
Theoretical Computer Science 275 (2002) 127–177
www.elsevier.com/locate/tcs

Analysis issues in Petri nets with inhibitor arcs

Nadia Busi
Dipartimento di Scienze dell’Informazione, Universit�a di Bologna, Mura Anteo Zamboni 7, I-40127

Bologna, Italy

Received December 1998; revised February 2001; accepted February 2001
Communicated by M. Nivat

Abstract

We investigate the problem of extending the analysis techniques developed for P=T systems
to a proper subclass of P=T systems with inhibitor arcs. We start proposing an extension of the
coverability tree construction to a subclass of P=T systems with inhibitor arcs, whose elements
will be called henceforth primitive systems. We show that the coverability tree corresponding
to a primitive system is 2nite and is a good representation of its behaviour; hence, it can be
used as an analysis tool to check properties such as place boundedness, the existence of dead
transitions and of a reachable marking larger than a given one.
Then we provide an encoding of primitive systems in P=T systems, which permits to retrieve

the 2ring sequences of the primitive system from the 2ring sequences of the corresponding P=T
system. The close correspondence between the 2ring sequences of the two systems is used prove
the decidability of reachability, deadlock and liveness for primitive systems. We also obtain that
the model checking problem for the linear time �-calculus and labelled primitive systems is
decidable. We show that primitive systems coincide with the largest class of P=T systems with
inhibitor arcs whose transition sequences can be simulated by a standard P=T system; we also
show that in general the step behaviour of a primitive system cannot be simulated by any P=T
system. These results are then used to investigate the expressiveness of inhibitor arcs regarding
the class of generated languages. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Place=Transition Petri nets [22] are a widely used formalism for representing con-
current systems. However, in some cases they have revealed to be not adequate to
model situations dealing e.g. with priorities. For this reason, the basic model has been
extended with the so-called inhibitor arcs [11, 9], permitting to test for absence of a
resource for a transition to 2re.

E-mail address: busi@cs.unibo.it (N. Busi).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00127 -X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82402418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 N. Busi / Theoretical Computer Science 275 (2002) 127–177

An attractive characteristic of P=T systems is the existence of a large amount of anal-
ysis techniques, permitting to decide properties of systems such as liveness, deadlock
and reachability [12, 13, 17, 10, 8]. The addition of inhibitor arcs makes P=T systems
Turing equivalent [1]. If on one side this greatly enhances the expressive power of
the formalism, on the other side it prevents most analysis techniques for standard P=T
systems from being generalized to the whole class of P=T systems with inhibitor arcs.
In this paper we face with the problem of extending the analysis techniques to a

subclass of P=T systems with inhibitor arcs, for which it is still possible to decide
interesting properties. To this aim, we identify a subclass of P=T systems with in-
hibitor arcs, that we call primitive systems, for which it is possible to construct the
coverability tree [12], a useful tool to check properties such as 2niteness of the state
space, boundedness of places or deadness of transitions. The coverability tree is a 2nite
approximation of the (possibly in2nite) 2ring sequences and of the reachable markings
of a P=T system; the basic idea is to represent an in2nite set of markings, diBering
only for the contents of a place, with an extended marking, with the symbol ! asso-
ciated to that place. This construction is well behaving because of the monotonicity
property of P=T systems: if a sequence of transitions is 2rable at a given marking, then
it is also 2rable at any bigger marking. The problem of extending such a construction
to P=T systems with inhibitor arcs is due to the loss of monotonicity, caused by the
introduction of inhibitor arcs: when dealing with P=T systems with inhibitor arcs, the
approximation of the number of tokens in a place with ! causes a loss of information
about the 2rability of a transition inhibited by that place. To overcome this problem,
we restrict ourselves to a class of P=T systems with inhibitor arcs, called primitive
systems, satisfying the following property: it is possible to associate an emptiness limit
to each inhibiting place such that, whenever the number of tokens in the place exceeds
the limit, there is no subsequent transition testing that place for absence. We modify
the construction of the coverability tree by approximating the contents of an inhibit-
ing place with ! only after the corresponding limit has been exceeded. We show that
the coverability tree of a primitive system is 2nite; moreover, we show also that the
coverability tree is a good representation of the behaviour of the primitive system, in
the sense that each reachable marking is represented in the coverability tree, directly
or by an ! approximation, and that ! symbols appearing in the coverability tree rep-
resent places that will hold an unbounded number of tokens. Finally, we show that the
coverability tree can still be used to check the properties of place boundedness, the
existence of dead transitions and of a reachable marking containing a given marking.
Note that, in general, it is impossible to decide if a given P=T system with inhibitor

arcs is primitive (see the discussion in Section 4.1); however, in practical cases we may
know the emptiness limits because of the particular structure of the net. For example,
in [2] we show that the subclass of P=T systems with inhibitor arcs, corresponding to
�-calculus [18] terms according to the net semantics for the �-calculus proposed in [3],
contains only primitive systems; hence, in the case the obtained system is also 2nite,
we can adopt the analysis techniques developed in this paper to study the behaviour
of �-calculus terms. In Section 4.1 we list also some suCcient conditions, based on

N. Busi / Theoretical Computer Science 275 (2002) 127–177 129

invariants or on the coverability tree of the P=T system obtained by dropping the
inhibitor arcs, for a system to be primitive.
We have found a way for constructing the coverability tree for primitive systems,

but, due to the !-approximations, the coverability tree cannot be used to decide many
interesting properties, such as reachability and liveness. In Section 5 we show a way
to decide such properties by providing an encoding of primitive systems in P=T sys-
tems, which permits to retrieve the 2ring sequences of the primitive system from the
2ring sequences of the corresponding P=T system. The construction consists in repre-
senting each inhibiting place s by a set of places s0; s1; : : : ; sEL(s); s!, where EL(s) is
the emptiness limit of s; the fact that place s contains k tokens is represented either
by 1 token in place sk (if k 6 EL(s)) or by k + 1 tokens in place s!; each transition
connected with s is split in a set of transitions, each one managing a speci2c repre-
sentation of the contents of place s in the corresponding P=T system; the inhibitor arcs
on s are replaced by a self-loop on s0. We show the existence of a close correspon-
dence between the 2ring sequences of the primitive system and the 2ring sequences of
the corresponding P=T systems; this permits to prove the decidability of reachability,
deadlock and liveness for primitive systems, by reduction to a similar problem for P=T
systems; moreover, we also obtain that the model checking problem for the linear time
�-calculus and labelled primitive systems is decidable.
We introduce a notion of simulation of P=T systems with inhibitor arcs by P=T

systems (consisting of a labelling of transitions of the P=T system by transitions of
the P=T system with inhibitor arcs) which reEects and preserves transition sequences
and we show that primitive systems are the largest class of P=T systems with inhibitor
arcs that can be simulated by a P=T system. The construction we have introduced
permits to simulate the 2ring sequences, but in general step 2ring sequences are not
preserved; we show that we cannot to better, by exhibiting a primitive system for
which there exists no P=T system with the same step behaviour. Finally, we make
use of these results to compare the expressiveness of P=T systems and P=T systems
with inhibitor arcs regarding the set of generated languages: we have that primitive
systems are equivalent to P=T systems, whereas the class of languages generated by
P=T systems with inhibitor arcs is strictly greater than the class of languages generated
by P=T systems. To obtain a gap in expressiveness between P=T and primitive systems,
we have to move to step-languages, that are sets of sequences of multisets of labels:
the class of step-languages generated by primitive systems is strictly larger than the
class of step-languages generated by P=T systems.
The paper is organized as follows. After recalling some basic de2nitions in Section 2

and some analysis techniques developed for P=T systems in Section 3, in Section 4 we
extend the coverability tree construction to deal with primitive systems. In Section 5 we
present an encoding of primitive systems in P=T systems, and we show the decidability
of reachability, deadlock and liveness for primitive systems; we also show that primitive
systems are the largest class of systems whose behaviour can be simulated by a P=T
system. Section 6 contains expressiveness results on the class of languages generated by
primitive systems and in Section 7 we report some conclusive remark. The appendix

130 N. Busi / Theoretical Computer Science 275 (2002) 127–177

contains a sketch of the proof of Turing equivalence of P=T systems with inhibitor
arcs.

2. Basic de�nitions

In this section we give some preliminary de2nition, followed by the de2nitions of
P=T systems and of P=T systems with inhibitor arcs.
Let ! be the set of natural numbers and !+ =!\{0}.

2.1. Relations

A relation over a set X is a subset of X ×X . The composition of two relations
is de2ned as R ◦R′= {(x; z) | ∃y(xRy∧yR′z)}. We denote by R+ (R∗) the transitive
(reEexive and transitive) closure of R.

2.2. Sequences and languages

A 2nite sequence (word, string), of length n, over a set X is a function from
{1; : : : ; n} to X ; it is usually represented as x1x2 : : : xn, with xi ∈X for i=1; : : : ; n.
The empty sequence, i.e. the sequence of length 0, is denoted by �. Given a 2nite
sequence �, we denote by �k the sequence obtained by concatenating k occurrences of
�, i.e. � : : : �︸ ︷︷ ︸

k

.

An in2nite sequence over X is a function from !+ to X . We usually represent it as
x1x2 : : : xi : : : ; with xi ∈X for i∈!+.
We say that xj1xj2 : : : xji : : : is an in2nite subsequence of x1 : : : xn : : : if 16 j1¡j2¡ · · ·

¡ji¡ · · · :
We denote by X ∗ and X! the set of respectively 2nite and in2nite sequences over X ,

and X∞=X ∗ ∪X!.
A language over X is a subset of X ∗. A ∞-language over X is a subset of X∞.

A !-language over X is a subset of X!.

2.3. Multisets

De�nition 2.1. Given a 2nite set S, a multiset over S is a function m : S →!. The
domain of a multiset is the set dom(m)= {s∈ S |m(s) �=0}; a multiset m such that
dom(m)= ∅ is said to be empty. The multiplicity of an element s in m is given by
the natural number m(s). The set of all 2nite multisets over S, denoted by M2n(S), is
ranged over by m. A multiset m such that dom(m)= ∅ is called empty. The set of all
2nite sets over S is denoted by ˝2n(S).
The cardinality of a multiset is de2ned as |m|=∑

s∈S m(s). We write m⊆m′ if
m(s)6 m′(s) for all s∈ S. The operator ⊕ denotes multiset union: m⊕m′(s)=m(s)+
m′(s). The operator \ denotes multiset di5erence: m\m′(s)= if m(s)¿m′(s) then

N. Busi / Theoretical Computer Science 275 (2002) 127–177 131

m(s)−m′(s) else 0. The scalar product of a number j with a multiset m is (j ·m)(s)=
j · (m(s)).

2.4. Graphs

De�nition 2.2. A rooted graph labelled over the set Act is a tuple (N; A; x0), where
• N is the set of nodes;
• A⊆N ×Act×N is the set of labelled arcs;
• x0 ∈N is the root.

We denote arc (x; a; y) by x a→ y. Given n¿ 0, a path from x1 to xn+1 is a (possibly
empty) sequence of arcs x1

a1→ · · · xn an→ xn+1.

De�nition 2.3. A tree (N; A; x0) is a rooted graph such that, for each x∈N , there exists
a unique path from x0 to x.

De�nition 2.4. Let (Ni; Ai; x0; i), i=1; 2, be two graphs. A bisimulation is a relation
R⊆N1×N2 such that
• (x0;1; x0;2)∈R;
• if (x; y)∈R and x a→ x′ then there exists y′ such that y a→ y′ and (x′; y′)∈R;
• if (x; y)∈R and y a→ y′ then there exists x′ such that x a→ x′ and (x′; y′)∈R.

2.5. P=T nets

De�nition 2.5. A P=T net is a tuple N =(S; T; F), where
• S and T are 2nite sets of places and transitions, such that S ∩T = ∅;
• F : (S ×T)∪ (T × S)→! is the 8ow function.

A multiset over the set S of places is called a marking. Given a marking m and a
place s, we say that the place s contains m(s) tokens. If F(x; y)¿0, we say that there
is an arc from x to y with weight F(x; y).
The preset of a transition t is the multiset •t(s)=F(s; t), and represents the tokens

to be “consumed”; the postset of t is the multiset t•(s)=F(t; s), and represents the
tokens to be “produced”. If F(s; t)=F(t; s)¿0, we say that there is a self-loop on s
and t.
A transition t is enabled at m if •t⊆m. The execution of a transition t enabled at

m produces the marking m′=(m\•t)⊕ t•. This is usually written as m[t〉m′. A non
empty multiset over the set T is called a step.
A step G is enabled at m if m1⊆m, where m1 =

⊕
t G(t) · •t. The execution of a step

G enabled at m produces the marking m′=(m\m1)⊕m2, where m2 =
⊕

t G(t) · t•. This
is written as m[G〉m′. A P=T system is a tuple N (m0)= (S; T; F; m0), where (S; T; F) is
a P=T net and m0 is a multiset over S, called the initial marking. A labelled P=T net
(system) over a set Act of labels is a tuple (S; T; F; l) ((S; T; F; m0; l)), where (S; T; F)
is a P=T net and l : T →Act is the labelling function.

132 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Any P=T system can be regarded as a labelled P=T system over the set T of transi-
tions, where the labelling function is the identity function over T .

De�nition 2.6. A ;ring sequence starting at marking m is de2ned inductively as fol-
lows:
• m is a 2ring sequence;
• if m[t1〉m1 : : : [tn−1〉mn−1 is a 2ring sequence and mn−1[tn〉mn then

m[t1〉m1 : : : [tn−1〉mn−1[tn〉mn is a 2ring sequence.
We simply call ;ring sequence a 2ring sequence starting at the initial marking m0.
Given a 2ring sequence m[t1〉 : : : [tn〉mn, we call t1 : : : tn a transition sequence starting

at m. We often write m[t1 : : : tn〉m′ to mean that there exist m1; : : : ; mn−1 such that
m[t1〉m1 : : : mn−1[tn〉m′.
The set of markings reachable from m, denoted by [m〉, is de2ned as the least set

of markings such that
• m∈ [m〉;
• if m1 ∈ [m〉 and, for some transition t ∈T , m1[t〉m2 then m2 ∈ [m〉.
We say that a marking m is reachable if m is reachable from the initial marking m0.
The interleaving marking graph of N is IMG(N)= (M2n(S);→; m0), where →⊆

M2n(S)×Act×M2n(S) is de2ned by m
l(t)→ m′ iB there exists a transition t ∈T such

that m[t〉m′.
The systems N1 and N2 are bisimilar (N1∼N2) iB there exists a bisimulation R

relating IMG(N1) and IMG(N2).
A step ;ring sequence starting at marking m is de2ned inductively as follows:

• m is a step 2ring sequence;
• if m[G1〉m1 : : : [Gn−1〉mn−1 is a step 2ring sequence and mn−1[Gn〉mn then m[G1〉m1

: : : [Gn−1〉mn−1 [Gn〉mn is a step 2ring sequence.
Given a step 2ring sequence m[G1〉 : : : [Gn〉mn, we call G1 : : : Gn a step transition se-
quence.
The step marking graph of N is SMG(N)= (M2n(S);→; m0), where →⊆M2n(S)×

M2n(Act)×M2n(S) is de2ned by m A→ m′ iB there exists a step G such that m[G〉m′

and A= l(G).
The systems N1 and N2 are step bisimilar (N1∼step N2) iB there exists a bisimulation

R relating SMG(N1) and SMG(N2).

2.6. P=T nets with inhibitor arcs

De�nition 2.7. A P=T net with inhibitor arcs (PTI net for short) is a tuple N =(S; T;
F; I) where
• (S; T; F) is a P=T net;
• I ⊆ S ×T is the inhibiting relation.

The inhibitor set of a transition t is the set ◦t= {s∈ S | (s; t)∈ I}, and represents the
places to be “tested for absence” of tokens.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 133

This changes the de2nition of enabling: a transition t is enabled at m if •t⊆m and
dom(m)∩ ◦t= ∅. Any transition t for which ◦t ∩dom(•t) �= ∅ can never 2re, thus it is
called blocked.
The execution of a transition t enabled at m producing the marking m′, written

m[t〉m′, is de2ned as for P=T nets.
We say that s is an inhibiting place if there exists a transition t such that s∈ ◦t. We

denote with Inib(N) the set of inhibiting places of the net N .
A PTI system is a tuple N (m0)= (S; T; F; I; m0), where (S; T; F; I) is a contextual P=T

net and m0 is a multiset over S, called the initial marking.
We adopt the usual notation to draw P=T nets: places are represented as circles,

transitions as segments, Eow arcs as directed segments (i.e. with an arrow at one end)
and tokens as black dots inside the place. We represent an inhibitor arc as a line
terminating with a small circle on the transition side.

