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Abstract

Biological tissues can be considered as composite materials comprised of a porous matrix filled with interstitial fluid and
reinforced by impermeable collagen fibres. Motivated by studies on fluid flow in articular cartilage, we would like to quan-
tify the undeformed configuration permeability of fibre-reinforced composite materials. If there is a sufficient scale sepa-
ration between the internal structure of the porous matrix and the arrangement of the fibres, the matrix can be taken as a
porous continuum at the fibre scale. In this case, the fibres can be treated as inclusions in a porous continuum, and the
overall permeability of the composite can be evaluated using homogenisation procedures. For an isotropic homogeneous
matrix, the symmetry of the system is governed by the orientation of the fibres. Here, we propose to retrieve the overall
permeability through geometrical considerations and directional averaging methods. The special case of transverse isot-
ropy is discussed in detail, with particular attention to the sub-cases of aligned fibres and fibres lying on a plane.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Biological soft tissues are often regarded as biphasic continua, with a porous solid phase saturated by an
interstitial fluid. The solid phase is comprised of collagen fibres and other macromolecules, while the fluid con-
tains ions and other chemical agents (see, e.g., Fung, 1993).

The arrangement of the collagen fibres is thought to relate closely to their function in the tissue, and it has
been thought that they constitute the main source of anisotropy in the elastic properties (see, e.g., Farquhar
et al., 1990; Soulhat et al., 2000; Holzapfel et al., 2000; Ogden, 2003; Federico et al., 2005; Gasser et al., 2006).
However, the effect of the arrangement of collagen fibres on permeability has not been studied theoretically,
although experimental evidence suggests that its effect on soft tissue fluid flow might be significant (Han et al.,
2000; Wellen et al., 2004; Maroudas and Bullough, 1968). The purpose of this study was to develop a math-
ematical model of the effect of fibre arrangement on the permeability of a porous fibre-reinforced composite
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material in the undeformed configuration. Therefore, the change in permeability due the fact that the size of
the pores changes considerably under large deformations (e.g., Holmes and Mow, 1990) is not taken into
account.

We assumed that the spacing between the fibres is at least one order of magnitude larger than the size of the
pores of the matrix. This is the case for many biological tissues, such as articular cartilage, for which the spac-
ing between collagen fibres is approximately 10–40 nm (an estimate derived from Hedlund et al. (1993) and
Långsjö et al. (1999)), and the spacing between the matrix macromolecules is approximately 2–4 nm (Quinn
et al., 2001).

The assumption of scale separation implies that we deal with three distinct scales: the macroscale (whole
system) the mesoscale (fibres), and the microscale (pores of the matrix). This can be seen from two equivalent
points of view:

(a) At the mesoscale, the matrix is a porous continuum, and it can be assumed that the fluid filtrates through
the porous matrix according to Darcy’s law. The fibres are impermeable inclusions that break the con-
tinuity of the matrix and cause an anisotropic obstacle to fluid filtration.

(b) At the macroscale (whole system scale), the interstices between the fibres constitute a system of ‘‘meso-
scopic anisotropic pores” filled by the matrix, the ‘‘microscopic pores” of which are in turn saturated by
the fluid phase. Therefore, at the mesoscale, the anisotropic arrangement of the fibres makes the filtration
velocity deviate from the direction of the pressure gradient, because of the tortuosity of the filtration
velocity flow lines (see, e.g., Nicholson, 2001; Dormieux et al., 2006).

According to the first interpretation, we shall show that, for non-random orientations of the fibres, the
overall permeability is anisotropic. The homogenisation procedure by which we evaluate the overall perme-
ability of a composite with a given arrangement of fibres is constructed in steps.

We first calculate the permeability of a composite with a low volumetric fraction of aligned fibres, by
exploiting the perfect formal analogy between fluid filtration in a porous medium, and electric induction in
a dielectric (Podzniakov and Tsang, 2004), and Landau and Lifshitz’ (1960) solution for an infinite matrix
in which a single infinite fibre is embedded. Then, we extend this solution to a composite with a high volumet-
ric fraction of aligned fibres, by means of differential methods previously used for the evaluation of the elastic
properties of composites (McLaughlin, 1977; Norris, 1985; Zimmerman, 1991). This result constitutes the
homogenised solution for an elementary volume, comprised of a fibre and its cylindrical neighbourhood, filled
with matrix and fluid (Fig. 1), representative of the whole system of aligned fibres. Finally, assuming that the
orientation of the fibres obeys a given statistical law, we average the solution for the elementary volume over
all directions in space, and obtain the overall permeability.

