As a
consequence, we could relax the saturation assumption of [42] in
the following sense: In [42], the authors assumed linear conver-
gence :9u�U‘þ1:9rk:9u�U‘:9 with some 0oko1 of the adap-
tively generated solutions U‘ and then derived reliability and
efficiency of the two-level estimator t‘ from that assumption.
Contrary, we only assume that uniform refinement of the trian-
gulation T ‘ leads to a uniform improvement of the error, see our
statement of the saturation assumption in (31). Our analysis
shows that only the upper bound hinges on the saturation
assumption (31), whereas efficiency holds in general. Moreover,
besides the global relation t‘tR‘ between the two-level error
estimator t‘ and the residual error estimator R‘ , we proved that
this estimate holds even locally (Theorem 12). Estimates of this
type have first been observed for BEM in [13].

5.2. Numerical results

In our numerical experiments, we observe throughout that the
curves of the error estimators n‘AfR‘ ,m‘ ,t‘g and the error bound
err‘ are parallel for uniform as well as adaptive mesh-refinement.
This gives numerical evidence for the efficiency and reliability of all
estimators. First, this confirms reliability of R‘ (Corollary 5) as well
as efficiency of m‘ (Corollary 7) and t‘ (Corollary 11). Second, it
indicates that the efficiency of the residual error estimator R‘ holds
at least under much weaker assumption than those of Theorem 13.
Third, we obtain numerical evidence for the saturation assumption
which guarantees the reliability of m‘ as well as t‘ .

Moreover, we observe that the three proposed adaptive algo-
rithms regain the optimal order of convergence OðN�1=2Þ with
respect to the number N¼ T ‘ of elements. Contrary, uniform
mesh-refinement usually suffers from singularities of the
unknown solution and/or the given data and only leads to
suboptimal convergence behavior. With respect to computational
time, we see that already for a tolerance :9u�U‘:9� 10�1 adaptive
mesh-refinement is superior to a uniform approach, although the
time-measurement in the adaptive case includes some error
estimation which we neglect in case of uniform mesh-refinement.
The tolerance 10�1 is satisfied for about N¼10,000 uniform resp.
N¼700 adaptive elements, see Fig. 6.

An overall comparison of the considered error estimators can be
concluded as follows: The adaptive algorithms driven by R‘
(Algorithm 14), m‘ (Algorithm 15), and t‘ (Algorithm 16) empirically
regain the optimal order of convergence. The error curves over
N¼ T ‘ almost coincide in any case. Whereas m‘ is attractive in
practice since there is almost no implementational overhead, we
found that the R‘-based strategy is favorable for larger problems with
respect to computational time. We therefore recommend to use m‘ to
set-up an adaptive scheme and check the implementation, while R‘
should be implemented to obtain the most effective realization.

5.3. Generalization to 3D

Similar arguments can be used to prove that the main results
in Theorems 4, 6, 10, and 12 remain valid if we consider the
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model problem (1) and its FEM–BEM formulation (2) in 3D. The
only critical difference is that an approximation result of [14,30]
is needed to localize the H1=2-norm in (26), since H1-functions on
2D manifolds can be discontinuous. Then, the arclength derivative
ð�Þ
0 has to be replaced by the surface gradient rGð�Þ.
The localization of the H1=2-norm for the data approximation, cf.

Proposition 2, is currently under consideration [38]. Since H1-func-
tions on the 2D manifold G can be discontinuous, nodal interpolation
I‘ must not be used to discretize U0,‘ ¼ I‘u0. Instead, we prove in [38]
that one may use either the L2-orthogonal projection onto S1

ðEG‘ Þ or a
Scott–Zhang-type quasi-interpolation operator. Similar to the 2D
case, the data approximation term then reads osc‘ ¼ Jh1=2

‘ rG

ðu0�U0,‘ÞJL2ðGÞ. Corollaries 5, 7, and 11 then hold accordingly.

5.4. Open questions and future work

Mathematically, not much is known about the convergence of the
proposed adaptive algorithms in the sense of U‘-u as ‘-1. For
efficient estimators like m‘ and t‘ , convergence of the estimator to
zero is a necessary condition. Based on the concept of estimator
reduction [3], it is proven in [5] that the (h�h/2)-based Algorithm 15
leads to estimator convergence m‘-0 as ‘-1. To the best of our
knowledge, there are no convergence results known for the other two
adaptive algorithms which are driven by R‘ resp. t‘ .

Moreover, quasi-optimality of all three algorithms which is
empirically observed in numerical experiments, is mathematically
open. Recently, there has been a huge step in the analytical under-
standing of convergence and quasi-optimality of adaptive finite
element methods, cf. [21] and the references therein. However, even
for simple model problems, quasi-optimality of adaptive boundary
element methods is a major open issue, cf. [3,18,31].