2.6.1. Step semantics
The de2nition of step semantics we present here is inspired by the de2nition given

for contextual C=E nets 1 in [20]. According to our de2nition, two transitions can
happen in the same step iB they can happen in either order. We have to check that
not all tokens in a place tested for presence by (an occurrence of) a transition are
consumed by the others and that (an occurrence of) a transition does not produce
tokens in a place tested for absence by another.
A step G is enabled at m iB

• m1⊆m, where m1 =
⊕

t G(t) · •t;
• for all t ∈dom(G) ◦t ∩dom(m)= ∅;
• for all t1; t2 ∈dom(G), such that t1 = t2⇒G(t1)¿2, we have that dom(t•1)∩ ◦t2 = ∅.
The third condition ensures that, for each pair of occurrences of transitions in the step,
it never happens that one occurrence puts a token in a place inhibiting the other one.
The execution of a step G enabled at m producing the marking m′, written m[G〉m′, is
de2ned as for P=T nets.
The following proposition enunciates an important property of our de2nition of step

enabling: if a step G can 2re then, for any way of dividing it in two substeps, these
substeps can 2re in sequence.

Proposition 2.8. Let G1; G2 be steps and G=G1 ⊕ G2. Then m[G〉m′ i5 there exists
m1 such that m[G1〉m1[G2〉m′.

Hence, given a 2rable step, any 2ring sequence obtained by sequentializing that step
is 2rable:

1 C=E nets are essentially nets with arc weights not greater than one and containing at most one token
per place in any reachable marking; the latter condition is realized by imposing a constraint on the 2rability
of transitions, i.e. by forbidding the 2ring of a transition if some place in its postset (but not in its preset)
already contain a token. Contextual C=E nets are C=E nets enriched with inhibitor arcs and read as arcs (i.e.,
arcs testing for presence of tokens).

134 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Corollary 2.9. Let G be a step of cardinality n. If m[G〉m′ then for any sequence of
transitions t1; : : : ; tn; such that G(t)= |{i | 16i6n∧ ti = t}|; we have m[t1〉 : : : [tn〉m′.

Finally, any marking reached by a step 2ring sequence can by reached from a 2ring
sequence:

Corollary 2.10. If m[G1〉m1 : : : [Gn〉mn then there mn is reachable from m.

A comparison of this notion of step with other notions appeared in the literature can
be found in [5].

3. Analysis of P=T systems

We recall some classic results on the analysis of P=T systems (see e.g. [21]).

3.1. Coverability tree

The coverability tree is a 2nite representation of the 2ring sequences, hence also
of the reachable markings, of a P=T system. It has been introduced, under the name
of reachability tree, in [12]. As the set of reachable markings is in general in2nite,
we need to 2nd a 2nite approximation, that is suCciently good to permit to decide
interesting properties about the system. In the following we 2rst illustrate the intuition
and then we give the algorithm for the construction of the coverability tree; hence we
list the satis2ed properties and the decision procedures that can be deduced.
The coverability tree is a 2nite representation of the reachable markings of a net:

a node represents a set of (approximation of) markings, whereas arcs represent the
2ring of transitions: an arc, labelled with a transition, represents the fact that the
transition is enabled at the marking(s) corresponding to the source node, whereas the
target node represents the marking produced after the 2ring of that transition. The
naive construction proceeds as follows: initially, the coverability tree contains only one
node, corresponding to the initial marking of the net; for each transition enabled in this
marking, we add an arc and a new node corresponding to the marking that we reach
after 2ring the transition, and repeat this step for all the new nodes. Unfortunately
this procedure may easily lead to an in2nite tree. The reduction to a 2nite structure is
accomplished in the following way. First of all, we need to limit the new markings
(called frontier nodes) added at each step. Two classes of nodes are useful for this
task:
• nodes corresponding to dead markings, i.e. marking at which no transition is enabled,
do not produce further nodes; thus they are called terminal nodes;

• nodes corresponding to markings previously appeared in the tree; they are called
duplicate nodes and need not to be considered: all its successors have already been
produced from the 2rst occurrence of the marking in the tree.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 135

This is not suCcient for unbounded nets, i.e. nets whose places can be 2lled with
an unlimited number of tokens. The problem is that the set of reachable markings of
these nets is in2nite: we need to abstract from markings without loosing the 2rability
information.
Consider a transitions sequence � which starts at a marking m and ends at a marking

m′, with m′ ⊇m; m′ is the same as m except it has some “extra” token in some places,
that is, m′=m⊕ (m′\m), with m′\m �= ∅. Since transition 2rings are not aBected by
extra tokens, the sequence � can be 2red at marking m′, leading to a marking m′′.
Since the eBect of the sequence of transitions � is to add m′ \m tokens to the marking
m′, so m′′=m′ ⊕ (m′\m)=m⊕ 2 · (m′ \m). In general, we can 2re the sequence � n
times to produce a marking m⊕ n · (m′ \m). Thus, we can produce an arbitrarily large
number of tokens in each place s such that (m′\m)(s)¿0 by iterating the 2ring of the
sequence �. We represent the in2nite set of markings which result from these types
of loops by using the symbol ! to represent a number of tokens that can be made
arbitrarily large. We extend markings to allow the number of tokens in a place to be
either a natural number or the ! symbol:

De�nition 3.1. For any natural number n, we de2ne ! + n=! − n=!, n¡! and
!6!.
An extended marking over the set S is a function m : S →!∪{!}.
We say that an extended marking m′ covers a marking m if m⊆m′ and, for all

places s∈ S, m′(s) �= m(s) implies m′(s)=!.

In this way, each reachable marking either appears explicitly in the tree or there
exists an extended marking that covers it.
The algorithm for the construction of the coverability tree, reported in Table 1,

proceeds as follows: each node x in the tree is associated with an extended marking
M [x] and is classi2ed as a frontier, terminal, duplicated or internal node. Frontier nodes
are those which have not been processed yet; they are converted by the algorithm in
terminal, duplicated or internal nodes. The algorithm begins by de2ning the initial
marking to be the root of the tree and, initially, a frontier node. As long as frontier
nodes remain, they are processed by the algorithm. The algorithm terminates when no
frontier nodes are left in the coverability tree.
The 2niteness of the coverability tree generated by the algorithm can be shown with

the help of the following lemmata:

Lemma 3.2 (K Nonig). In any in;nite; ;nitely branching tree there exists an in;nite
path starting from the root.

Lemma 3.3. Every in;nite sequence of elements in !∪{!} contains an in;nite sub-
sequence which satis;es one of the following conditions:
• either the elements in the subsequence are all equal;
• or they appear in a strictly increasing order.

136 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Table 1
Algorithm for the construction of the coverability tree

Let N = (S; T; F; m0) be a finite P=T system.
Create a tree formed by a single frontier node x0 (the root node) with extended marking
M [x0] =m0.
While the set of frontier nodes is not empty do the following:
Let x be a frontier node to be processed.
(1) If there exists another node y in the tree which is not a frontier node, such that M [y] =

M [x], then classify x as a duplicate node.
(2) If no transitions are enabled for the marking M [x], then classify x as a terminal node.
(3) For all transitions t ∈ T which are enabled at marking M [x], let m′ = (M [x]\•t)⊕ t• be the

marking reached after the firing of transition t at marking M [x]. Create a new node z,
classified as a frontier node, in the coverability tree. The extended marking M [z] associated
with the new node is defined as follows: for each place s∈ S,
(a) if m′(s) �=! and there exists a node y on the path from the root node to x with M [y] ⊂

m′ and M [y](s)¡m′(s), then M [z](s)=!;
(b) otherwise, M [z](s)=m′(s).
Add an arc, labelled with t and directed from node x to node z. Node x is redefined as an
internal node.

Lemma 3.4 (Dickson). Every in;nite sequence of extended markings contains an in-
;nite subsequence ordered w.r.t. ⊆.

Theorem 3.5. The coverability tree of a P=T system is ;nite.

The coverability tree satis2es the properties listed below.
All reachable markings are covered by some marking in the coverability tree, and

each 2ring sequence is represented in the coverability tree in the following way:

Lemma 3.6. For each ;ring sequence m0[t1〉 : : : [tn〉mn there exists a sequence of nodes
and arcs x0

t1→ y1x1
t2→ y2 : : : xn−1

tn→ yn in the coverability tree such that:
• x0 is the root of the tree;
• M [yi] =M [xi] for i=1; : : : ; n− 1;
• mi is covered by M [xi] for i=0; : : : ; n− 1 and mn is covered by M [yn].

The !-components in the extended markings appearing in the coverability tree ef-
fectively correspond to places that will hold an unlimited number of tokens:

Lemma 3.7. Let z be a node of the coverability tree and k¿0. Then there exists a
marking m∈ [m0〉 such that; for all s∈ S;
• if M [z](s) ¡ ! then m(s)=M [z](s);
• if M [z](s)=! then m(s)¿k.

The coverability tree is a useful tool for the analysis of nets. Indeed, some problems
about coverability, boundedness and liveness can be reduced to properties of the cov-
erability tree. In the following we illustrate some decision procedures for properties of
a P=T system, based on the coverability tree.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 137

De�nition 3.8. A place s is bounded if there exists k¿0 such that, for all m∈ [m0〉,
m(s)6k. The P=T system N is bounded if there exists k¿0 such that, for all s∈ S
and m∈ [m0〉; m(s)6k.

Boundedness is decidable.

Theorem 3.9. A place s is bounded i5; for all nodes x in the coverability tree; M [x](s)
�=!.

Corollary 3.10. The P=T system N is bounded if the symbol ! does not appear in
any node of the coverability tree.

We have that boundedness of a P=T system corresponds to have a 2nite set of
reachable markings; it is easy to see that, if the system is bounded, the coverability
tree contains a node corresponding to each reachable marking; in that case, a larger
number of properties are decidable.
From the coverability tree we can 2nd dead transitions, i.e. transitions that can never

2re:

De�nition 3.11. A transition t is dead if, for all m∈ [m0〉, t is not enabled at m.

Theorem 3.12. The transition t is dead if no t-labelled arc occurs in the coverability
tree.

The coverability problem consists in 2nding a reachable marking m′ that is larger
than a given marking m, i.e. m⊆m′. This problem can be solved with the inspection
of the nodes of the coverability tree:

Theorem 3.13. Let m be a marking. There exists a marking m′ ∈ [m0〉; such that
m⊆m′; i5 there exists a node x in the coverability tree such that m⊆M [x].

A net is conservative w.r.t. a (nonnegative) weighting vector if the weighted sum of
tokens is constant over all reachable markings. We can check if a net is conservative by
computing the weighted sum for all markings associated to the nodes of the coverability
tree: if the sums are the same for all nodes, then the net is conservative w.r.t. the
given weighting vector. Note that, by Lemma 3.7, if there exists a node x such that
M [x](s)=!, then the weight of place s must be 0.

3.2. Reachability

We recall that a marking is reachable if there exists a 2ring sequence (starting from
the initial marking) leading to it.
The reachability problem for a net consists in deciding if a given marking is reachable

from the initial marking. The reachability problem is decidable [13, 17] and known to

138 N. Busi / Theoretical Computer Science 275 (2002) 127–177

require exponential space [16], but none of the algorithms known so far is primitive
recursive.

Theorem 3.14. The reachability problem is decidable for P=T systems.

The submarking reachability problem is a generalization of the above problem; it
amounts to decide if, given a subset S ′ ⊆ S of places and a marking m, there exists
a marking m′ ∈ [m0〉 such that m′(s)=m(s) for all s∈ S ′. The submarking reachability
problem is reducible to the reachability problem, hence it is decidable.

3.3. Liveness

A transition t is live if for each marking m reachable from m0 there exists a marking
m′ reachable from m such that t is enabled at m. A net is live if each of its transitions
is live. The liveness problem for a net consists of deciding if it is live; it has been
shown to be decidable by reduction to the reachability problem (see e.g. [10]).

Theorem 3.15. The liveness problem is reducible to the reachability problem; hence
it is decidable.

3.4. Deadlock

A marking m is dead if it does not enable any transition, i.e. ¬m[t〉 for all t ∈T .
A net has a deadlock if there exists a dead marking reachable from m0. The deadlock
problem for a net consists in deciding if it has a deadlock.
The deadlock problem for a 2nite P=T system is decidable; this can be proved by

reducing it to the liveness problem, which is known to be decidable.
The theorem below is a slight generalization of the result proved in [6] for nets

where the preset and postset of transitions are sets.

Theorem 3.16. Deadlock is reducible to liveness.

Proof. Let N =(S; T; F; m0) be a P=T system. We construct a net N ′=(S ′; T ′; F ′; m′
0),

where S ′= S ∪{ok}, T ′= {t′; t′′ | t ∈T}∪ {live},

F ′(x; y) =

F(x; y) if x∈ S ∧ ∃t ∈T (y = t′ ∨ y = t′′);

F(x; y) if ∃t ∈T (x= t′) ∧ y∈ S;

1 if ∃t ∈T (x = t′′) ∧ y = ok;

1 if x = ok ∧ y = live;

1 if x = live ∧ y = ok;∑
t ∈ T F(y; t) if x = live ∧ y∈ S;

0 otherwise

and m′
0 =m0.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 139

We show that N has no reachable dead marking iB N ′ is live.
Suppose that N has a reachable dead marking m; also N ′ can reach the marking m

by 2ring the corresponding t′ transitions. We have m(ok)= 0, then the transition live
is not enabled at m; as transitions t′ and t′′ have the same preset of the corresponding
transition t, also these transitions are not enabled at m in N ′; then m is a dead marking
for N ′, hence N ′ is not live.
Suppose N has no reachable dead markings. Let m be a reachable marking in N ′;

two cases can happen:
• m(ok)¿0; the transition live is enabled at m, and after the 2ring of live each
transition in T ′ is enabled;

• m(ok)= 0; note that if we produce a token in the place ok it will remain always
marked; then only transitions t′ have been 2red to reach m, hence m is reachable
also in N ; as N has no reachable dead markings, there exists t ∈T such that m[t〉
in N ; then m[t′′〉m′ in N ′, and m′(ok)= 1, leading to the previous case.

3.5. Model checking

We recall the decidability of the model checking problem for P=T systems and closed
formulas of the linear time �-calculus [8].
The linear time �-calculus is a powerful linear time logics, largely used for veri2-

cation.
In the following we assume that Act is a denumerable set of symbols.

De�nition 3.17. Let N be a labelled P=T system. We can extend the notion of 2ring
sequences to deal with in2nite 2ring sequences. We say that m0[t1〉m1 : : : [ti〉mi : : : is an
in2nite 2ring sequence if m0[t1〉m1 : : : [ti〉mi is a 2ring sequence, for each i∈!.

De�nition 3.18. Let N be a labelled P=T system. The language, !-language and ∞-
language of N are de2ned respectively as
• L(N)= {a1 : : : an |m0[t1〉 : : : [tn〉mn is a 2ring sequence of N and l(ti)= ai for i=1;

: : : ; n}.
• L!(N)= {a1 : : : ai : : : |m0[t1〉 : : : [ti〉mi : : : is an in2nite 2ring sequence of N and l(ti)
= ai for i∈!+}.

• L∞(N)=L(N)∪L!(N).

The syntax of the modal �-calculus is the following:

) = Z |¬)|) ∧)|(a))|+Z:)

where a ranges over a set Act of actions and Z over a set of propositional variables.
Free and bound occurrences of variables are de2ned as usual. A formula is closed if no
variable occurs free in it. Formulas are generated by the grammar above, and subject
to the monotonicity condition that all free occurrences of a variable Z lie inside the
scope of an even number of negations.

140 N. Busi / Theoretical Computer Science 275 (2002) 127–177

A valuation V of the logics maps each variable Z on a subset of Act∞. The valuation
V [A=Z] is de2ned as

V [A=Z](Z ′) =

{
A if Z ′ = Z;

V (Z ′) otherwise:

Given a word �= a1 : : : ai : : : over Act∞, with �(1) we denote the 2rst action of �, i.e.
a1, and with �1 we denote the word obtained from � by dropping the 2rst action, i.e.
a2 : : : ai : : :.
The denotation of a formula consists of the set of word satisfying it. The denotation

<)=V of a formula) according to valuation V is de2ned inductively as follows:

<Z =V = V (Z);

<¬)=V = Act∞\<)=V ;
<) ∧ =V = <)=V ∩ < =V ;
<(a))=V = {�∈Act∞ | �(1)= a ∧ �1 ∈ <)=V};
<+Z:)=V =

⋃ {A ⊆ Act∞ |A ⊆ <)=V [A=Z]}:
The denotation of a closed formula) does not depend on the valuation, hence we
drop it and use the symbol <)=.
A labelled P=T system N satis2es) if L∞(N)⊆ <)=.
The model checking problem for the linear time �-calculus and P=T systems is

de2ned as as follows: given a P=T system N and a closed formula), determine if N
satis2es). This problem is decidable [8]:

Theorem 3.19. Let N be a P=T system and) a closed formula of the linear time
�-calculus. It is decidable if N satis;es); i.e. L∞(N)⊆ <)=.