Aside from the cases of arbitrary fibre orientation and perfectly aligned fibres, we also discuss the cases of
transversely isotropic distributed fibres and fibres lying in a plane, which are of interest for biological tissues,
and fibre-reinforced porous resins.
2. Theoretical background

In this section, we recall some basic aspects of the theory of transversely isotropic second order tensors
(Walpole, 1981), and the generalisation needed to treat statistical averages of these objects. In the following,
we denote E ¼ R3 the physical three-dimensional Euclidean space, E2 the space of second order tensors on E, I
and O the identity and null second order tensors, respectively. The tensor product is indicated by � and the
scalar product in E2 is indicated by A: B = tr(ATB) = tr(ABT) = AijBij. The set of all possible directions in E is
described by the unit sphere S2 ¼ fw 2 E : kwk ¼ 1g.

Isotropic second order tensors are all tensors, and only tensors, invariant for rotations, i.e., proportional to
the identity tensor: T = TI) Tij = Tdij.

Transverse isotropy is defined as the symmetry (invariance) under rotations about a given direction w 2 S2.
The tensors with transverse isotropy with respect to w constitute a two-dimensional subspace of E2, denoted
E2ðwÞ. Walpole (1981) obtained a basis for E2ðwÞ by decomposing the identity as



Fig. 1. Elementary volume, representative of a system comprised of aligned impermeable fibres (k1 = 0) and a porous matrix of
permeability, k0. The fibre has a radius r1, and the cylinder has a radius r, such that the ratio of the volumes equals the fibre volumetric
fraction: X1=X ¼ r2

1=r2 ¼ /.
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I ¼ aþ b) dij ¼ aij þ bij; ð2:1Þ
where the symmetric tensors a and b are defined as
a ¼ w� w) aij ¼ wiwj;

b ¼ I � a) bij ¼ dij � wiwj:
ð2:2Þ
Tensor a is often referred to as the fabric tensor. It is straightforward to prove that tensors a and b constitute
an ‘‘orthogonal basis” in the sense that their matrix product ab (and therefore also the properly defined scalar
product, a:b = tr(aTb)) vanishes identically, and they are idempotent (i.e., a2 = aa = a, b2 = bb = b). A given
tensor T 2 E2ðwÞ it admits the unique decomposition
T ¼ T kaþ T?b; ð2:3Þ
where Tk and T\ are the components of T parallel and orthogonal to w, and are obtained by means of the
contractions
T k ¼ T : a ¼ T : ðw� wÞ ¼ w � ðTwÞ;
T? ¼ 1

2
T : b ¼ 1

2
T : ðI � aÞ ¼ 1

2
½trðTÞ � T : a�:

ð2:4Þ
The tensors of the basis {a,b} for the subspace E2ðwÞ can be redefined as an explicit function of the direction, w
(Federico et al., 2004), by treating them as functions defined on S2, which allows for a simple formalisation of
averaging integrals:
a : S2 ! E2 : w7!aðwÞ;
b : S2 ! E2 : w7!bðwÞ;

ð2:5Þ
In this way, a tensor T with explicit dependence on the direction w is written as
TðwÞ ¼ T kaðwÞ þ T?bðwÞ; ð2:6Þ
i.e., the components, T k and T\, are independent of w, as this dependence is already accounted for by the basis
{a(w),b(w)}.

The basis {a(e1), b(e1)}, generating E2ðe1Þ, is obtained for w = e1 = (1, 0,0) and denoted
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a ¼ aðe1Þ ¼ diagð1; 0; 0Þ;
b ¼ bðe1Þ ¼ diagð0; 1; 1Þ:

ð2:7Þ
3. Methods: Aligned fibres

In this section, we evaluate the homogenised permeability for a composite comprised of a porous matrix
and a phase of fibre inclusions all aligned in the same direction.

We assume that, at the fibre level, the internal structure of the porous matrix can be treated as a continuum,
i.e., the spacing between the molecules constituting the matrix is at least one order of magnitude smaller than
the spacing between the reinforcing fibres. Moreover, we assume that the fibres are very long compared to
their diameter and to the typical inter-fibre spacing distance, so that they can be treated as infinitely long.
Lastly, we assume that the spatial distribution of the aligned fibres is random, so that a suitably chosen neigh-
bourhood of each fibre is representative of the whole system.