In our numerical experiments, we empirically observe that
adaptive mesh-refinement leads to the optimal order of convergence
in each component of the error of the Galerkin solution U‘ ¼ ðU‘ ,F‘ÞA
X ‘ , i.e. Ju�U‘JH1ðOÞ ¼OðN�1=2Þ and Jf�F‘JH�1=2ðGÞ ¼ OðN�3=4Þ, which
is observed for all adaptive strategies in Figs. 3–5. In fact, the quasi-
optimality (11) would only predict OðN�1=2Þ for both terms, if this
rate is possible. To the best of our knowledge, this observation is not
even mathematically understood in case of a smooth solution
u¼ ðu,fÞAH2ðOÞ � H1ðGÞ �H and uniform mesh-refinement.

Finally, the saturation assumption (31) is mathematically
open. In case of finite element model problems, one can prove
that small data oscillation implies the saturation assumption [26].
More precisely, the triangulation has to resolve the given data so
that the data approximation error is smaller than the Galerkin
error. One may expect that a similar result should also hold for
BEM or the FEM–BEM coupling. The non-locality of the involved
boundary integral operators imposes, however, severe difficulties,
and we expect that new mathematical techniques have to be
developed. Anyhow, this is an additional reason why one should
include the resolution of the given data into the adaptive scheme.
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2009-03, ETH Zürich; January 2009.

[20] Carstensen C, Stephan E. Adaptive coupling of boundary elements and finite
elements. Math Model Numer Anal 1995;29:779–817.

[21] Cascon J, Kreuzer C, Nochetto R, Siebert K. Quasi-optimal convergence
rate for an adaptive finite element method. SIAM J Numer Anal 2008;46:
2524–50.

[22] Costabel M. A symmetric method for the coupling of finite elements and
boundary elements. In: Whiteman J, editor. The mathematics of finite
elements and applications IV, MAFELAP 1987. London: Academic Press;
1988. p. 281–8.

[23] Costabel M, Ervin V, Stephan E. Experimental convergence rates for various
couplings of boundary and finite elements. Math Comput Modelling
1991;15:93–102.

[24] Costabel M, Stephan E. Coupling of finite and boundary element methods for
an elasto-plastic interface problem. SIAM J Numer Anal 1990;27:1212–26.

[25] Dörfler W. A convergent adaptive algorithm for Poisson’s equation. SIAM J
Numer Anal 1996;33:1106–24.

[26] Dörfler W, Nochetto R. Small data oscillation implies the saturation assump-
tion. Numer Math 2002;91:1–12.

[27] Erath C, Ferraz-Leite S, Funken S, Praetorius D. Energy norm based a poster-
iori error estimation for boundary element methods in two dimensions.
Appl Numer Math 2009;59:2713–34.

[28] Erath C, Funken S, Goldenits P, Praetorius D. Simple error estimators for the
Galerkin BEM for some hypersingular integral equation in 2D. ASC Report 20/
2009. Wien: Institute for Analysis and Scientific Computing, Vienna Uni-
versity of Technology; 2009.

[29] Faermann B. Localization of the Aronszajn–Slobodeckij norm and application
to adaptive boundary element methods. I. The two-dimensional case. IMA J
Numer Anal 2000;20:203–34.

[30] Faermann B. Localization of the Aronszajn-Slobodeckij norm and application
to adaptive boundary element methods. II. The three-dimensional case.
Numer Math 2002;92:467–99.

[31] Ferraz-Leite S, Ortner C, Praetorius D. Convergence of simple adaptive
Galerkin schemes based on h�h/2 error estimators. Numer Math 2010;116:
291–316.

[32] Ferraz-Leite S, Praetorius D. Simple a posteriori error estimators for the
h-version of the boundary element method. Computing 2008;83:135–62.

[33] Feischl M, Page M, Praetorius D. Convergence and quasi-optimality of
adaptive FEM with inhomogeneous Dirichlet data. ASC Report 34/2010.
Wien: Institute for Analysis and Scientific Computing, Vienna University of
Technology; 2010.

http://www.asc.tuwien.ac.at/abem/hilbert/
http://www.asc.tuwien.ac.at/abem/hilbert/
dx.doi.org/10.1016/j.opnum.2011.06.014
dx.doi.org/10.1016/j.opnum.2011.06.014


M. Aurada et al. / Engineering Analysis with Boundary Elements 36 (2012) 255–266266
[34] Gatica G, Wendland W. Coupling of mixed finite elements and boundary
elements for linear and nonlinear elliptic problems. Appl Anal 1996;63:39–75.

[35] Hairer E, Nørsett S, Wanner G. Solving ordinary differential equations I.
Nonstiff problems. New York: Springer; 1987.

[36] Hsiao G. The coupling of boundary element and finite element methods.
ZAMM Z Angew Math Mech 1990;70:493–503.
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