3.6. Incidence matrix and invariants

We illustrate an approach for the analysis of P=T nets based on linear algebraic
techniques and we show that it can be used for PTI nets. The idea is to collect
the changes of tokens in the places, due to transition 2rings, in a matrix, called the
incidence matrix of the net. The rows and the columns of the matrix are respectively
the places and the transitions; an entry at position (s; t) denotes the change of the
number of tokens in place s caused by the 2ring of transition t, i.e. the diBerence
between the number of occurrences of s in the postset and in the preset of t. The
incidence matrix can be used to solve the conservation problem and gives suCcient
or necessary conditions for liveness, reachability and boundedness. We claim that the
same methods can also be used for PTI nets. One can argue that the incidence matrix
does not reEect the structure of the net, because no information is kept regarding
inhibitor arcs, thus losing any information about the 2rability of a transition. The same
problem arises in P=T nets: in fact, the incidence matrix keeps information only about

N. Busi / Theoretical Computer Science 275 (2002) 127–177 141

the diBerence between the postset and the preset of a transition; take a transition t1
that produces n tokens in a place s while not consuming tokens from that place, and
a transition t2 which consumes 1 token from s and produces n + 1 tokens in s: these
two transitions are treated in the same way in the incidence matrix w.r.t. place s, that
is, the two entries (s; t1) and (s; t2) contain the same value. So, also in absence of
inhibitor arcs, the information about 2rability is lost, because there exists a marking
m, with m(s)= 0, such that m[t1〉 but not m[t2〉.
The following de2nitions and results are borrowed from [7]; the notion of net in-

variant was introduced for the 2rst time in [15].

De�nition 3.20. Given a 2nite set A= {a1; : : : ; an} and a set X , every mapping f :A→
X can be represented by the vector (f(a1); : : : ; f(an)). f · g represents the scalar prod-
uct of two vectors. If C is a matrix, then f ·C and C ·f denote the left and right
products of f and C. With abuse of notation, we denote with 0 the empty vector.

De�nition 3.21. Let N =(S; T; F; I) be a PTI net. The incidence matrix of N; DN : S ×T
→Z, is de2ned as DN (s; t)= t•(s)− •t(s).

The column vector of DN associated to a transition t is denoted by DN (t), whereas
the row vector associated to a place s is denoted by DN (s). A marking m can be
seen as a vector indexed on S. Let t be the |T |-dimensional vector which is zero
everywhere except in the t component. If the transition t is enabled at marking m, and
m[t〉m′, then we have that m′=m+DN · t. In fact, m′(s)=m(s)+ t•(s)−•t(s)=m(s)+
DN (s; t)=m(s) + DN (s) · t. This fact can be generalized to transition sequences:

De�nition 3.22. Let N =(S; T; F; I) be a PTI net and � a transitions sequence. The
Parikh vector � :T →! maps each transition t to the number of occurrences of t
in �.

Lemma 3.23. Given an occurrence sequence m[�〉m′; the following marking equation
holds: m′=m+ DN · �.

Proof. By induction on the length of �.

This lemma tells us that the marking reached after the 2ring of a transition sequence
only depends on the number of occurrences of each transition 2red, and not on the
actual ordering of the transitions in the sequence.
The incidence matrix is useful to solve the conservation problem, i.e. to 2nd a

(nonzero) weighting vector, indexed on places, such that the weighted sum of tokens
is constant over all reachable markings. In the following we show how to derive a
suCcient condition for a weighting vector to satisfy the above property. Let m0 be the
initial marking of N and m∈ [m0〉. We are looking for a weighting vector x such that
x ·m0 = x ·m. As m is a reachable marking, there exists a transition sequence � such that
m0[�〉m, so, by Lemma 3.23, m=m0 +DN · �. We have that x ·m= x ·m0 + x ·DN · �.

142 N. Busi / Theoretical Computer Science 275 (2002) 127–177

To obtain x ·m= x ·m0, we need that x ·DN · �=0. If we require that x ·DN =0, then
the condition holds for all �, then also for all reachable markings.
The (nonempty) solutions of the equation above are very useful to study properties

of nets; they are called S-invariants:

De�nition 3.24. An S-invariant of a CPT net N is a rational-valued solution of the
equation x ·DN =0.

Each S-invariant I satis2ed the property that the scalar product I ·m remains constant
for every reachable marking m:

Proposition 3.25. Let N =(S; T; F; I; m0) be a PTI system and I be an S-invariant
of N . If m∈ [m0〉 then I ·m= I ·m0.

Proof. If m∈ [m0〉 then there exists a transition sequence � such that m0[�〉m. By
Lemma 3.23, m=m0 + DN · �. Then I ·m= I ·m0 + I ·DN · �. By de2nition of S-
invariant, I ·DN =0, thus I ·m= I ·m0.

Now we de2ne semipositive and positive invariants.

De�nition 3.26. An S-invariant I is semipositive if ∀s∈ S(I(s)¿0) and I �=0. The
support of a semipositive S-invariant I , denoted by 〈I〉, is the set of places satisfying
I(s)¿0.
An S-invariant I is positive if ∀s∈ S(I(s)¿0).

The following result gives a suCcient condition for boundedness of a place of the
system.

Theorem 3.27. Let N =(S; T; F; I; m0) be a PTI system and s∈ S. If N has a semi-
positive S-invariant I; such that I(s)¿0; then place s is bounded.

Proof. Let m∈ [m0〉. Since I is an S-invariant, I ·m0 = I ·m. As I is semipositive,
we have that I(s) ·m(s)6I ·m= I ·m0. As I(s)¿0 by hypothesis, we have m(s)6
(I ·m0)=I(s).

The incidence matrix can be used to obtain a necessary condition for reachability.
If a marking m is reachable from m0, then there exists a transitions sequence � such that
m0[�〉m. By Lemma 3.23, the following equation holds: m=m0 + DN · �. This means
that � is a solution, in nonnegative integers, of the matrix equation m=m0 + DN · x.
Thus, if m is reachable from m0 then the above equation has a solution in nonnegative
integers.
Another necessary condition for reachability arises from Proposition 3.25: if I is an

S-invariant and m∈ [m0〉, from that proposition we obtain I ·m= I ·m0. Thus we have
the following: if m∈ [m0〉 then, for all S-invariants I , I ·m= I ·m0.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 143

4. Coverability tree and primitive systems

In this section we show how to construct a coverability tree, joining the properties
mentioned in Section 3.1, for a subclass of 2nite P=T nets with inhibitor arcs.
Note that for a generic net with inhibitor arcs it may not be possible to construct a

(2nite) coverability tree, because these nets are Turing powerful and the construction of
the coverability tree would permit to test termination. More precisely, it is possible to
simulate any RAM with a PTI system which is deterministic, i.e. at most one transition
is 2rable at each reachable marking (see Appendix A for a sketch of the proof); a
coverability tree permits to test if there exist no in2nite computation, then it could test
for termination of the PTI system corresponding to such a RAM; thus, in general it is
not possible to construct a coverability tree useful to verify properties of the net.
The problem for the construction of a 2nite coverability tree for PTI systems is the

loss of monotonicity: it is no longer true that if m⊆m′ and m[�〉 then also m′[�〉.
Thus, the approximation with ! causes a loss of information regarding the 2rability of
transitions inhibited by some place.
For this reason, we impose the following constraint on systems: it is possible to

know a limit for each inhibiting place, in such a way that, if the number of tokens in
the place exceeds the limit at some stage of the computation, then that place cannot be
tested for absence of tokens any more. A system satisfying the above constraint will
be called primitive.

De�nition 4.1. The PTI system N =(S; T; F; I; m0) is primitive if we can compute
EL : Inib(N)→! such that

∀s ∈ Inib(N)∀m ∈ [m0〉(m(s) ¿ EL(s) ⇒ ∀m′ ∈ [m〉∀t ∈ T (m′[t〉 ⇒ s �∈ ◦t)):

Given an inhibiting place s, we call EL(s) the emptiness limit of s.

For example, consider the net in Fig. 1: at the initial marking, only transition t
can 2re; after two 2rings of t, transition v becomes enabled; if v 2res, then place c
becomes empty and transition u can 2re; otherwise, if a third occurrence of t 2res,
place c contains 3 tokens and cannot be emptied any more, thus preventing u to 2re.
Hence, the emptiness limit of place c is 2, because if we reach a marking with more
than 2 tokens in c then the place cannot be emptied.
Two other examples of primitive system, with EL(c)= 2, are reported in Fig. 2.
In Fig. 3 a non-primitive PTI system is depicted: place s can be 2lled with any

number of tokens by repeated 2rings of transition a, hence it can be emptied by the
repeated 2rings of b, and 2nally tested for absence of tokens by c.
Coming back to the construction of the coverability tree, as previously said it is no

longer true that a transition that can be 2red in a marking is 2rable in every bigger
marking: for example, take a transition t, enabled at marking m, that tests for absence
a place s; we have that t is not enabled at marking m′=m⊕{s}, even if m′ ⊇m. We
need to modify the ordering on marking to take into account the introduction of zero

144 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 1. A primitive system (EL(c)= 2).

Fig. 2. Two primitive systems (EL(c)= 2).

Fig. 3. A PTI system that is not primitive.

testing: for two markings to be comparable, they must have the same inhibiting places
empty. At this point, given an extended marking m with m(s) = ! for some place s
and a transition t which consumes some token from s without reproducing them (i.e.
(•t\t•)(s)¿0), we do not know if after the 2ring of t at m the place s will become

N. Busi / Theoretical Computer Science 275 (2002) 127–177 145

empty or not; thus we cannot know if at this point a transition t′ with s in its inhibitor
set can 2re or not. For this reason, we need to explicitly represent in the tree the actual
marking of inhibiting places that may be tested for emptiness. In other words, we do
not abstract with the symbol ! the number of tokens in an inhibiting place until this
number exceeds the emptiness limit of the place; once the limit has been exceeded,
we are sure that the place cannot be tested for emptiness any more and we can make
use of ! to represent an unbounded, positive number of tokens in the place. Besides
coinciding on empty places, for two markings to be in the “precedence” relation we
require that their value coincides also for those inhibiting places whose token number
has not exceeded the emptiness limit.

De�nition 4.2. Let m be a marking. With Z(m) we denote the set of inhibiting places
that can be tested for emptiness in a marking reachable from m:

Z(m)= {s∈ Inib(N) | ∃m′ ∈ [m〉∃t(m′[t〉 ∧ s∈ ◦t)}.

The “precedence” relation on markings is de2ned in the following way:

De�nition 4.3. Let m1 be a marking and m2 an extended marking. m1 4m2 iB, for all
places s∈ S:
• m1(s)6m2(s);
• s∈Z(m1) implies m1(s)=m2(s):

Note that relation 4 is not transitive.
We need to modify the covering notion: an extended marking with a symbol !

corresponding to a place s represents a set of markings such that the place s cannot
be emptied any more.

De�nition 4.4. We say that an extended marking m′ covers a marking m if m4m′

and, for all s∈ S; m′(s) �=m(s) implies m′(s)=!.

If m1 4m2; then each transition 2rable at a marking m1 is 2rable also at marking
m2:

Proposition 4.5. Let m1; m2 be markings and t a transition. If m1[t〉m′
1 and m1 4m2;

then m2[t〉m′
2 and m′

1 4m′
2.

Corollary 4.6. Let m1; m2 be markings and t a transition. If m1[t〉m′
1 and m2 covers

m1; then m2[t〉m′
2 and m′

2 covers m′
1.

Given two markings m1 and m2; in general we have no way to know if m1 4m2;
because this information depends on all the 2ring sequences starting at m1. Hence, in
the algorithm we will use a 2ner relation on markings, which depends only on the
current contents of places and does not involve properties of markings reachable from
them.

146 N. Busi / Theoretical Computer Science 275 (2002) 127–177

De�nition 4.7. Let m1 and m2 be markings. We de2ne m1�m2 iB, for all places s∈ S:
if s∈ Inib(N) and m1(s)6EL(s) then m1(s)=m2(s) else m1(s)6m2(s).
Moreover, m1❁m2 if m1�m2 and m1 �=m2.

Note that ❁ (�) is a strict (weak) ordering relation.

Proposition 4.8. Let m1 and m2 be markings. If m1�m2 then m1 4m2.

Given a primitive net, we can apply a variant of the algorithm in Table 1 obtained by
replacing the inclusion ordering (⊂) on markings with the new ordering ❁ in step 3a.
We now show that the constructed coverability tree is 2nite, using (generalizations

of) the auxiliary lemmata recalled in Section 3.1:

Lemma 4.9. Every in;nite sequence of extended markings contains an in;nite subse-
quence ordered w.r.t. � .

Proof. By induction on the cardinality of the set of places S. Let {mi | i∈!} be a
sequence of extended markings on S. If S = ∅; then all markings in the sequence are
empty, and form a monotonous and nondecreasing sequence.
If S �= ∅; take s′ ∈ S and consider the sequence {mi(s′) | i∈!}. By Lemma 3.3 there

exists a constant in2nite subsequence or a strictly increasing in2nite subsequence. In the
second case, if s′ ∈ Inib(N) then extract the subsequence of elements that are greater
than EL(s′). In either cases, we have found a sequence of markings such that, for
every pair of consecutive markings, place s′ satis2es the conditions in the de2nition of
� . If we apply the induction hypothesis on the sequence of markings resulting from
ignoring place s′; we obtain an in2nite subsequence of markings ordered with � .

Lemma 4.10. The coverability tree of a primitive system N is ;nite.

Proof. Suppose that the coverability tree is in2nite. The coverability tree is 2nitely
branching, because, by construction, the number of arcs exiting from each node is lim-
ited by the number of transitions of the net, which is 2nite. Then, by KNonig Lemma,
there is an in2nite path x0 : : : xn : : : starting from the root. M [x0] : : : M [xn] : : : is a se-
quence of extended markings, and by Lemma 4.9 there exists an in2nite monotonous
and nondecreasing subsequence M [xi0]�M [xi1]�M [xi2]� · · ·. By construction, we
cannot have M [xi] =M [xj]; otherwise one of them is a duplicate node and has no suc-
cessors. Thus, we have M [xi0]❁M [xi1]❁M [xi2]❁ · · ·. As M [xij]❁M [xij+1]; by con-
struction there exists at least one place s for which M [xij](s)¡! and M [xij+1] =!.
Thus, each M [xij] has at least j places with associated symbol !. Let k be the car-
dinality of the set of places S. We have that all places in M [xik] have associated the
symbol !. We have M [xik]❁M [xik+1]; reaching a contradiction. Thus, the coverability
tree is 2nite.

We now show that the properties enunciated in Section 3.1 continue to hold.
Each reachable marking either appears or it is covered by some marking in the

coverability tree:

N. Busi / Theoretical Computer Science 275 (2002) 127–177 147

Lemma 4.11. For each ;ring sequence m0[t1〉 m1 : : : [tn〉mn there exists a sequence
of nodes and arcs x0

t1→ y1 x1
t2→ y2 : : : xn−1

tn→ yn in the coverability tree; such
that:
• x0 is the root of the tree;
• M [yi] =M [xi] for i=1; : : : ; n− 1;
• mi is covered by M [xi] for i=0; : : : ; n− 1 and mn is covered by M [yn].

Proof. By induction on the length of the 2ring sequence. If the 2ring sequence is m0;
as x0 is the root of the tree we have M [x0]=m0.
Given a 2ring sequence m0[t1〉m1 : : : [tn〉mn[tn+1〉mn+1; by induction hypothesis

there exists a sequence x0
t1→ y1 x1

t2→ y2 · · · xn−1
tn→ yn in the coverability tree, such

that:
• x0 is the root of the tree,
• M [yi] =M [xi] for i=1; : : : ; n− 1,
• mi is covered by M [xi] for i=0; : : : ; n− 1 and mn is covered by M [yn].
If node yn is a duplicate node, then there exists a node xn in the tree, that is not a

duplicate node, such that M [yn] =M [xn]. Otherwise, take xn =yn.
As mn is covered by M [xn] and mn[tn+1〉mn+1; by Corollary 4.6 we obtain M [xn]

[tn+1〉m′; and m′ covers mn+1.
During the processing of node xn; a new node yn+1; and a tn+1-labelled arc from xn

to yn+1; are created.
It remains to show that mn+1 is covered by M [yn+1]. Let s∈ S.

• We prove that mn+1(s)6M [yn+1](s). If M [yn+1](s)=!; we surely have mn+1(s)6!.
If M [yn+1](s) �=!; then M [yn+1](s)=m′(s); as m′ covers mn+1; we have mn+1(s)6
m′(s)=M [yn+1](s).

• We prove that if s∈Z(mn+1) then mn+1(s)=M [yn+1](s). M [yn+1](s) can be calcu-
lated in the following ways:
— It is calculated in case 3a of the algorithm; then, m′(s) �=!; a node v exists

such that M [v]�m′ and M [v](s)¡m′(s). We show that in this case we have
s =∈Z(mn+1). As m′(s) �=!; from the fact that m′ covers mn+1 it follows that
m′(s)=mn+1(s). From M [v]�m′; by de2nition of � we have that M [v](s)6
EL(s)⇒M [v](s)=m′(s). Thus, from M [v](s)¡m′(s) we obtain M [v](s)¿EL(s).
We have mn+1(s)=m′(s)¿M [v](s)¿EL(s); and by primitivity we obtain
s =∈Z(mn+1).

— It is calculated in case 3b of the algorithm; then, M [yn+1](s)=m′(s). As m′

covers mn+1; from s∈Z(mn+1) we obtain m′(s)=mn+1(s); thus M [yn+1](s)=
mn+1(s).