Under these assumptions, our material is constituted by the fluid, the solid phase of the matrix, and the
fibres, with volumetric fractions equal to /f, /0, and /1, respectively. The void ratio, ratio of the fluid to
the solid fraction, is given by
e ¼
/f

/0 þ /1

¼ 1� ð/0 þ /1Þ
/0 þ /1

: ð3:1Þ
In the following, the volumetric fraction of the fibres is indicated simply by /, so that the fraction of
matrix-fluid is 1 � /. The matrix has an isotropic intrinsic permeability tensor k0 = k0I, while the fibres
are assumed to be totally impermeable. However, for the following calculations, it is convenient to assign
the fibres an intrinsic permeability, k1 = k1I, which is eventually set to be equal to the null tensor: k1 = O,
i.e., k1 = 0.

We make use of Darcy’s equation for the description of the motion of a fluid in a porous medium. For the
general anisotropic case, Darcy’s equation reads
V ¼ �k grad p ) V i ¼ �kijp;j; ð3:2Þ
where V is the filtration velocity, p is the fluid pressure, p,j is the derivative of p with respect to the j-th space
variable, and k is the second order tensor for permeability. Eq. (3.2) can be written in the equivalent form
V ¼ kH ) V i ¼ kijH j; ð3:3Þ
where H = �grad p is the hydraulic head. Isotropy is obtained when k is spherical.
Darcy’s law (Eqs. (3.2) and (3.3)) describes a linear response to an external action, and belongs to a large

and well-known class of equations in Physics. In this paper, we shall exploit a known result (Landau and Lif-
shitz, 1960) for the electric induction in a dielectric material, which is governed by the equation
D ¼ eE ¼ �e grad U; ð3:4Þ
where D is the electric induction field, e is the dielectric permeability tensor of the medium, U is the scalar po-
tential, and E = �grad U is the electric field.

3.1. Aligned fibres: Low volumetric fraction

The purpose of this section is to calculate the effective permeability, k, for a system constituted by the por-
ous matrix described above, in which a small volumetric fraction of impermeable fibres, all aligned in the
direction w, is embedded.

Let us apply a hydraulic head H to the system. Following Shvidler (1985) and Podzniakov and Tsang
(2004), the balance equations for the fluid flow and the hydraulic head read
kH ¼ ð1� /Þk0H0 þ /k1H1;

H ¼ ð1� /ÞH0 þ /H1:
ð3:5Þ
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By considering that the permeability of the fibres, k1, is zero, and by eliminating (1 � /)H0, we obtain
kH ¼ k0H � /k0H1: ð3:6Þ

The effective permeability is obtained if an expression of H1 can be found as a function of H. By exploiting the
dielectric analogy (D ? V, e ? k, E ? H, U ? p) between Eqs. (3.3) and (3.4), we can use the solution re-
ported by Landau and Lifshitz (1960) for the electric field in a dielectric cylinder embedded in an infinite
dielectric medium. The hydraulic head in the cylinder, H1, can be expressed in the form:
H1 ¼MH ; ð3:7Þ

where M is the tensor of the influence coefficients, which is transversely isotropic in the direction w of the
fibres, and can thus be written as a linear combination of the basis tensors a and b (Eq. (2.2), relative to w:
M ¼ MkaþM?b ¼ aþ 2k0

k1 þ k0

b: ð3:8Þ
For an impermeable fibre, k1 = 0, and tensor M becomes
M ¼ MkaþM?b ¼ aþ 2b: ð3:9Þ
By use of Eq. (3.7), Eq. (3.6) can be written as
kH ¼ k0H � /k0MH : ð3:10Þ

Since k0 is spherical, M and k0 commute, and then it follows that
k ¼ ðI � /MÞk0: ð3:11Þ

Eq. (3.11) was obtained by using the solution of Landau and Lifshitz (1960) for a cylinder in an infinite med-
ium. Therefore, it is valid only for small values of the volumetric fraction, /.

3.2. Aligned fibres: High volumetric fraction

The case of high fibre volumetric fraction can be approached by means of the differential methods described
by McLaughlin (1977) and Norris (1985), in the form reported by Zimmerman (1991).