• We prove that if mn+1(s) �=M [yn+1](s) then M [yn+1](s)=!. M [yn+1](s) can be
calculated in the following ways:
— If it is calculated in case 3a of the algorithm, then M [yn+1](s)=!.
— If it is calculated by case 3b of the algorithm, then M [yn+1](s)=m′(s). If

M [yn+1](s) �=mn+1(s); then also m′(s) �=mn+1(s). As m′ covers mn+1; it follows
that m′(s)=!; thus also M [yn+1](s)=!.

148 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Now we show that ! symbols in the extended markings appearing in the covering
tree do indeed represent places that will hold an unlimited number of tokens: given
such an extended marking m′; we show that, for any positive number k; there exists a
reachable marking m such that the places holding the symbol ! in m′ are 2lled with
at least k tokens in m.

Lemma 4.12. Let z be a node of the coverability tree and k¿0. Then there exists a
marking m∈ [m0〉 such that; for all s∈ S;
• if M [z](s)¡! then m(s)=M [z](s);
• if M [z](s)=! then m(s)¿k.

Proof. Let EL= max{EL(s) | s∈ Inib(s)}. W.l.o.g. we assume k¿EL.
The proof proceeds by induction on the generation ordering of nodes in the tree.
If z is the root node, then M [z] =m0 and the condition is satis2ed. If z is gener-

ated during the processing of node x; then there exist an extended marking m′ and a
transition t such that M [x][t〉m′; moreover, there is an arc x t→ z in the coverability
tree.
By inductive hypothesis, given k1¿EL; there exists a marking m1 ∈ [m0〉 such that

• if M [x](s)¡! then m1(s)=M [x](s);
• if M [x](s)=! then m1(s)¿k1.
Let k2¿EL; if we take k1 = k2 + max{•t(s) | s∈ S} and the corresponding marking

m1 which satis2es the conditions above, we have that m1[t〉m2 and m2 satis2es the
following conditions:
• if M [x](s)¡! then m2(s)=m′(s);
• if M [x](s)=! then m2(s)¿k2.
From the construction of M [z]; we have that M [z](s)¡! implies M [z](s)=m′(s);

thus m2 satis2es the conditions required by the lemma for all s such that M [z](s)¡!
or M [x](s)=!.
Now we show how to obtain a marking which satis2es the lemma.
The problem is due to those places s such that M [x](s)¡! and M [z](s)=!; it

may happen that some of those places do not contain at least k tokens in marking m2.
If M [x](s)¡! and M [z](s)=!; then there exists a node y in the path between the
root and x such that M [y]❁m′; the idea is to take a k2 suCciently large, to permit to
iterate the transitions, occurring in the path from y to z; a suCcient number of times.
We de2ne an upper limit to the number of tokens that can be consumed from a place

by the 2ring of a transition sequence obtained by the labels of a path in the part of
the tree we have constructed until now. Let maxcons= maxn∈! {∑n

i= 1
•ti(s) | s∈ S ∧

x0
t1→ x1 : : :

tn→ xn is a path of the tree}.
For each marking m we de2ne Am; k = {s∈ S |M [z](s)=!∧m(s)¡k} and hm; k = k ×

maxcons× |Am|.

We prove the following:

N. Busi / Theoretical Computer Science 275 (2002) 127–177 149

Claim. Let k¿EL and m∈ [m0〉; such that:
• M [z](s)¡! implies m(s)=M [z](s);
• M [z](s)=! ∧M [x](s)¡! implies m(s)¿m′(s);
• M [x](s)=! implies m(s)¿k + hm; k :
Then there exists Rm∈ [m〉 such that
• M [z](s)¡! implies Rm(s)=M [z](s);
• M [z](s)=! implies Rm(s)¿k:

Proof of the Claim. By induction on |Am; k |.
If |Am; k |=0; then take Rm=m.
Otherwise, let Rs∈Am; k . We have m(Rs)¡k; hence M [x](Rs)¡!; thus, we have m′(Rs)=

M [x](Rs)− •t(Rs)+ t•(Rs)¡!. We have M [z](Rs)=! and m′(Rs)=!; hence case 3a of the
algorithm has been used, i.e. there exists a node y in the path from the root to x such
that M [y]❁m′ and M [y](Rs)¡m′(Rs).
We have a path y= x1

t→ 1 · · · xn t→ nz; with xn = x; in the tree.
We show that the transition sequence t1 : : : tn is 2rable at m.
Let s∈ •ti; we show that the marking reached after 2ring t1 : : : ti−1 contains at least

•ti(s) tokens; the following cases can occur:
• M [z](s)¡!: By hypothesis of the claim we have m(s)=M [z](s); as M [z](s)¡!; by
construction of the tree we have M [z](s)=m′(s); from M [y]❁m′ we get M [y](s)6
m′(s); hence we have M [y](s)6m(s). As M [z](s)¡!; we have also M [xi](s)¡!;
as ti is enabled at M [xi] we have •ti(s)6M [xi](s); we have M [xi](s)=M [y](s)−∑i−1

j= 1
•tj(s)+

∑i−1
j= 1 t

•
j (s); as m(s)¿M [y](s); we have that the number of tokens in

s at the marking reached from m after 2ring t1 : : : ti−1 is greater or equal to •ti(s).
• M [z](s)=! and M [x](s)¡!: By hypothesis of the claim we have m(s)¿m′(s);
from M [y]❁m′ we get M [y](s)6m′(s); hence we have M [y](s)6m(s). As M [x](s)
¡!; we have also M [xi](s)¡!; the proof proceeds as for the item above.

• M [x](s)=!: By hypothesis of the claim we have that m(s)¿k + hm; k¿maxcons;
hence there are enough tokens for ti to 2re at the marking reached after 2ring
t1 : : : ti−1.
Let s∈ ◦ti; we show that s is empty in the marking reached after the 2ring of t1 : : : ti−1

from marking m. As ti is enabled at M [xi]; we have M [xi](s)= 0¡!; hence also
M [y](s)¡!. We show that M [y](s)6EL(s): suppose M [y](s)¿EL(s): by inductive
hypothesis of the lemma, there exists a marking m′′ ∈ [m0〉 such that, for all s∈ S:
• if M [y](s)¡! then m′′(s)=M [y](s);
• if M [y](s)=! then m′′(s)¿maxcons.
It is easy to see that t1 : : : ti is enabled at m′′; thus obtaining an inhibiting place s
and a marking m′′ ∈ [m0〉 such that m′′(s)¿EL(s) and s is tested for absence of to-
kens in a subsequent transition (ti), contradicting the primitivity of the net. Hence,
M [y](s)6EL(s); as M [y](s)❁m′; we have M [y](s)=m′(s); the following cases can
happen:
• M [z](s)¡!: in this case, m(s)=M [z](s) by hypothesis of the claim, and

m′(s)=M [z](s) by construction; hence, we have m(s)=m′(s)=M [y](s); as

150 N. Busi / Theoretical Computer Science 275 (2002) 127–177

M [xi](s)= 0; we have that place s becomes empty after the 2ring of t1 : : : ti−1 from
marking m.

• M [z](s)=! and M [x](s)¡!: we show that this case cannot happen; we have
m′(s)¡!; hence by construction there exists a node w such that M [w]❁m′ and
M [w](s)¡m′(s): We have seen above that M [y](s)6EL(s); from which follows that
M [y](s)=m′(s)6EL(s). As M [w]❁m′; we have M [w](s)6m′(s)6EL(s); hence,
by de2nition of ❁; M [w](s)=m′(s); contradiction.

• M [x](s)=!: we show that this case cannot happen; we have m′(s)=!; we have
seen above that M [y](s)6EL(s); from which follows that M [y](s)=m′(s)6EL(s);
contradiction.
We have shown that the transition sequence t1 : : : tn is 2rable at m.
Now we show that m[t1 : : : tn〉 Rm′; with Rm′ satisfying the following:

• M [z](s)¡! implies Rm′(s)=M [z](s);
• M [z](s)=! ∧M [x](s)¡! implies Rm′(s)¿m′(s);
• M [x](s)=! implies Rm′(s)¿k + hm; k − maxcons;
• M [y](s)¡m′(s)¡! implies Rm′(s)¿m(s) + 1;
• M [y](s)=m′(s)¡! implies Rm′(s)=m(s):
Let s∈ S:

• If M [z](s)¡!; then by hypothesis of the claim we have m(s)=M [z](s); by con-
struction, we have M [z](s)=m′(s). We know that M [y]❁m′; if M [y](s)¡m′(s);
then by step 3a of the algorithm we get M [z](s)=!; contradiction; hence we have
M [y](s)=m′(s). We have M [z](s)=M [y](s)−∑n

i= 1
•ti(s)+

∑n
i= 1 t

•
i (s)=m′(s)−∑n

i= 1
•ti(s) +

∑n
i= 1 t

•
i (s)= Rm′(s).

• If M [z](s)=! and M [x](s)¡!; by hypothesis of the claim we have that m(s)¿
m′(s): As M [y]❁m′; we have m′(s)¿M [y](s); hence m(s)¿M [y](s). We have
Rm′(s)=m(s)−∑n

i=1
•ti(s)+

∑n
i=1 t

•
i (s)¿M [y](s)−∑n

i=1
•ti(s)+

∑n
i=1 t

•
i (s)=m′(s),

i.e. Rm′(s)¿m′(s).
• If M [x](s)=!, by hypothesis of the claim we have m(s)¿k + hm; k ; we have
Rm′(s)=m(s)−∑n

i=1
•ti(s) +

∑n
i=1 t

•
i (s)¿m(s)−∑n

i=1
•ti(s)¿m(s)−maxcons¿k +

hm; k − maxcons, i.e. Rm′(s)¿k + hm; k − maxcons.
• If M [y](s)¡m′(s)¡!, then we have m′(s)=M [y](s)−∑n

i=1
•ti(s)+

∑n
i=1 t

•
i (s); as

M [y](s)¡m′(s), we have
∑n

i=1 t
•
i (s)−

∑n
i=1

•ti(s)¿1; we have that Rm′(s)=m(s)−∑n
i=1

•ti(s) +
∑n

i=1 t
•
i (s)¿m(s) + 1, i.e. Rm′(s)¿m(s) + 1.

• If M [y](s)=m′(s)¡!, then we have m′(s)=M [y](s)−∑n
i=1

•ti(s)+
∑n

i=1 t
•
i (s); as

M [y](s)=m′(s), we have
∑n

i=1 t
•
i (s)−

∑n
i=1

•ti(s)= 0; we have that Rm′(s)=m(s)−∑n
i=1

•ti(s) +
∑n

i=1 t
•
i (s)=m(s), i.e. Rm′(s)=m(s).

By repeating the 2ring of the transition sequence t1 : : : tn for k times, we reach a
marking Rm′′ such that
• M [z](s)¡! implies Rm′′(s)=M [z](s),
• M [z](s)=! ∧M [x](s)¡! implies Rm′′(s)¿m′(s),
• M [x](s)=! implies Rm′′(s)¿k + hm; k − k × maxcons,
• M [y](s)¡m′(s)¡! implies Rm′′(s)¿m(s) + k,
• M [y](s)=m′(s)¡! implies Rm′′(s)=m(s).

N. Busi / Theoretical Computer Science 275 (2002) 127–177 151

We have seen at the beginning of the inductive step of the proof that there exists a place
Rs∈Am; k such that M [y](Rs)¡m′(Rs)¡!; hence, we have Rm′′(Rs)¿m(Rs)+k; as M [y]❁m′,
from the last two conditions satis2ed by Rm′′ it is easy to see that Rm′′(s)¿m(s) for all
s∈ S; thus Rm′′(s)6k implies m(s)6k, hence we have A Rm′′ ; k ⊆Am; k ; moreover, we have
that Rs∈Am; k\A Rm′′ ; k ; hence |A Rm′′ ; k |¡|Am; k |.
We show that Rm′′ satis2es the hypothesis of the claim:

• we have that M [z](s)¡! implies Rm′′(s)=M [z](s);
• we have that M [z](s)=! ∧M [x](s)¡! implies Rm′′(s)¿m′(s);
• if M [x](s)=!, then Rm′′(s)¿k+hm; k − k×maxcons; as hm; k = k×maxcons×|Am; k |,
we have k + hm; k − k ×maxcons= k + k ×maxcons× (|Am; k | − 1); we have shown
above that |A Rm′′ ; k |¡|Am; k |, hence k+k×maxcons× (|Am; k |−1)¿k+k×maxcons×
|A Rm′′ ; k |= k + h Rm′′ ; k ; thus, we have obtained Rm′′(s)¿k + h Rm′′ ; k¿h Rm′′ ; k .

As Rm′′ satis2es the hypothesis of the claim, and |A Rm′′ ; k |¡|Am; k |, we can apply the
inductive hypothesis: we obtain a marking Rm∈ [Rm′′〉 such that
• M [z](s)¡! implies Rm(s)=M [z](s),
• M [z](s)=! implies Rm(s)¿k.
We know that Rm′′ is obtained by 2ring k times the transition sequence t1 : : : tn, starting
from marking m; hence, Rm′′ ∈ [m〉; from Rm′′ ∈ [m〉 and Rm∈ [Rm′′〉 we get Rm∈ [m〉.
This ends the proof of the claim.
Now, let k2 = k+ k×maxcons×|S|; we show that m2 satis2es the hypothesis of the

claim:
• If M [z](s)¡!, then also M [x](s)¡!, hence, by the conditions satis2ed by m2, we
have m2(s)=m′(s); as M [z](s)¡!, by construction we have m′(s)=M [z](s), hence
we obtain m2(s)=M [z](s).

• If M [z](s)=! and M [x](s)¡!, by the condition on m2 we have m2(s)=m′(s).
• If M [x](s)=!, we have by the condition on m2 we have m2(s)¿k2; we have taken

k2 = k + k ×maxcons× |S|; as Am2 ; k2 ⊆ S, we have k + k ×maxcons× |S|¿k + k ×
maxcons× |Am2 ; k2 |= k + hm2 ; k2 , hence m2(s)¿k + hm2 ; k2 .
Hence, by the claim, we obtain a marking m∈ [m2〉 such that

• if M [z](s)¡! then m(s)=M [z](s),
• if M [z](s)=! then m(s)¿k.
From m1 ∈ [m0〉; m1[t〉m2 and m∈ [m2〉 we get m∈ [m0〉.

Now we show that the decision procedures presented in Section 3.1 are valid also
for primitive systems.
It is possible to decide if a place is bounded.

Theorem 4.13. A place s is bounded i5; for all nodes x in the coverability tree;
M [x](s) �=!.

Proof. Suppose s is bounded. If there exists a node x such that M [x](s)=! then, by
Lemma 4.12, there exists a marking m∈ [m0〉 such that, for each k, m(s)¿k. Thus, s
is not bounded.

152 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Suppose that M [x](s) �=! for all nodes x in the coverability tree. If s is unbounded,
then, for each k, there exists a marking m∈ [m0〉 such that m(s)¿k. Take k¿
max{M [x](s) | x is a node}. By Lemma 4.11, there exists a node z in the tree such
that M [z] covers m; thus, M [z](s)¿m(s)¿k, which is a contradiction.

Boundedness for single places can be useful to reduce the size of the net: for ex-
ample, if an inhibiting place is bounded by 0, then we can remove the inhibiting arcs
exiting from that place.

Corollary 4.14. The net N is bounded if the symbol ! does not appear in any node
of the coverability tree.

From the coverability tree we can 2nd dead transitions:

Theorem 4.15. t is dead i5 no t-labelled arc occurs in the coverability tree.

Proof. We show that if there exists a t-labelled arc in the coverability tree then t is
not dead. Suppose an arc x t→ y occurs in the tree. By construction, t is enabled at
M [x]. Let k = max{•t(s) | s∈ S}; by Lemma 4.12, there exists m∈ [m0〉 such that, for
all s∈ S,
• M [x](s)¡! implies m(s)=M [x](s),
• M [x](s)=! implies m(s)¿k.
then, t is enabled at m, and it is not dead.
Now we show that if t is not dead then there exists a t-labelled transition in the

coverability tree. Suppose t is not dead. Then there exists m∈ [m0〉 such that t is en-
abled at m. By Lemma 4.11 there exists a node x such that m is covered by M [x].
By Corollary 4.6, from t enabled at m we obtain t enabled at M [x]. If x is a dupli-
cate node, then take the internal node z such that M [z] =M [x]; otherwise, take z= x.
By construction, we have that a t-labelled arc exiting from node z occurs in the cov-
erability tree.

The coverability problem can be solved with the inspection of the nodes of the
coverability tree.

Theorem 4.16. Let m be a marking. A marking m′ ∈ [m0〉; such that m⊆m′; exists
i5 there exists a node x in the coverability tree such that m⊆M [x].

Proof. Suppose that there exists m′ ∈ [m0〉 such that m⊆m′. By Lemma 4.11 there
exists a node x such that m′ is covered by M [x]. Then we have that m′ ⊆M [x], and
also m⊆M [x].
Suppose that there exists a node x such that m⊆M [x]. Take k =max{m(s) | s∈ S}.

By Lemma 4.12 there exists a marking m′ ∈ [m0〉 such that, for all s∈ S,
• M [x](s)¡! implies m′(s)=M [x](s),
• M [x](s)=! implies m′(s)¿k.
It is easy to see that m⊆m′.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 153

The theorem above gives information on the contents of places, thus can be useful
to check properties dealing with the quantity of resources involved in a system, often
represented as tokens in some place.

4.1. Some su@cient conditions for a PTI system to be primitive

Note that, in general, it is not possible to decide if a given PTI system is primitive,
otherwise we can test a RAM program for termination: given a RAM program, we
construct the corresponding (deterministic) PTI system, as shown in Appendix A; if
the obtained PTI system is primitive, then we can construct the coverability tree, and the
RAM program terminates if and only if no ! symbol appears in the extended markings
labelling the nodes of the coverability tree, as we already said at the beginning of this
section; if the obtained PTI system is not primitive, then there exists a place in which
the number of tokens can become unlimitedly large and the place can still be tested
for emptiness; as the system is deterministic, it has no dead markings, hence the RAM
program does not terminate.
We will show two suCcient conditions for a PTI system to be primitive.
The 2rst technique is based on S-invariants; if, for each place s∈ Inib(N), there

exists a semipositive S-invariant I , such that I(s)¿0, then, by Theorem 3.27, place s
is bounded; we can take the emptiness limit equal to the upper bound to the number of
tokens in place s that can be found in the proof of the Theorem; clearly, boundedness
of the inhibiting places implies primitivity.
Another technique is based on the analysis of the coverability tree of the P=T system

obtained by dropping the inhibitor arcs; it is easy to see that each 2ring sequence of
a PTI system N is also a 2ring sequence of the P=T system N ′ obtained by dropping
the inhibitor arcs from N , hence each 2ring sequence of N is represented in the
coverability tree of N ′, in the sense of Lemma 3.6; we inspect the coverability tree
of N ′, looking for a set of emptiness limits EL(s), for all s∈ Inib(N), satisfying the
following: for each s∈ Inib(N) and for each node x of the tree, if M [x](s)¿EL(s) and
there exists a sequence of arcs x t1→ y1 = x1

t2→ y2 : : : xn−1
tn→ yn such that s∈ ◦tn, then

0¡M [xn−1](s)¡!. The above condition amount to check that, if there exists a 2ring
sequence in N ′ violating the primitivity requirement, then that sequence is not 2rable
in N .

5. Simulating primitive systems by P=T systems

We have seen in the previous section how to use the coverability tree to solve some
analysis problems, such as coverability and boundedness. However, in general, it does
not contain a suCcient amount of information to solve problems such as reachability
and liveness, or to check if a given 2ring sequence is possible. This is due to the
presence of the ! symbol, representing a set of markings with a suCciently large
number of tokens, which causes the loss of the information regarding the eBective

154 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 4. An inhibiting arc on place s of a primitive system is represented as a self-loop on place s0 in the
corresponding P=T system.

contents of places. In this section we reduce the reachability problem for primitive
systems to the reachability for P=T systems, which is known to be decidable. This is
made by constructing a corresponding P=T system for each primitive system in such
a way that there exists a correspondence between the respective markings and 2ring
sequences. The construction is based on the same idea underlying the covering relation
in the de2nition of the coverability tree, that is we need to know the exact contents
of each inhibiting place, until it has not exceeded its emptiness limit. An inhibiting
place s is mapped on a set of places {si | 06i6EL(s)}∪ {s!}; a token in a place si

represents the fact that place s contains i tokens; k+1 tokens in place s! represent the
fact that place s contains k tokens and that it cannot be emptied any more, because its
contents has exceeded the emptiness limit during the execution. The net is constructed
in such a way that, for each reachable marking m and for each inhibiting place s in
the original net, either a single token is contained in exactly one place si and the other
places sj, with j �= i, and s! are empty, or place s! contains any number of tokens
and all places si are empty. An inhibiting arc connecting a place s with a transition
t, such that s is not in the postset of t, is substituted by a self loop on place s0, as
illustrated in Fig. 4.
Each transition is split in a set of transitions, each one managing a speci2c repre-

sentation of the contents of each inhibiting place s in the original net by means of the
contents of places si and s!.
Consider a transition t which consumes only one token from an inhibiting place

s: it is mapped on a set of transitions t1; : : : ; tEL(s); t!: each transition t i manages the
fact that place s contains i tokens, and that this is represented, in the net we are
constructing, by one token in place si; transition t! manages the fact that the number
of tokens in place s is one token less than the ones in place s!. When t i 2res, it
removes the token from place si and produces a token in place si−1, representing the
fact that, after the 2ring of transition t in a marking with i tokens in place s, the place
s contains i− 1 tokens. If transition t! 2res, then two tokens are removed from place
s!, and one is produced in that place.
Note that, for the property on markings above enunciated, exactly one of the tran-

sitions t1; : : : ; tELs; t! is enabled in a marking, if transition t was enabled in the corre-
sponding marking of the original net.
Consider now a transition t which only produces one token in an inhibiting place s:

it is mapped on a set of transitions t0; : : : ; tELs; t!: each transition t i manages the fact

N. Busi / Theoretical Computer Science 275 (2002) 127–177 155

that place s contains i tokens, whereas t! manages the fact that the contents of place s
is one token less than number of tokens in place s!. When t i 2res, it removes the token
from place si; if i¡ELs then it puts a token in place si+1, representing the fact that,
after the 2ring of transition t in a marking with i tokens in place s, that place contains
i + 1 tokens; if i=ELs, then it puts ELs+ 2 tokens in s!. When t! 2res, a token is
consumed, and two are produced, in place s!. The necessity to represent the presence
of k tokens in place s with k + 1 tokens in place s!, and to add a self loop on place
s! to each transition connected to s! becomes clear now: consider e.g. the situation
where place si contains one token; in absence of the self-loop, both transitions t i and
t! could 2re. As place s! contains one token more than those actually contained in
s, a transition t consuming k tokens from place s needs to be mapped on a transition
t! which consumes k + 1 tokens, and reproduced the “enabling” token, in place s!.
Generalizing the above discussion, a transition t is split into a set of transitions, each
one managing one of the diBerent representations of the contents of the inhibiting
places from which t removes or produces tokens in the original net. This is obtained
by associating to each transition t a set of transitions t �, where � : Inib(N) → !∪{!}
represents some information about the contents of the set of places corresponding to
the inhibiting places involved in the 2ring of t in the original net: for each inhibiting
place s∈dom(•t⊕ t•), �(s)= i6EL(s) represents a marking with one token in place
si, whereas �(s)=! represents a marking where the contents of place s is represented
by the same number of tokens in place s!. As we are interested only in the contents
of places involved in the production or consumption of tokens during 2ring of t, we
take only those � such that dom(�)⊆dom(•t ⊕ t•). Moreover we take only those �
representing markings in which transition t is 2rable, that is, that satisfy �(s)¿•t(s).
Note that, if t does not produce/consume tokens from inhibiting places, then a single
transition t∅ is associated to it. If a transition t removes i¿0 tokens from place s and
produces j¿0 tokens in the same place, then
• Each transition t � with i6�(s)6EL(s) removes the token from place s�(s); let

k = �(s)− i+ j; k is the number of tokens in place s after the 2ring of transition t,
if the contents of that place was �(s) before the 2ring; if k6EL(s), then a token
is produced in place sk , otherwise k + 1 tokens are produced in place s!.

• Each transition t � with �(s)=! removes i + 1 tokens from place s! and produces
j + 1 tokens in the same place.

See Fig. 5 for a graphical representation.
In the following, we will use 6 to range over !∪{!}.
Given a primitive net N , we construct a corresponding net Norm(N) in the following

way:

De�nition 5.1. Let N =(S; T; F; I; m0) be a primitive PTI system.
The P=T system Norm(N)= (S ′; T ′; F ′; m′

0) is de2ned as

S ′ = (S \ Inib(N)) ∪ Sinib;

156 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 5. Representation of the Eow arcs connecting a place s and a transition t of a primitive system in the
corresponding P=T system.

where

Sinib =
⋃

s∈Inib(N)
{s6 | 06 66 EL(s) ∨ 6 = !};

T ′ =
⋃
t∈T

{t� | � : Inib(N) → ! ∪ {!} ∧ dom(�) ⊆ dom(•t ⊕ t•) ∧

∀s ∈ dom(�)(•t(s)6 �(s)6 EL(s) ∨ �(s) = !)}:

Given s′ ∈ S ′, two cases can happen:
• if s′ ∈ S\Inib(N), then F ′(s′; t �)=F(s′; t) and F ′(t �; s′)=F(t; s′) for all t � ∈T ′

• if s′ ∈ Sinib, then s′= s6 for some s∈ Inib(N):
if s =∈ ◦t ∪ dom(•t)∪ dom(t•) then F ′(s6; t�)= 0 and F ′(t �; s6)= 0, else

F ′(s6; t�) =

1 if 6 = 0 ∧ s ∈◦ t

1 if 6 = �(s) ∧ 6 ¡ !

F(s; t) + 1 if 6 = �(s) ∧ 6 = !

0 otherwise

N. Busi / Theoretical Computer Science 275 (2002) 127–177 157

Fig. 6. The P=T system corresponding to the primitive system of Fig. 1.

F ′(t�; s6) =

1 if 6 ¡ !∧
6 = �(s)− F(s; t) + F(t; s)

�(s)− F(s; t) + F(t; s) + 1 if 6 = ! ∧ �(s) ¡ !∧
�(s)− F(s; t) + F(t; s) ¿ EL(s)

F(t; s) + 1 if 6 = �(s) ∧ 6 = !

0 otherwise:

The initial marking of Norm(N) is de2ned as follows:
Given s′ ∈ S ′, two cases can happen:

• if s′ ∈ S\Inib(N), then m′
0(s

′)=m0(s′),
• if s′ ∈ Sinib, then s′= s6 for some s∈ Inib(N) and

m′
0(s

6) =

1 if 6 = m0(s);

m0(s) + 1 if 6 = ! ∧ m0(s) ¿ EL(s);

0 otherwise:

We illustrate the construction above with an example; consider the primitive system
in Fig. 1: the corresponding P=T system Norm(N) is shown in Fig. 6.
For each 2ring sequence of a primitive net N there exists a 2ring sequence in

Norm(N), such that the reached markings are related, and vice versa.

Lemma 5.2. Let m0[t1〉m1 : : : [tn〉mn be a ;ring sequence of N . Then there exists a
;ring sequence m′

0[t
�1
1 〉m′

1 : : : [t
�n
n 〉m′

n of Norm(N) such that; for i=0; : : : ; n; and for all

158 N. Busi / Theoretical Computer Science 275 (2002) 127–177

s′ ∈ S ′;
• if s′ ∈ S\Inib(N) then m′

i(s
′)=mi(s′)

• if s′ ∈ Sinib and s′= s6 then

m′
i(s

6) =

1 if 6 = mi(s) ∧ ∀j (06 j 6 i ⇒ mj(s)6 EL(s));
mi(s) + 1 if 6 = ! ∧ ∃j(06 j 6 i ∧ mj(s) ¿ EL(s));
0 otherwise:

Proof. By induction on the length of the 2ring sequence.
If the 2ring sequence is m0, it is easy to see that m′

0 satis2es the required condition.
Let m0[t1〉m1 : : : mn[t〉mn+1 be a 2ring sequence; by inductive hypothesis, there exists

a 2ring sequence m′
0[t

�1
1 〉m′

1 : : : m
′
n which satis2es the condition. Moreover, t is enabled

at mn (i.e. •t⊆mn and ◦t ∩dom(mn)= ∅) and mn+1 = (mn\•t)⊕ t•.
We want to 2nd a � such that m′

n[t
�〉m′

n+1.
Take � de2ned as follows:
if s =∈dom(•t ⊕ t•) then �(s)= 0, else

�(s) =

{
mn(s) if ∀j(06 j 6 n ⇒ mj(s)6 EL(s);

! otherwise:

We show that t � ∈T ′: we have �(s)= 0 if s =∈dom(•t⊕ t•), hence dom(�)⊆dom(•t⊕
t•). Let s∈dom(�); if �(s) 6 !, then by de2nition �(s)=mn(s); as t is enabled at
mn(s), we have •t(s)6 mn(s); moreover, by de2nition we have mn(s)6 EL(s), hence
•t(s)6 �(s)6 EL(s). So t � ∈T ′.
Now we show that t � is enabled at m′

n, i.e.
•t � ⊆m′

n, i.e.
•t �(s)=F ′(s; t�)6 m′

n(s)
for each s′ ∈ S ′.
Let s′ ∈ S ′; two cases can occur:

• If s′ ∈ S\Inib(N), then F ′(s′; t �)=F(s′; t)6 mn(s′)=m′
n(s

′).
• If s′ ∈ Sinib and s′= s6, then we proceed by case analysis on the de2nition of

F ′(s6; t�): if s =∈ ◦t ∪dom(•t)∪dom(t•) then F ′(s6; t�)= 0 and the condition is sat-
is2ed; otherwise the following cases can happen:
— 6=0 and s∈ ◦t: in this case we have F ′(s6; t�)= 1. From s∈ ◦t and t enabled

at mn it follows that mn(s)= 0. The net N is primitive, hence the emptiness
of place s in the current marking implies that the emptiness limit has not been
exceeded during the computation, i.e. ∀j (0 6 j 6 n⇒mj(s) 6 EL(s)); then,
by inductive hypothesis, we have that m′

n(s
6)= 1¿ F ′(s6; t�).

— 6= �(s) and 6¡!: we have F ′(s6; t�)= 1. As �(s)¡!, by de2nition of �
we have that �(s)=mn(s) and ∀j (0 6 j 6 n⇒mj(s) 6 EL(s). From this
and 6= �(s)=mn(s), by inductive hypothesis we have that m′

n(s
6)=1, hence

m′
n(s

6)¿ F ′(s6; t�).
— �(s)= 6=!: then F ′(s6; t�)=F(s; t) + 1; From �(s)=!, by de2nition of �

we obtain that ∃j (0 6 j 6 n∧mj(s)¿EL(s). From this and 6=!, by in-
ductive hypothesis we obtain m′

n(s
6)=mn(s)+ 1. As t is enabled at mn we

N. Busi / Theoretical Computer Science 275 (2002) 127–177 159

have that F(s; t) 6 mn(s), from which we obtain F ′(s6; t�)=F(s; t) + 1 6
mn(s) + 1=m′

n(s).
— otherwise we have F ′(s6; t�)= 0 and the condition is obviously satis2ed.

Let m′=m′
n\•(t �)⊕ (t �)• and m′

n+1 as de2ned by the condition of the lemma. Finally,
we show that m′=m′

n+1.
If s′ ∈ S\Inib(N) then m′(s′)=m′

n(s
′) − F ′(s′; t �) + F ′(t �; s′)=mn(s′) − F(s′; t) +

F(t; s′)=mn+1(s′) and m′
n+1(s

′)=mn+1(s′).
Let s′ ∈ Sinib and s′= s6; the following cases can occur:

• ∀j (06 j 6 n+ 1 ⇒ mj(s)6 EL(s)): (1)

By de2nition of � we have that �(s)=mn(s), hence mn+1(s)=mn(s)−F(s; t)+F(t; s)=
�(s)− F(s; t) + F(t; s), i.e.

mn+1(s) = �(s)− F(s; t) + F(t; s): (2)

Three cases can occur:
◦ 6=mn+1(s): by (2) we have that 6= �(s) − F(s; t) + F(t; s) hence, by de2ni-
tion of F ′, F ′(t �; s6)= 1. By inductive hypothesis and condition (1) we have that
m′

n(s
6)∈{0; 1}.

— If m′
n(s

6)= 0 then m′(s6)=m′
n(s

6)− F ′(s6; t�) + F ′(t �; s6)= 1.
— If m′

n(s
6)= 1 then by inductive hypothesis we have 6=mn(s)= �(s), hence

F ′(s6; t�)= 1 and m′(s6)=m′
n(s

6)− F ′(s6; t�) + F ′(t �; s6) = 1.
By condition (1) and 6=mn+1(s) we have that m′

n+1(s
6)= 1.

◦ 6¡! and 6 �=mn+1(s): by (2) we have that 6 �= �(s) − F(s; t) + F(t; s), hence, by
de2nition of F ′ and 6¡!, F ′(t �; s6)= 0. By inductive hypothesis and condition (1)
we have that m′

n(s
6)∈{0; 1}.

— If m′
n(s

6)= 0 then m′(s6)=m′
n(s

6)− F ′(s6; t�) + F ′(t �; s6)= 0.
— If m′

n(s
6)= 1 then by inductive hypothesis we have 6=mn(s)= �(s), hence

F ′(s6; t�)= 1 and m′(s6)=m′
n(s

6)− F ′(s6; t�) + F ′(t �; s6)= 0.
◦ 6=!: by inductive hypothesis and condition (1) we have that m′

n(s
6)= 0; by con-

dition (1) we have that mn+1(s) 6 EL(s), hence by (2) �(s) − F(s; t) + F(t; s) 6
EL(s); by de2nition of F ′ we obtain that F ′(t �; s6)= 0. We have m′(s6)=m′

n(s
6)−

F ′(s6; t�) + F ′(t �; s6)= 0; by condition (1) we obtain that m′
n+1(s

6)= 0.