Let us imagine that we construct a fibre-reinforced composite by adding fibres to a homogeneous matrix in
steps. In the initial state, the fibre volumetric fraction is /(0) = 0, i.e., the composite is made by pure homo-
geneous matrix. In the first step, we replace a small fraction DC of the volume by fibres, and obtain a com-
posite with fibre fraction /(1) = DC. In the second step, we remove another portion DC of the total volume,
thus removing a fraction (1 � /(1))DC of matrix, and a fraction /(1)DC of fibres, and we add another fraction
DCof fibres. At the end of the second step, the fibre fraction is then /(2) = /(1) � /(1)D C + DC. By induction,
we can say that, after the n + 1-th step, the fibre fraction is
/ðnþ1Þ ¼ /ðnÞ � /ðnÞDCþ DC: ð3:12Þ

If we redefine / as a continuous function of the parameter C = nDC by imposing /(C) = /(nD C) = /(n), and
substitute in Eq. (3.12), the latter can be rearranged as
/ðCþ DCÞ � /ðCÞ
DC

¼ 1� /ðCÞ: ð3:13Þ
By passing to the limit DC ? 0 on the left-hand side, we obtain the differential equation /0(C) = 1 � / (C),
which, with the initial condition /(0) = /(0) = 0, can be integrated into
/ ¼ 1� e�C: ð3:14Þ

Eq. (3.14) describes the incremental process with which fibres are added. Note that C = 0 and C ?1 repre-
sent the states / = 0 and / = 1, respectively, and that C approximates / for small fractions: / = 1 � e�C ffi C.

Since Eq. (3.11) is written for small values of the volumetric fraction, / can be replaced by C and Eq. (3.11)
reads
k ¼ ðI � CMÞk0; ð3:15Þ
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which can be written in the incremental form
k� k0

C
¼ �Mk0: ð3:16Þ
Eq. (3.16) can be extended to high fractions by means of the transformation
k! kðCþ DCÞ;
k0 ! kðCÞ;
C! DC:

ð3:17Þ
In practice, we represent a composite with fibre fraction C + DC, as a homogenised material (equivalent to a
composite with fibre fraction C) to which an incremental fraction of fibres, DC, is added:
kðCþ DCÞ � kðCÞ
DC

¼ �MkðCÞ: ð3:18Þ
By passing to the limit DC ? 0 on the left hand side, we obtain the separable differential equation
k0ðCÞ ¼ �MkðCÞ: ð3:19Þ

Since all tensors in (3.19) are transversely isotropic in the direction, w, of the fibres, by virtue of the orthog-
onality of the basis tensors a and b, Eq. (3.19) can be decomposed into its parallel and orthogonal compo-
nents, as:
k0kðCÞ ¼ �kkðCÞ; k0?ðCÞ ¼ �2k?ðCÞ: ð3:20Þ
The initial conditions for the system are that, at zero fraction, the parallel permeability, kk, and the orthogonal
permeability, k\, are equal to the permeability of the matrix, k0:
kkð0Þ ¼ k0; k?ð0Þ ¼ k0: ð3:21Þ
The solution of the differential equations (3.20) with the initial conditions (3.21) is then:
kkðCÞ ¼ k0e�C; k?ðCÞ ¼ k0e�2C; ð3:22Þ
which, by transforming back to the volumetric fraction /, becomes:
kk ¼ ð1� /Þk0; k? ¼ ð1� /Þ2k0: ð3:23Þ
Eq. (3.23) can be written in tensor form as:
k ¼ kkaþ k?b ¼ ð1� /Þk0aþ ð1� /Þ2k0b: ð3:24Þ
3.3. Elementary volume: The local anisotropy factor

Here we study an elementary volume representative of a system with an arbitrary volumetric fraction, /, of
aligned impermeable fibres (k1 = 0), embedded in a porous matrix of permeability k0. The elementary volume
is constituted by a fibre of radius r1, embedded in a concentric cylinder of radius r, filled with the mixture of
matrix and fluid (Fig. 1). For the elementary volume to be representative of the whole system, the ratio of the
volume X1 of the inner cylinder (fibre) to the volume X of the embedding cylinder must equal the fibre fraction,
/:
X1