• ∀j (06 j 6 n ⇒ mj(s)6 EL(s)) ∧ mn+1(s)¿EL(s): (3)

By (3) and de2nition of �(s) we have that �(s)=mn(s), hence �(s) − F(s; t) +
F(t; s)=mn(s)− F(s; t) + F(t; s)=mn+1(s)¿EL(s), i.e.

�(s)− F(s; t) + F(t; s) ¿ EL(s): (4)

160 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Three cases can occur:
◦ 6=mn(s): by condition (3) and inductive hypothesis we have that m′

n(s
6)= 1; as

6=mn(s)= �(s), by de2nition of F ′ we have that F ′(s6; t�)= 1. By condition (4)
we have �(s)−F(s; t)+F(t; s)¿EL(s); as 6=mn(s) and, by condition (3), mn(s)6
EL(s), we have 66 EL(s), hence 6 �= �(s)−F(s; t)+F(t; s); hence, by de2nition of
F ′, we have that F ′(t �; s6)= 0. We have m′(s6)=m′

n(s
6)−F ′(s6; t�)+F ′(t �; s6)= 0;

by condition (3) we have that m′
n+1(s

6)= 0.
◦ 6¡! and 6 �=mn(s): by inductive hypothesis we have that m′

n(s
6)= 0; by (4) and

de2nition of F ′ we have that F ′(t �; s6)= 0, hence m′(s6)= 0; by (3) we have that
m′

n+1(s
6)= 0.

◦ 6=!: by condition (3) and inductive hypothesis we have that m′
n(s

6)= 0; we have
�(s)=mn(s), hence �(s)¡! and F ′(s6; t�)= 0; moreover by (4) �(s) − F(s; t) +
F(t; s)¿EL(s), hence by de2nition of F ′ we have that F ′(t �; s6)= �(s)− F(s; t) +
F(t; s) + 1=mn(s)− F(s; t) + F(t; s) + 1=mn+1(s) + 1; hence m′(s6)=mn+1(s) + 1.
By condition (3) we have that m′

n+1(s
6)=mn+1(s) + 1.

• ∃j (06 j 6 n ∧ mj(s) ¿ EL(s)): (5)

By condition (5) we have that �(s)=!.
Two cases can occur:

◦ 6¡!: by condition (5) and inductive hypothesis we have that m′
n(s

6)= 0; as �(s)=
!, by de2nition of F ′ we have that F ′(t �; s6)= 0; hence m′(s6)= 0 and F ′(s6; t�)= 0.
By condition (5) we have that m′

n+1(s
6)= 0.

◦ 6=!: by condition (5) and inductive hypothesis we have that m′
n(s

6)=mn(s) + 1;
as �(s)=!, by de2nition of F ′ we have that F ′(s6; t�)=F(s; t)+1 and F ′(t �; s6)=
F(t; s)+1; hence m′(s6)=m′

n(s
6)−F ′(s6; t�)+F ′(t �; s6)=mn(s)+1−F(s; t)− 1+

F(t; s) + 1=mn+1(s) + 1.
By condition (5) we have that m′

n+1(s
6)=mn+1(s) + 1.

Thus, we have obtained a 2ring sequence m′
0[t

�1
1 〉m′

1 : : : m
′
n[t

�〉m′ which satis2es the
conditions required by the lemma.

We show that markings in Norm(N) faithfully represent markings in N . As the
presence of exactly i tokens in the inhibiting place s of the net N is represented either
as one token in the place si or as i + 1 tokens in the place s! of the net Norm(N),
we expect that in each marking reachable in Norm(N) the following holds for each
s∈ Inib(N): either a single token is contained in exactly one place si and the other
places s6 with 6 �= i are empty, or at least one token is contained in place s! and the
other places s6 with 6 �=! are empty.

Lemma 5.3. Let m′ ∈ [m′
0〉. Then; for each s∈ Inib(N):

(1) m′(sk)6 1 for k =0; : : : ;EL(s).
(2) there exists a unique 6∈{0; : : : ;EL(s); !} such that m′(s6)¿0.

Proof. By induction on the length of the 2ring sequence leading to m′.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 161

The base of the induction is when m′=m′
0. Then,

(1) Obvious from de2nition of m′
0:

(2) Two cases can occur:
• if m′

0(s)6 EL(s) then m′
0(s

!)= 0, m′
0(s

m0(s))= 1 and m′
0(s

k)= 0 for k �=m0(s).
• If m′

0(s)¿EL(s) then m′
0(s

k)= 0 and m′
0(s

!)=m0(s) + 1.
Let m′

0 : : : [t
�n
n 〉m′

n[t
�〉m′ be a 2ring sequence leading to m′. By inductive hypothesis,

m′
n satis2es the conditions of the lemma.
If s =∈ ◦t ∪dom(•t)∪dom(t•) then m′(s6)=m′

n(s
6) for each 6 and the condition is

true by inductive hypothesis.
Let s∈ ◦t ∪dom(•t)∪dom(t•):

(1) We show that m′(sk)6 1 for k =0; : : : ;EL(s).
By inductive hypothesis we have that m′

n(s
k) 6 1, hence two cases can

occur:
• m′

n(s
k)= 0: as k¡!, by de2nition of F ′ we have that F ′(t �; sk) 6 1, hence

m′(sk)=m′
n(s

k)− F ′(sk ; t�) + F ′(t �; sk)6 1.
• m′

n(s
k)= 1: three cases can happen, according to the value of �(s):

◦ �(s)= k: we have that F ′(sk ; t�)= 1; as k¡!, F ′(t �; sk)6 1, hence m′(sk)=
m′

n(s
k)− F ′(sk ; t�) + F ′(sk ; t�)6 1.

◦ �(s) �= k and �(s)¡!: we have F ′(s�(s); t �)= 1; as t � is enabled at m′
n we

have m′
n(s

�(s))¿ 1; as m′
n(s

k)= 1 for k �= �(s), this contradicts condition (2)
of the lemma, that is true for inductive hypothesis.

◦ �(s)=!: we have F ′(s!; t�)=F(s; t) + 1; as t � is enabled at m′
n we have

m′
n(s

!)¿ 1; as m′
n(s

k)= 1, this contradicts condition (2) of the lemma, that
is true for inductive hypothesis.

(2) We show that there exists a unique 6∈{0; : : : ;EL(s); !} such that m′(s6)¿0.
Two cases can occur, according to the value of �(s):

• �(s)¡!: by de2nition of F ′ we have F ′(s�(s); t �)= 1. as t � is enabled at m′
n,

we have m′
n(s

�(s)) ¿ 1; by inductive hypothesis we obtain m′
n(s

�(s))= 1 and
m′

n(s
6)= 0 for 6 �= �(s). Hence m′

n(s
6)− F ′(s6; t�)= 0 for each 6.

Let 8= �(s)− F(s; t) + F(t; s).
Two cases can occur, according to the value of 8:
◦ 8 6 EL(s): by de2nition of F ′ we have F ′(t �; s8)= 1 and F ′(t �; s6)= 0 for

6 �= 8. Hence we obtain m′(s8)= 1 and m′(s6)= 0 for 6 �= 8.
◦ 8¿EL(s): by de2nition of F ′ we have F ′(t �; s!)= �(s)− F(s; t) + F(t; s) +
1= 8+ 1 and F ′(t �; s6)= 0 for 6¡!. We obtain m′(s!)¿ 1 and m′(s6)= 0
for 6¡!.

• �(s)=!: by de2nition of F ′ we have F ′(s!; t�)=F(s; t)+1; as t � is enabled at
m′

n, we have m′
n(s

!)¿ 1; hence, by inductive hypothesis, m′
n(s

6)= 0 for 6¡!.
By de2nition of F ′ we have F ′(t �; s!)=F(t; s)+1 and F ′(t �; s6)= 0 for 6¡!,
hence m′(s!)¿ 1 and m′(s6)= 0 for 6¡!.

From this lemma it easily follows that at most one t � is enabled at each reachable
marking.

162 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Corollary 5.4. Let m′ ∈ [m′
0〉. If m′[t �〉 and m′[t �

′〉 then �= �′.

Proof. Suppose there exists s such that �(s) �= �′(s); as dom(�)⊆dom(•t)∪dom(t•)
and dom(�′)⊆dom(•t)∪dom(t•), we have �(s)= 0= �′(s) for s =∈dom(•t)∪dom(t•),
hence s∈dom(•t)∪dom(t•).
Three cases can occur:

• �(s)¡! and �′(s)¡!: by de2nition of F ′ we have F ′(s�(s); t �)= 1 and F ′(s�
′(s); t �

′
)

= 1; as both t � and t �
′
are enabled at m′, we have m′(s�(s))¿0 and m′(s�

′(s))¿0
with �(s) �= �′(s), in contradiction with item (2) of Lemma 5.3.

• �(s)=! and �′(s)¡!: by de2nition of F ′ we have F ′(s�(s); t �)=F(s; t) + 1 and
F ′(s�

′(s); t �
′
)= 1; hence m′(s�(s))¿0 and m′(s�

′(s))¿0 with �(s) �= �′(s), a contra-
diction.

• �(s)¡! and �′(s)=!: similar to the item above.

Corollary 5.5. If m′
0[t

�1
1 〉m′

1 : : : [t
�n
n 〉m′

n and m′
0[t

R�1
1 〉 Rm′

1 : : : [t
R�n
n 〉 Rm′

n then �i = R�i and m′
i =

Rm′
i for i=1; : : : ; n.

Lemma 5.6. Let m′
0[t

�1
1 〉m′

1 : : : [t
�n
n 〉m′

n be a ;ring sequence of Norm(N). Then there
exists a ;ring sequence m0[t1〉m1 : : : [tn〉mn of N such that; for i=0; : : : ; n; and for all
s∈ S;
• if s∈ S\Inib(N) then mi(s)=m′

i(s);
• if s∈ Inib(N) then

mi(s) =

{
k if m′

i(s
k) = 1;

m′
i(s

!)− 1 otherwise:

Proof. Note that, by Lemma 5.3, we have that mi is well de2ned: at most one of m′
i(s

k)
is equal to 1; if m′

i(s
k)= 0 for each k, then m′

i(s
!)¿0, hence mi(s)=m′

i(s
!)¿ 0.

The proof proceeds by induction on the length of the 2ring sequence.
If the 2ring sequence is m′

0, then:
• If s∈ S\Inib(N) then m′

0(s)=m0(s).
• If s∈ Inib(N) two cases can occur:

◦ m0(s)6 EL(s): we have m′
0(s

m0(s))= 1, hence the condition is satis2ed.
◦ m0(s)¿EL(s): we have m′

0(s
!)=m0(s) + 1; by Lemma 5.3 we have m′

0(s
k)= 0

for each k, and m′
0(s

!)− 1=m0(s) + 1− 1=m0(s).
Let m′

0 : : : m
′
n[t

�〉m′
n+1 be a 2ring sequence of Norm(N).

By inductive hypothesis there exists a 2ring sequence m0 : : : mn of N satisfying the
condition of the lemma.
We show that t is enabled at mn:

• Let s∈ ◦t; we show that mn(s)= 0. By de2nition of F ′, F ′(s0; t �)= 1; as t � is enabled
at m′

n, we have m′
n(s

0)¿0, and by Lemma 5.3, m′
n(s

0)= 1; hence, by inductive
hypothesis, mn(s)= 0.

• Let s∈ •t; we show that F(s; t)6 mn(s);

N. Busi / Theoretical Computer Science 275 (2002) 127–177 163

◦ If s∈ S\Inib(N), then F(s; t)=F ′(s; t�); as t � is enabled at m′
n, we have F ′(s; t�)

6 m′
n(s); by inductive hypothesis, mn(s)=m′

n(s), hence F(s; t)=F ′(s; t�) 6
m′

n(s)=mn(s).
◦ If s∈ Inib(N) we distinguish the following two cases:
— If �(s)¡!, then F ′(s�(s); t �)= 1; as t � is enabled at m′

n, and by Lemma 5.3, we
have m′

n(s
�(s))= 1; by inductive hypothesis we have mn(s)= �(s). by de2nition

of the set of transitions T ′ of the net Norm(N) we have •t(s) 6 �(s), hence
F(s; t)= •t(s) ≤ �(s)=mn(s).

— If �(s)=!, then F ′(s!; t�)=F(s; t) + 1. as t � is enabled at m′
n, we have

m′
n(s

!) ¿ F ′(s!; t�)=F(s; t) + 1¿0; by Lemma 5.3 we have m′
n(s

k)= 0 for
each k, hence by inductive hypothesis we obtain mn(s)=m′

n(s
!)− 1. We have

F(s; t)=F ′(s!; t�)− 16 m′
n(s

!)− 1=mn(s).
Let m=mn\•t ⊕ t•. Let mn+1(s)=m′

n+1(s) if s∈ S\Inib(N) and

mn+1(s) =

{
k if m′

n+1(s
k) = 1;

m′
n+1(s

!)− 1 otherwise

if s∈ Inib(N).
We show that m=mn+1.

• If s∈ S\Inib(N) then F(s; t)=F ′(s; t�) and F(t; s)=F ′(t �; s). By inductive hypothe-
sis we have mn(s)=m′

n(s), hence m(s)=mn(s)−F(s; t)+F(t; s)=m′
n(s)−F ′(s; t�)+

F(t �; s)=m′
n+1(s)=mn+1(s).

• If s∈ Inib(N) two cases can happen:
◦ �(s)¡!: we have F ′(s�(s); t �)= 1; as t � is enabled at m′

n, m
′
n(s

�(s))= 1, and by
inductive hypothesis we have (1) mn(s)= �(s).
Two cases can occur:
— �(s)−F(s; t)+F(t; s)6 EL(s): Let h= �(s)−F(s; t)+F(t; s); by de2nition of

F ′ we have F ′(t �; sh)= 1; as m′
n+1(s

h)=m′
n(s

h)−F ′(sh; t�)+F ′(t �; sh)¿ 1, by
Lemma 5.3 we obtain m′

n+1(s
h)= 1; hence mn+1(s)= h. We have m′(s)=mn(s)

−F(s; t)+F(t; s); by condition (1) we obtain m′(s)= �(s)−F(s; t)+F(t; s)= h=
mn+1(s).

— �(s)−F(s; t)+F(t; s)¿EL(s): by de2nition of F ′ we have F ′(s�(s); t �)= 1; as
t � is enabled at m′

n, and by Lemma 5.3, we have m′
n(s

�(s))= 1; by Lemma 5.3
we obtain m′

n(s
!)= 0. By de2nition of F ′ we have F ′(t �; s!)= �(s)−F(s; t)+

F(t; s)+1; hence m′
n+1(s

!)=m′
n(s

!)−F ′(s!; t�)+F ′(t �; s!)=F ′(t �; s!)= �(s)
− F(s; t) + F(t; s) + 1. As m′

n+1(s
!)¿0, by Lemma 5.3 we have m′

n+1(s
k)= 0

for each k, hence mn+1(s)=m′
n+1(s

!)− 1= �(s)− F(s; t) + F(t; s).
We have m(s)=mn(s) − F(s; t) + F(t; s); by (1) we obtain m(s)= �(s) −

F(s; t) + F(t; s)=mn+1(s).
◦ �(s)=!: by de2nition of F ′ we have F ′(s!; t�)=F(s; t) + 1 and F ′(t �; s!)
=F(t; s) + 1. As t � is enabled at m′

n, we have m′
n(s

!)¿0; by Lemma 5.3 we
obtain m′

n(s
k)= 0 for each k, hence by inductive hypothesis mn(s)=m′

n(s
!)− 1;

164 N. Busi / Theoretical Computer Science 275 (2002) 127–177

thus we obtain m′
n+1(s

!)=m′
n(s

!)−F ′(s!; t�)+F ′(t �; s!)=mn(s)+1−F(s; t)−
1 + F(t; s) + 1=mn(s)− F(s; t) + F(t; s) + 1.
Thus m′

n+1(s
!)¿0; by Lemma 5.3 we have m′

n+1(s
k)= 0 for each k, hence

mn+1(s)=m′
n+1(s

!)− 1=mn(s)− F(s; t) + F(t; s)=m(s):

5.1. Reachability

We de2ne the set Equiv(m) of markings of Norm(N) corresponding to a marking
m of the primitive system N .

Equiv(m) = {m′ : S ′ → ! | ∀s ∈ S\(Inib(N))(m′(s) = m(s)) ∧
∀s ∈ Inib(N)((m(s)6 EL(s) ∧ m′(sm(s)) = 1) ∨
(m′(s!) = m(s) + 1))}:

Corollary 5.7. m∈ [m0〉 i5 there exists m′ ∈Equiv(m) such that m′ ∈ [m′
0〉.

Corollary 5.8. Reachability is decidable for primitive nets.

Proof. The statements easily follows from decidability of reachability for P=T nets
and the fact that |Equiv(m)|=2|Inib(N)|, i.e. is 2nite; hence, we need to check at most
|Equiv(m)| markings for reachability in the system Norm(N).

A similar reasoning shows that also the submarking reachability problem for N can
be reduced to decide a 2nite set of instances of the submarking reachability problem
for Norm(N).

5.2. Deadlock

We show that deadlock is decidable for primitive nets, by reduction to the deadlock
problem for P=T nets.