X
¼ pr2

1L
pr2L

¼ r2
1

r2
¼ /: ð3:25Þ
The effective permeability of this elementary volume, i.e., the permeability of the equivalent homogenised
material, is given by Eq. (3.23) or (3.24). The anisotropy factor, v, of the permeability of the elementary vol-
ume (and of the equivalent homogenised material) is defined as the ratio between the permeability in the direc-
tion orthogonal to the fibre, and that in the direction parallel to the fibre. By virtue of Eq. (3.23), the
anisotropy factor for the elementary volume is given by



Fig. 2.
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v ¼ k?
kk
¼ 1� /; ð3:26Þ
i.e., it is linearly related to the volumetric fraction of fibres, /. Eq. (3.26) shows that the permeability can be
isotropic only in the absence of fibres, and that permeability is always greater in the direction of the fibre, and
allows for writing Eqs. (3.23) and (3.24) in the form
kk ¼ vk0; k? ¼ v2k0: ð3:27Þ
k ¼ kkaþ k?b ¼ vk0aþ v2k0b: ð3:28Þ
We also note that, in a system with fibres all aligned in one direction, the elementary volume described above
and the anisotropy factor, v, represent the whole system.
4. Methods: Fibres with statistical orientation

In order to evaluate the overall permeability of a material in which the orientation of the fibres obeys a
given probability distribution, we need a statistical averaging procedure. Let us imagine an arbitrary point
x on the axis of a fibre, which may be straight or curved. The linearisation of the fibre around x is accom-
plished with a straight cylindrical fibre that has its axis along the tangent vector w of the real fibre at x
(Fig. 2). The elementary volume at point x is then comprised of the linearised fibre, embedded in a cylinder
filled with a mixture of matrix and fluid, such that the ratio of the linearised fibre and the embedding cylinder
equals the fibre volumetric fraction, /, as previously shown (Fig. 1).

The permeability tensor, k, of the elementary volume relative to the direction w (Eq. (3.24)) can be repre-
sented in the tensor basis {a(w), b(w)} (Eq. (2.6)):
kðwÞ ¼ kkaðwÞ þ k?bðwÞ ¼ ð1� /Þk0aðwÞ þ ð1� /Þ2k0bðwÞ: ð4:1Þ
The parallel and orthogonal components kk and k\ are independent of the direction w, and are given by Eq.
(3.23), as the dependence on w is carried by the basis {a(w),b(w)}.

At every point of a globally homogeneous composite, the probability to find a fibre with orientation w is
given by the probability density function (sometimes referred to as an orientation density function (Lanir et al.,
1996))
w : S2 ! R : w7!wðwÞ ð4:2Þ
Global and local reference frames for identification of an arbitrary fibre, and related Euler’s angles (co-latitude, #, and longitude, u).
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which must be such that its integral over the unit sphere, S2, equals one, in order to satisfy the normalisation
condition:
Z

S2
wdS ¼

Z
S2

wðwÞdSðwÞ ¼ 1: ð4:3Þ
Remark. We always linearise fibres, as depicted in Fig. 2. In this framework, curved fibres are represented by
means of a probability distribution. For example, a composite in which the fibres are aligned on average, but
are individually not straight, can be thought of as a composite with straight fibres that have an angular
dispersion around the average direction. Furthermore, for a globally inhomogeneous composite, the
probability density w must be defined as an explicit function of location. Such a probability density can
describe a composite in which the main direction of fibres varies with location, as for example in articular
cartilage (Federico et al., 2005).
4.1. General solution

The general expression for the overall permeability tensor, K, of a fibre reinforced composite with proba-
bility distribution w is given by
K ¼
Z

S2
wkdS ¼

Z
S2

wðwÞkðwÞdSðwÞ: ð4:4Þ
Since k(w) is transversely isotropic in the direction w, Eq. (4.4) can be split into two terms, by decomposition
(4.1):
K ¼ kk

Z
S2

wðwÞaðwÞdSðwÞ þ k?

Z
S2

wðwÞbðwÞdSðwÞ: ð4:5Þ
For the overall elastic properties of a composite with a statistical distribution of inclusions, we can calculate
the directional average of the six fourth-order tensors of the basis for transverse isotropy, with suitable pro-
jection operators that reduce the number of integrations (Federico et al., 2004). Here, we deal with a second-
order tensor basis {a, b}, and we show that we only need to evaluate the directional average of a. Indeed,
substituting b(w) = I � a(w) (Eq. (2.2)) and the normalisation condition (4.3) into Eq. (4.5), we have:
K ¼ ðkk � k?ÞQ þ k?I ; ð4:6Þ
where tensor Q is the directional average of the basis tensor a(w) = w � w:
Q ¼
Z

S2
wðwÞaðwÞdSðwÞ ¼

Z
S2

wðwÞw� wdSðwÞ: ð4:7Þ
Therefore, the evaluation of the overall permeability, K, reduces to the calculation of the integral defining Q,
which is symmetric (as a(w) = w � w) and fully anisotropic, and depends only on the probability distribution, w.

The integral can be calculated in polar coordinates by expressing w in terms of the polar parameterisation
of the unit sphere, S2,
w ¼ sð#;uÞ ¼ ðcos#; sin# cos u; sin# sin uÞ; ð4:8Þ

where # and u are the co-latitude and longitude angle. In a global reference frame, {e1, e2,e3}, # and u rep-
resent the Euler angles of the reference frame of the fibre, fe01; e02; e03g (where e01 coincides with w) (Fig. 2). In
this way, the probability distribution is redefined as an explicit function of # and u,
Wð#;uÞ ¼ wðsð#;uÞÞ; ð4:9Þ

and the integral in Eq. (4.7) can be written as:
Q ¼
Z 2p

0

Z p

0

Wð#;uÞsð#;uÞ � sð#;uÞ sin#d#

� �
du: ð4:10Þ
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4.2. Solution for transverse isotropy

When the probability distribution function, w, is transversely isotropic in the direction e1 = (1,0,0), then it
is invariant for rotation about the e1 axis (and its counterpart in polar coordinates, W, is independent of the
longitude angle, u), and the overall permeability of the composite is transversely isotropic with respect to e1,
with the plane {e2,e3} representing the transverse plane. Rather than solving the integral in (4.7) by means of
projection operators, we solved the integral in (4.10) by calculating tensor Q component by component in
polar coordinates (Gasser et al., 2006):
Q11 ¼
Z 2p

0

Z p

0

Wð#Þ cos2 # sin#d#

� �
du;

Q22 ¼
Z 2p

0

Z p

0

Wð#Þ cos2 u sin3 #d#

� �
du;

Q33 ¼
Z 2p

0

Z p

0

Wð#Þ sin2 u sin3 #d#

� �
du;

Q12 ¼ Q21 ¼
Z 2p

0

Z p

0

Wð#Þ cos u cos# sin2 #d#

� �
du;

Q13 ¼ Q31 ¼
Z 2p

0

Z p

0

Wð#Þ sin u cos# sin2 #d#

� �
du;

Q23 ¼ Q32 ¼
Z 2p

0

Z p

0

Wð#Þ sin u cos u sin3 #d#

� �
du:

ð4:11Þ
Since W does not depend on the longitude angle, u, all integrals defining the non-diagonal components of Q
vanish, and the diagonal components of Q are given by (Gasser et al., 2006)
Q11 ¼ 1� 2q; Q22 ¼ Q33 ¼ q; q ¼ p
Z p

0

Wð#Þ sin3 #d#: ð4:12Þ
Tensor Q can be conveniently written in the basis {a,b} of E2ðe1Þ (Eq. (2.7)):
Q ¼ ð1� 2qÞaþ qb: ð4:13Þ

By substituting Eq. (4.13) and the identity I = a + b into Eq. (4.6), the overall permeability tensor, K, becomes
K ¼ Kkaþ K?b ¼ ½kk � 2qðkk � k?Þ�aþ ½k? þ qðkk � k?Þ�b; ð4:14Þ
where Kk and K\ are the overall axial and transverse permeabilities, respectively.
In the following subsections, we study specific cases of all fibres lying in the transverse plane {e2,e3}, and

the isotropic case of randomly oriented fibres. Note that the case of fibres aligned along the symmetry axis e1

might be studied by defining a suitable probability density Waligned and by a limit operation in the sense of
distributions (see, e.g., Kolmogorov and Fomin, 1999). We have used this approach previously for elastic
properties (Federico et al., 2004). However, it has already been shown (Gasser et al., 2006) that the factor
q in 4.12 reduces to qaligned=0, and, if we use this result in our Eq. (4.14), we find that the overall permeability
tensor K reduces to the local permeability tensor k.

Finally, we study the overall anisotropy factor X = K\/Kk, for the above mentioned cases.