Theorem 5.9. Deadlock is decidable for primitive nets.

Proof. Suppose that N has a deadlock; hence there exists a 2ring sequence m0[t1〉 : : :
[tn〉mn such that ¬(mn[t〉) for each t ∈T .
By Lemma 5.2 there exists a 2ring sequence m′

0[t
�1
1 〉 : : : [t�n

n 〉m′
n of Norm(N).

We show that m′
n is dead.

Suppose it is not dead; then there exists t � such that m′
n[t

�〉m′
n+1; hence m′

0 : : :
m′

n[t
�〉m′

n+1 is a 2ring sequence of Norm(N); by Lemma 5.6 there exists a 2ring
sequence m0[t1〉 : : : [tn〉 Rmn[t〉 Rmn+1 of N . As m0[t1〉 : : : [tn〉mn and m0[t1〉 : : : [tn〉 Rmn, we
have Rmn =mn, hence mn[t〉, contradicting the hypothesis.
Suppose that Norm(N) has a deadlock; hence there exists a 2ring sequence m′

0[t
�1
1 〉 : : :

[t�n
n 〉m′

n such that ¬(m′
n[t

�〉) for each t � ∈T ′.
By Lemma 5.6 there exists a 2ring sequence m0[t1〉 : : : [tn〉mn of N .

N. Busi / Theoretical Computer Science 275 (2002) 127–177 165

We show that mn is dead.
Suppose it is not dead; then there exists a transition t such that mn[t〉mn+1; so

m0 : : : mn[t〉mn+1 is a 2ring sequence of N ; by Lemma 5.2 there exists a 2ring sequence
m′
0[t

R�1
1 〉 : : : [t R�n

n 〉 Rm′
n[t

�〉 Rm′
n+1 of Norm(N).

We have m′
0[t

�1
1 〉 : : : [t�n

n 〉m′
n and m′

0[t
R�1
1 〉 : : : [t R�n

n 〉 Rm′
n; by Corollary 5.5 we have m′

n = Rm′
n,

hence m′
n[t

�〉, contradiction.

5.3. Liveness

Now we show that liveness is decidable for primitive nets.

De�nition 5.10. A transition t is live in the net N =(S; T; F; I; m0) if for each marking
m∈ [m0〉 there exists a marking m′ ∈ [m〉 such that t is enabled at m′.
A net N is live if all its transitions are live.

To reduce the liveness problem of N to an analogous problem on Norm(N) we need
the following:

De�nition 5.11. A 2nite set of transitions U ⊆ T is group live in N iB for each
m∈ [m0〉 there exist a transition t ∈U and a marking m′ ∈ [m〉 such that t is enabled
at m′.

Theorem 5.12. Group-liveness reduces to single transition liveness in P=T systems.

Proof. Let N =(S; T; F; m0) and U ⊆ T .
Take p =∈ S and l =∈T . We construct N ′=(S ∪ {p}; T ∪ {l}; F ′; m′

0), where

F ′(x; y) =

1 if (x ∈ U ∧ y = p);

or (x = p ∧ y = l);

F(x; y) otherwise;

m′
0(s) =

{
0 if s = p;

m0(s) otherwise:

This construction is depicted in Fig. 7
Let �= t1; : : : ; tn. It is easy to see that if m0[�〉m then m′

0[�〉m′, with

m′(s) =

{
|{i | 16 i 6 n ∧ ti ∈ U}| if s = p;

m(s) otherwise

if m′
0[�〉m′ then m0[�′〉m, where �′ is obtained from � by eliminating all the occurrences

of l and m=m′|S .
We show that U is group live in N iB l is live in N ′.
Suppose U group live in N ; let m′ ∈ [m′

0〉 in N ′; take m=m′|S ; then m∈ [m0〉 in N ;
by group liveness, there exist t ∈U and m1 ∈ [m〉 such that t is enabled at m1; take the

166 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 7. The transformation used to produce system N ′ from system N , used to show that group liveness
reduces to liveness.

m′
1 corresponding to m1; we have that m′

1 ∈ [m′〉 and t is enabled at m′
1; thus m′

1[t〉m′
2;

moreover m′
2(p)¿ 1, hence l is enabled at m′

2.
Now suppose l live in N ′. let m∈ [m0〉 in N ; take the corresponding m′ in N ′:

if m′(p)= k, let � be a sequence of k occurrences of l; � can be 2red at m′, and
m′[�〉m′

1, with m′
1(p)= 0; by liveness of l, there exists m′

2 and ; such that m′
1[;〉m′

2

and l is enabled at m′
2; hence, m

′
2(p)¿ 1; the only transitions producing tokens in p

are those in U , so there exists a transition t ∈U occurring in ;, i.e. ;= ;1u;2, with
u∈U ; let ;′1 be the sequence obtained by removing all occurrences of l from ;; then
there exists a marking m′ such that m[;′1〉m′[u〉.

Corollary 5.13. Group liveness is decidable for P=T systems.

Proof. An easy consequence of Theorems 3.15 and 5.12.

Each transition t of N is split in a set of corresponding transitions {t �} in Norm(N),
and we can show that t is live in N iB {t �} is group live in Norm(N).

Theorem 5.14. Transition t is live in N if and only if the set of transitions {t � | t � ∈
T ′} is group live in Norm(N).

Proof. Suppose t live in N . We show that Ut = {t � | t � ∈T ′} is group live in Norm(N).
Let m′ ∈ [m′

0〉; we want to show that there exists a marking reachable from m′ and a
transition in Ut that is enabled in such marking.
As m′ ∈ [m′

0〉, there exists a 2ring sequence m′
0[t

�1
1 〉 : : : [t�n

n 〉m′
n in Norm(N) such that

m′
n =m′. By Lemma 5.6 m0[t1〉 : : : [tn〉mn is a 2ring sequence of N , and mn, m′

n are

N. Busi / Theoretical Computer Science 275 (2002) 127–177 167

linked by the relation described in that lemma. Thus mn ∈ [m0〉. As t is live in N ,
there exists Rm∈ [mn〉 such that Rm[t〉; hence we have the following 2ring sequence:
m0[t1〉 : : : [tn〉mn : : : [tn+k〉mn+k [t〉, with mn+k = Rm. By Lemma 5.2 there exists a 2ring
sequence of Norm(N) with the form m′

0[t
R�1
1 〉 : : : [t R�n

n 〉 Rm′
n : : : [t

R�n+k
n+k 〉 Rm′

n+k [t
�〉.

As m′
0[t

�1
1 〉 : : : [t�n

n 〉m′
n, by Lemma 5.5 we have that Rm′

n =m′
n; hence there exist a

marking, Rm′
n+k , such that Rm′

n+k ∈ [m′
n〉, and a transition t � ∈Ut such that Rm′

n+k [t
�〉.

Suppose Ut group live. We show that t is live. Let m∈m0; we want to show that
there exists a marking reachable from m such that t is enabled in that marking.
As m∈ [m0〉, there exists a 2ring sequence m0[t1〉 : : : [tn〉mn such that mn =m. By

Lemma 5.2 we have a 2ring sequence with the following form in Norm(N): m′
0[t

�1
1 〉 : : :

[t�n
n 〉m′

n. Hence m′
n ∈ [m′

0〉; as Ut is group live in Norm(N), there exist a marking
Rm′ ∈ [m′

n〉 and a transition t � ∈Ut such that Rm′[t �〉. Hence we have a 2ring sequence
m′
0[t

�1
1 〉 : : : [t�n

n 〉m′
n : : : [t

�n+k
n+k 〉m′

n+k [t
�〉 such that m′

n+k = Rm′.
By Lemma 5.6 there exists a 2ring sequence of N with the form m0[t1〉 : : : [tn〉 Rmn : : :

[tn+k〉 Rmn+k [t〉. As m0[t1〉 : : : [tn〉mn we have Rmn =mn, hence there exists a marking
Rmn+k ∈ [mn〉 such that Rmn+k [t〉.

Corollary 5.15. Liveness is decidable for primitive nets.

Proof. An easy consequence of Theorem 5.14 and Corollary 5.13.

5.4. Simulation

We introduce a notion of simulation of a primitive system by a P=T system: we de2ne
a labelling of each transition of the P=T system with a transition of the primitive system,
and require the 2ring sequences of the P=T system to simulate the 2ring sequences of
the primitive nets via the labelling; in other words, for any transition sequence t1 : : : tn
of the primitive system there is a transition sequence of the P=T system that is mapped
by the labelling on t1 : : : tn; moreover, the sequence obtained applying the labelling to
any transition sequence of the P=T system is a transition sequence of the primitive
system.

De�nition 5.16. Let N =(S; T; F; I; m0) be a P=T system with inhibitor arcs and N ′=
(S ′; T ′; F ′; m′

0) be a P=T system. We say that N ′ simulates the transition sequences of
N iB there exists a mapping < : T ′ →T such that
• If t1 : : : tn is a transition sequence of N then there exists a transition sequence t′1 : : : t

′
n

of N ′ such that <(t′i)= ti for i=1; : : : ; n;
• If t′1 : : : t

′
n is a transition sequence of N ′ then <(t′1) : : : <(t

′
n) is a transition sequence

of N .

We show that the class of primitive nets is the largest one for which there exists a
P=T net simulating its transition sequences.

168 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Theorem 5.17. The class of primitive nets is the largest one that can be simulated
by a P=T net.

Proof. Let N =(S; T; F; I; m0) be a PTI system.
If N is primitive, take the P=T system Norm(N) and the mapping < : t � → t. We

show that Norm(N) simulates N .
Let t�11 : : : t�n

n be a transition sequence of Norm(N); hence there exist markings
m′
1; : : : ; m

′
n such that m′

0[t
�1
1 〉 : : : [t�n

n 〉m′
n; by Lemma 5.6 we have that m0[t1〉 : : : [tn〉mn

in N , hence t1 : : : tn is a transition sequence of N , moreover <(t�11 : : : t�n
n)= t1 : : : tn.

Let t1 : : : tn be a transition sequence of N ; hence there exist m1; : : : ; mn such that
m0[t1〉 : : : [tn〉mn; by Lemma 5.2 we have m′

0[t
�1
1 〉 : : : [t�n

n 〉m′
n in Norm(N), hence t�11 : : : t�n

n

is a transition sequence of Norm(N), moreover <(t�11 : : : t�n
n)= t1 : : : tn.

Hence Norm(N) simulates the transition sequences of N .
We show that if N is not primitive then there exist no P=T system simulating N .

If N is not primitive, then there exists a place s∈ Inib(N) such that, for all k ¿ 0,
exists m′

k ∈ [m0〉 such that m′
k(s)¿k and exist m′′

k ∈ [m′
k〉 and tk ∈T such that m′′

k [tk〉
and s∈ ◦tk .
In other words, for any k¿0 there exist m′

k , m
′′
k , �k , ;k and tk such that

m0[�k〉m′
k [;k〉m′′

k [tk〉;
m′

k(s) ¿ k;

s ∈ ◦tk :

Suppose there exists a P=T net RN =(RS; RT ; RF; Rm0) simulating N by a mapping < : RT → T .
Hence, for any k¿0, there exist Rm′

k , Rm′′
k , R�k , R;k and Rtk such that

Rm0[R�k〉 Rm′
k [R;k〉 Rm′′

k [Rtk〉;
<(R�k) = �k ;

<(R;k) = ;k ;

<(Rtk) = tk :

Consider the sequence of markings, of RN , Rm′
0; Rm

′
1; : : : ; Rm

′
i ; : : : ; by Lemma 4.9, this se-

quence contains a nondecreasing subsequence, i.e. there exists a sequence of indexes
k1¡k2¡ · · ·¡ki¡ · · · such that Rm′

k1 ⊆ Rm′
k2 ⊆ · · · ⊆ Rm′

ki ⊆ · · · .
We choose an index kj such that kj¿m′

k1 (s) (as m′
k1 (s)¿k1, we have kj¿k1, hence

j¿1).
We know that Rm0[R�k1〉 Rm′

k1 [R;k1〉 Rm′′
k1 [R�k1〉; we know also that Rm0[R�kj〉 Rm′

kj . As Rm′
k1 ⊆ Rm′

kj ,
the transition sequence R;k1 Rtk1 is 2rable also at Rm′

kj , i.e.

Rm0[R�kj〉 Rm′
kj [R;k1 Rtk1〉:

Hence R�kj R;k1 Rtk1 is a transition sequence of RN . We have that <(R�kj R;k1 Rtk1) = �kj ;k1 tk1 .

N. Busi / Theoretical Computer Science 275 (2002) 127–177 169

Now we show that �kj ;k1 tk1 is not a transition sequence of N . We know that
m0[�kj〉m′

kj .
If ¬m′

kj [;k1〉 we have done.
Suppose m′

kj [;k1〉m′′′; we show that ¬m′′′[tk1〉.
We know that m′

k1 [;k1〉m′′
k1 , m

′
k1 (s)¿k1, m′′

k1 [tk1〉 and s∈ ◦tk1 . From m′′
k1 [tk1〉 and s∈ ◦tk1

we get m′′
k1 (s)= 0. Let ;k1 = u1 : : : un, with ui ∈T for i=1; : : : ; n. It is easy to see that

m′′
k1 (s) = m′

k1 (s)−
n∑

i=1

•ui(s) +
n∑

i=1
u•i (s):

As m′′
k1 (s)= 0, we obtain

m′
k1 (s) =

n∑
i=1

•ui(s)−
n∑

i=1
u•i (s):

From m′
kj [;k1〉m′′′ we have

m′′′(s) =m′
kj (s)−

n∑
i=1

•ui(s) +
n∑

i=1
u•i (s)

=m′
kj (s)− m′

k1 (s):

We have m′
kj (s)¿kj and we have chosen kj in such a way that kj¿m′

k1 (s).
Hence we have m′

kj (s)¿m′
k1 (s), thus m′′′(s)=m′

kj (s) − m′
k1 (s)¿0. As s∈ ◦tk1 , tk1 is

not enabled at m′′′.
Hence �kj ;k1 tk1 is not a transition sequence of N , i.e. RN does not simulate N .

We have constructed a mapping from primitive nets to P=T nets which preserves
the 2ring sequences, but in general step 2ring sequences are not preserved: take for
example two transitions t1 and t2 with disjoint preset but with the same inhibitor
set. If the two transitions do not produce tokens in the inhibitor set, then they are
concurrently enabled in the primitive net, and can 2re together in the same step, but
this does not happen in the corresponding P=T net. Now we show that we cannot do
better, that is, there exists a primitive net for which no P=T net can exhibit the same
step behaviour.
Consider the system in Fig. 8; it is easy to see that it is a primitive net, because

the unique inhibiting place is bounded. We will show that there exists no P=T system
with the same step transition sequences, in the following sense:

De�nition 5.18. Let N =(S; T; F; I; m0) and N ′=(S ′; T ′; F ′; m′
0) be a PTI system and

P=T system; respectively. We say that N ′ simulates the step transition sequences of N
iB there exists a mapping < : T ′ → T such that

• if G1 : : : Gn is a step transition sequence of N then there exists a step transition
sequence G′

1 : : : G
′
n of N ′ such that <(G′

i)=Gi for i=1; : : : ; n;
• if G′

1 : : : G
′
n is a step transition sequence of N

′ then <(G′
1) : : : <(G

′
n) is step a transition

sequence of N .

170 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 8. A primitive system for which there exists no P=T system simulating its step transition sequences.

To prove the impossibility for a P=T system to simulate the step transition sequences
of the system in Fig. 8 we need the following auxiliary result: given a sequence of
multisets, over a 2nite set and with increasing cardinality, there exists an element
whose number of occurrences in the multisets can exceed any bound, provided we
take a suCciently big multiset.

Lemma 5.19. Let {Ci}i∈! be a sequence of multisets over the ;nite set T with in-
creasing cardinality; i.e. |Ci|¡|Ci+1| for all i∈!. Then there exists t ∈T such that;
for each natural number k; there exists ik such that Cik (t)¿k.

Proof. Suppose that for each t ∈T there exist a limit kt such that, for each i, Ci(t)6kt .
Let max=

∑
t∈T kt ; we have that |Ci|6max for each i, hence |Cmax|= |Cmax+1|, a con-

tradiction.

Theorem 5.20. Let N be the primitive system in Fig. 8. There exists no (;nite) P=T
system simulating its step transition sequences.

Proof. Suppose there exists a P=T system N ′ and a mapping < : T ′ → T simulating
the step transition sequences of N .
It is easy to see that, for each n, the step sequence formed by n occurrences of the

step containing a single occurrence of transition a, followed by the step with a single
occurrence of b, followed by the step containing n occurrences of c, i.e.

a : : : a︸ ︷︷ ︸
n

b{c; : : : ; c︸ ︷︷ ︸
n

}

is a legal step transition sequence of N .
As N ′ simulates the step transition sequences of N , there exists a sequence ;1; ;2; : : : ;

;n; : : : of step transition sequences of N ′ of the form

;n = an1 : : : annbn{cn1; : : : ; cnn}
such that <(aij)= a, <(bi)= b and <(cij)= c.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 171

As the set {bi | <(bi)= b} is 2nite, there exists an index k such that bk occurs
in2nitely often in the elements of the sequence {;n}n∈!; consider the subsequence
;i1;i2 : : : ;ij : : : where bk occurs, i.e. such that bij = bk .
The 2nal step of each step sequence ;n has cardinality n, hence the 2nal steps of

the subsequence ;i1;i2 : : : ;ij : : : have increasing cardinality. Hence for Lemma 5.19 there
exists ch whose number of occurrences in the 2nal step can exceed any limit, provided
we take a suCciently large ij.
Now we show that the net N ′ admits a transition sequence of the form al1 : : : allch,

for a suCciently large l; it’s easy to see that <(al1 : : : allch)= a : : : a︸ ︷︷ ︸
l

c is not a transition

sequence of N .
Two cases can occur:

• b•k ∩ •ch = ∅: take the 2rst sequence ;ij such that ch occurs at least one time in the
last step (this sequence exists by Lemma 5.19). We have that the number of tokens
in the places in the preset of ch is not increased by the 2ring of bk , hence a step
formed by a single occurrence ch can 2re also before the 2ring of bk , producing a
2ring sequence of the form aij1 : : : aij ij ch.

• b•k ∩ •ch �= ∅: let maxpob =Max{b•k (s) | s∈ S ′} be the maximum weight of the
arcs exiting from bk and maxprec =Max{•ch(s)|s∈ S ′} be the maximum weight
of the arcs entering in ch. Take the 2rst sequence ;ij such that ch occurs at least
maxpob + maxprec times in the last step (this sequence exists by Lemma 5.19).
Let m′

1 be the marking reached after the 2ring of the apq transitions and m′
2 be the

marking reached after the 2ring of bk , i.e. m′
0[aij1〉 : : : [aijij〉m′

1[bk〉m′
2. Now we show

that ch is enabled at m′
1: let s∈ •ch; we have m′

2(s)=m′
1(s)− •bk(s) + b•k (s), hence

m′
1(s)=m′

2(s)− b•k (s)+
•bk(s); as maxpob +maxprec occurrences of ch are enabled

at m′
2, each place in the preset of ch contains at least maxpob + maxprec tokens

in m′
2. Moreover b•k (s)6maxpob, hence m′

1(s)=m′
2(s)− b•k (s)+

•bk(s)¿(maxpob+
maxprec)−maxpob +

•bk(s)¿maxprec +
•bk(s)¿maxprec¿

•ch(s). Thus ch is en-
abled at m′

1, and aij1 : : : aij ij ch is a 2ring sequence.

5.5. Linear time �-calculus and bisimulation

We investigate some properties of labelled primitive systems: we show that the
linear time �-calculus is decidable and that the encoding on P=T systems preserves the
interleaving behaviour.
The mapping of primitive systems on P=T systems, de2ned for unlabelled nets, can

be easily extended to labelled nets by de2ning l′(t �)= l(t).

5.5.1. Linear time �-calculus
We show that the linear time �-calculus is decidable for primitive systems, by re-

duction to the decidability of the calculus for P=T systems.
Note that De2nitions 3.17 and 3.18 can be applied also to contextual P=T

systems.

172 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Lemma 5.21. Let N be a primitive system. Then L∞(N)=L∞(Norm(N)).

Proof. We prove that L∞(N)⊆L∞(Norm(N)). Take �∈L∞(N). Two cases can occur:
• �∈L(N): let n= |�|; there exists a 2ring sequence m0[t1〉 : : : [tn〉mn of N such that

l(ti)= �(i) for i=1; : : : ; n. By Lemma 5.2 the following is a 2ring sequence of
Norm(N): m′

0[t
�1
1 〉 : : : [t�n

n 〉m′
n. We have l′(t�i

i)= l(ti)= �(i) for i=1; : : : ; n, hence
�∈L(Norm(N)).

• �∈L!(N): then there exists an in2nite 2ring sequence m0[t1〉 : : : [ti〉mi : : : of N such
that l(ti)= �(i) for i∈!+. Hence for each i we have that m0[t1〉 : : : [ti〉mi is a 2r-
ing sequence of N . By Lemma 5.2 and Corollary 5.5 we have that, for each i,
m′
0[t

�1
1 〉 : : : [t�i

i 〉m′
i is a 2ring sequence of Norm(N). Hence m′

0[t
�1
1 〉 : : : [t�i

i 〉m′
i : : : is an

in2nite 2ring sequence of Norm(N); moreover l′(t�i
i = l(ti)= �(i) for i∈!+, hence

�∈L!(Norm(N)).
As L∞(Norm(N))=L(Norm(N))∪L!(Norm(N)), we have obtained �∈

L∞(Norm(N)).
The other inclusion can be proved in a similar way, using Lemma 5.6.

Theorem 5.22. The model checking problem for the linear time �-calculus and la-
belled primitive systems is decidable.

Proof. To decide the model checking problem for a formula) and a labelled primitive
system N we have to check if L∞(N)⊆ <)=. By Lemma 5.21 we have L∞(N)=
L∞(Norm(N)), hence we have reduced the problem to check if L∞(Norm(N))⊆ <)=,
which is decidable because Norm(N) is a P=T system (cf. Theorem 3.19).

5.5.2. Bisimulation
We show that our mapping preserves the interleaving behaviour, i.e. there exists a

bisimulation between N and Norm(N).

Theorem 5.23. Let N be a primitive net. Then N and Norm(N) are bisimilar.

Proof. Let N =(S; T; F; I; m0; l), Norm(N)= (S ′; T ′; F ′; m′
0; l

′) and <(t �)= t for all t �

∈T ′.
Let R= {(m;m′) | there exists a transition sequence � of Norm(N) such that m0[<

(�)〉m and m′
0[�〉m′}.

We show that R is a bisimulation:
• We have that (m0; m′

0)∈R (we take the empty sequence as �).
• Suppose (m1; m′

1)∈R and m1
a→ m2. We show that there exists m′

2 such that m′
1

a→
m′
2 and (m2; m′

2)∈R. As (m1; m′
1)∈R, there exists � such that m0[<(�)〉m1 and

m′
0[�〉m′

1. If m1
a→ m2, then there exists a transition t ∈T such that l(t)= a and

m1[t〉m2. Hence we have m0[<(�)〉m1[t〉m2. By Lemma 5.2 we have that m′
0[;〉 Rm′

1

[t �〉m′
2, with <(;)= <(�). By Lemma 5.5 we have that ;= � and Rm′

1 =m′
1. As

l′(t �)= l(t)= a, we have m′
1

a→ m′
2. Moreover, <(;t�)= <(;)t= <(�)t, hence

(m2; m′
2)∈R.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 173

• Suppose (m1; m′
1)∈R and m′

1
a→ m′

2. We show that there exists m2 such that m1
a→

m2 and (m2; m′
2)∈R. As (m1; m′

1)∈R, there exists � such that m0[<(�)〉m1 and
m′
0[�〉m′

1. If m′
1

a→ m′
2, then there exists a transition t � such that l′(t �)=a and

m′
1[t

�〉m′
2. Hence we have m′

0[�〉m′
1[t

�〉m′
2. By Lemma 5.6 we have that m0[<(�)〉

m1[t〉m2. We have l(t)= l′(t �)= a, hence m1
a→ m2. Moreover, <(�t�)= <(�)t, hence

(m2; m′
2)∈R.

6. Expressiveness of languages generated by PTI systems

In this section we make use of the results established in the previous sections to
obtain information about the expressiveness of inhibitor arcs w.r.t. the class of generated
languages.
The class of languages generated by labelled primitive systems coincides with the

class of languages generated by standard P=T systems:

Corollary 6.1. Let N be a labelled primitive system. Then there exists a labelled P=T
system N ′ such that L(N)=L(N ′).

Proof. An easy consequence of Theorem 5.17.

The result presented above does not hold for general PTI systems:

Theorem 6.2. There exists a labelled P=T system with inhibitor arcs N such that
L(N) cannot be generated by any (;nite) labelled P=T system.

Proof. Consider the labelled PTI system N depicted in Fig. 3: it is easy to see that
akbkc∈L(N), whereas akbhc =∈ L(N) for k �= h.
Suppose there exists a labelled P=T system RN such that L(RN)=L(N); note that, after

the 2ring of k occurrences of transition a, the inhibiting place s contains k tokens; by
instantiating the proof of Theorem 5.17 we obtain that there exist k1 and kj such that
k1¡kj and akjbk1c∈L(RN), but akjbk1c =∈ L(N), a contradiction.

To 2nd an expressiveness gap between primitive systems and P=T systems, we need
to look at sequences of multisets of labels:

De�nition 6.3. Let N =(S; T; F; K; I; m0; l) be a labelled PTI system. The step-language
of N is de2ned as SL(N)={A1 : : : An |m0[G1〉 : : : [Gn〉mn is a step 2ring sequence of N
and Ai = l(Gi)∈Mfin(Act) for i=1; : : : ; n}.

The class of step-languages generated by labelled primitive systems is richer that the
one generated by labelled P=T systems:

174 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Corollary 6.4. There exists a labelled primitive system N such that SL(N) cannot be
generated by any labelled P=T system.

Proof. An easy consequence of Theorem 5.20.

7. Conclusion

In this paper we have extended the analysis techniques developed for P=T systems to
primitive systems, a subclass of P=T systems with inhibitor arcs. We have also found a
characterization of primitive systems as the maximal class of PTI systems whose 2ring
sequences can be simulated by a P=T system. An interesting research topic concerns the
identi2cation of classes for which, even if their 2ring sequences cannot be simulated by
any P=T system, it is possible to construct a P=T system with an equivalent behaviour
w.r.t. deadlock or reachable markings. Some preliminary study in this direction can be
found in [4], where a deadlock preserving transformation on P=T systems is provided
for a class of PTI systems, generated by the terms of a Linda-based process algebra,
and in general not primitive. Actually, there exists a close correspondence between
markings of the PTI system and of the corresponding P=T system, which could be
used to decide marking reachability in the PTI system by reduction to submarking
reachability in the corresponding P=T system. The characterization of a larger class for
which such a transformation is feasible deserves further investigation.
We have seen that the step transition sequences of primitive systems cannot, in

general, be simulated by a P=T system; it should be worthwhile interesting to identify
a subclass of primitive systems whose step transition sequences can be simulated by a
P=T system.
To lighten the notation and to simplify the proofs, in this paper we have considered

PTI systems with unweighted inhibitor arcs, i.e. arcs permitting to test for absence
of tokens in a place. A generalization of PTI systems with unweighted inhibitor arcs
consists in decorating each inhibitor arc with a positive number, called arc weight. If
an inhibitor arc with weight k connects place s and transition t, then t can 2re only
if place s contains at most k−1 tokens. All the analysis and simulation techniques
developed for primitive systems with unweighted arcs can be rephrased in the more
general setting of PTI systems with weighted arcs.

Appendix A. Turing equivalence of P=T systems with inhibitor arcs

We recall the result about Turing equivalence of P=T systems with inhibitor arcs;
this result was proved for the 2rst time in [1]; here we show that P=T systems with
inhibitor arcs are expressive enough to model Random Access Machines (RAM) [23];
similar proofs can be found e.g. in [10, 21].
A RAM is a computational model composed of a 2nite set of registers, that can

hold arbitrary large natural numbers, and by a program, that is a sequence of sim-

N. Busi / Theoretical Computer Science 275 (2002) 127–177 175

ple numbered instructions, like arithmetical operations on the contents of registers or
conditional jumps.
To perform a computation, the inputs are provided in registers r1; : : : ; rm; if other

registers rm+1; : : : ; rn are used in the program, they are supposed to contain the value
0 at the beginning of the computation. The execution of the program begins with the
2rst instruction and continues by executing the other instructions in sequence, unless a
jump instruction is encountered. The execution stops when an instruction number higher
than the length of the program is reached; this happens if the program was executing
the last instruction of the program and this instruction does not require a jump, or if
the current instruction requires a jump to an instruction number not appearing in the
program. If the program terminates, the result of the computation is the contents of
the registers speci2ed as outputs.
In [19] it is shown that the following two instructions are suCcient to model every

recursive function:
• Succ(rj): add 1 to the contents of register rj;
• DecJump(rj; s): if the contents of register rj is not zero, then decrease it by 1 and
go to the next instruction, otherwise jump to instruction s.

For example, the following program computes the sum of registers r1 and r2, putting
the result in register r1 (note that the third instruction corresponds to an unconditional
jump, because register r3 contains the value 0 at the beginning of the computation and
its contents is never modi2ed by the program):
1: DecJump(r2; 4),
2: Succ(r1),
3: DecJump(r3; 1).
In the net representation of a RAM, we model the registers and the program counter

by means of places: we represent the fact that the program counter points to instruction i
by the presence of one token in the corresponding place pi; the contents of register rj
is represented by an equal number of tokens in place rj (see Fig. 9).
A Succ instruction on register rj at position i is represented by a transition that

consumes a token in program counter place pi, adds one token in the register place rj
and updates the program counter by putting one token in place pi+1. An instruction
DecJump(rj; s) at position i is modeled by two transitions: both transitions consume
the token in the program counter place pi; the 2rst one, managing the fact that the
contents of register rj is greater than zero, consumes one token from rj and produces a
token in place pi+1; the second one, managing the fact that the contents of rj is zero,
tests place rj for absence and produces a token in place ps, corresponding to perform
a jump to instruction s.
To perform the computation for input n1; : : : ; nk , the initial marking is composed by

one token in p1 and nj tokens in rj, for j=1; : : : ; k.
It is easy to see that the RAM program terminates iB the PTI system has a dead

marking, and the contents of the registers at the end of the RAM program cor-
responds to the number of tokens in the corresponding register places in the PTI
system.

176 N. Busi / Theoretical Computer Science 275 (2002) 127–177

Fig. 9. Representing a RAM by a PT system with inhibitor arcs.

Moreover, note that the obtained PTI system is deterministic, hence it has only one
possible execution.

References

[1] T. Agerwala, A complete model for representing the coordination of asynchronous processes, Hopkins
Computer Research Report 32, John Hopkins University, 1974.

[2] N. Busi, Petri nets with inhibitor and read arcs: semantics, analysis and application to process calculi,
Ph.D. Thesis, Department of Mathematics, University of Siena, Italy, 1998.

[3] N. Busi, R. Gorrieri, A Petri net semantics for �-calculus, Proc. Concur’95, Lecture Notes in Computer
Science, Vol. 962, Springer, Berlin, 1995, pp. 145–159.

[4] N. Busi, R. Gorrieri, G. Zavattaro, On the expressiveness of Linda coordination primitives, Inform.
Comput. 156 (1=2) (2000) 90–121.

[5] N. Busi, G.M. Pinna, Process semantics for place=transition nets with inhibitor and read arcs, Fund.
Inform. 40 (1999) 165–197.

[6] A. Cheng, J. Esparza, J. Palsberg, Complexity results for 1-safe nets, Theoret. Comput. Sci. 147 (1995)
117–136.

[7] J. Desel, J. Esparza, Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science, Vol.
40, Cambridge Univ. Press, Cambridge, 1995.

[8] J. Esparza, Decidability of model checking for in2nite-state concurrent systems, Acta Inform. 34 (1997)
85–107.

[9] M. Flynn, T. Agerwala, Comments on capabilities, limitations and ‘correctness’ of Petri nets, Comput.
Archit. News 4 2 (1973).

[10] M. Hack, The recursive equivalence of the reachability problem and the liveness problem for Petri nets
and Vector Addition Systems, Proc. 15th Ann. Symp. on Switching and Automata Theory, IEEE, 1974.

[11] M. Hack, Petri net languages, Tech. Rep. 159, MIT, 1976.
[12] R.M. Karp, R.E. Miller, Parallel program schemata, J. Comput. System Sci. 3 (1969) 147–195.
[13] S.R. Kosaraju, Decidability of reachability in vector addition systems, Proc. 6th ACM Symp. on the

Theory of Computing, 1982, pp. 267–281.
[14] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inform. Comput. 123 (1995) 1–16.
[15] K. Lautenbach, Liveness in Petri nets, Internal Report GMD-ISF 72-02.1, 1972.
[16] R. Lipton, The reachability problem requires exponential space, Tech. Rep. 62, Yale University, 1976.
[17] E.W. Mayr, An algorithm for the general Petri net reachability problem, SIAM J. Comput. 13 (1984)

441–460.
[18] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Inform. Comput. 100 (1992) 1–77.
[19] M.L. Minsky, Computation: Finite and In2nite Machines, Prentice-Hall, Englewood CliBs, NJ, 1967.

N. Busi / Theoretical Computer Science 275 (2002) 127–177 177

[20] U. Montanari, F. Rossi, Contextual nets, Acta Inform. 32 (1995) 545–596.
[21] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood CliBs, NJ,

1981.
[22] C.A. Petri, Kommunikation mit Automaten, Ph.D. Thesis, Institut fNur Instrumentelle Mathematik, Bonn,

Germany, 1962.
[23] J.C. Shepherdson, J.E. Sturgis, Computability of recursive functions, J. ACM 10 (1963) 217–255.
[24] W. Vogler, Partial order semantics and read arcs, Tech. Rep. 1997-01, Institut fNur Informatik, UniversitNat

Augsburg, 1997. (An extended abstract appeared in Proc. MFCS’97.)