4.3. Fibres lying in the transverse plane

The case of fibres lying on a plane can be of particular interest for laminate composites, and biological tis-
sues, such as skin, or the superficial zone of articular cartilage. For such arrangement of fibres, the normalised
probability is (Federico et al., 2004)
Wplaneð#Þ ¼
vBðp=2;eÞð#Þ

2p
R p

0
vBðp=2;eÞð#0Þ sin#0 d#0

; ð4:15Þ
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where vB(p/2,e) is the characteristic function of the symmetric interval B(p/2,e) = [(p/2) � e, (p/2) + e]. By solv-
ing the integral, Eq. (4.15) becomes
Wplaneð#Þ ¼
vBðp=2;eÞð#Þ

4p sin e
: ð4:16Þ
In the limit e ? 0, this function converges to the Dirac delta centred at p/2, in the sense of distributions. In-
deed, the parameter q in 4.12, given by
qplane ¼ lim
e!0

p
Z p

0

Wplaneð#Þ sin3 #d# ¼ lim
e!0

p
Z p

0

vBðp=2;eÞð#Þ
4p sin e

sin3 #d# ¼ 5þ cosð2eÞ
12

; ð4:17Þ
converges to qplane ¼ 1
2

in the limit e ? 0. The permeability tensor (4.14) becomes:
K ¼ Kkaþ K?b ¼ k?aþ
1

2
ðkk þ k?Þb; ð4:18Þ
i.e., the overall axial permeability is equal to the local orthogonal permeability, and the overall transverse per-
meability is the average of the parallel and orthogonal permeability.

4.4. Randomly oriented fibres

In the case of isotropy, the fibres are randomly oriented, and the probability distribution function Wiso is a
constant equal to the measure 1

4p of the solid angle. The parameter q in Eq. 4.12 becomes then q ¼ 1
3
, and the

permeability (4.14) becomes
K ¼ 1

3
kk þ

2

3
k?

� �
aþ 1

3
kk þ

2

3
k?

� �
b ¼ 1

3
kk þ

2

3
k?

� �
I ¼ 1

3
ðtr kÞI : ð4:19Þ
4.5. Overall anisotropy factor for transverse isotropy

Similarly as the local anisotropy factor, v (Eq. (3.26)), the overall anisotropy factor, X, is defined as the
ratio of the overall transverse to the overall axial permeability:
X ¼ K?
Kk

: ð4:20Þ
For the case of aligned fibres, Kk coincides with kk = (1 � /)k0, and K\ coincides with k\ = (1 � /)2k0. There-
fore, the overall anisotropy factor is (Eq. (3.26))
X ¼ v ¼ 1� /: ð4:21Þ
For the case of fibres all lying in the transverse plane, the overall anisotropy factor is (Eq. (4.18))
X ¼ kk þ k?
2k?

¼ 1

2

kk
k?
þ 1

� �
¼ 1

2

1

1� /
þ 1

� �
: ð4:22Þ
For the case of randomly oriented inclusions (isotropy), X is trivially equal to one, for every value of the fibre
fraction, /.

Fig. 3 shows the behaviour of the overall anisotropy factor as a function of the fibre volumetric fraction, /.
In all cases, the anisotropy factor is one at zero fibre volumetric fraction, a situation that represents the pure
isotropic matrix. For aligned fibres, the anisotropy factor decreases linearly to zero with increasing fibre frac-
tion: the higher the fibre fraction, the larger is the axial compared to the transverse permeability. For fibres
lying on a plane, the anisotropy factor increases monotonically and diverges for fibre fractions approaching
unity: the higher the fibre fraction, the lower the axial compared to the transverse permeability.

We note, however, that values of the fibre volumetric fraction close to unity have no physical meaning. This
is because there is a limit on the volumetric fraction imposed by the packing of fibres. For example, in the case
of fibres all with identical diameter, and all aligned in one direction, the maximum possible packing is hexag-



Fig. 3. Overall anisotropy factor, X, as a function of the fibre volumetric fraction, /, for the cases of aligned inclusions (crosses),
inclusions lying in a plane (squares), and randomly oriented fibres (dashed line). For the case of aligned fibres, X decreases with increasing
/, while for inclusions lying in a plane, X increases and diverges for / going towards one.
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onal, and corresponds to a maximum theoretical volumetric fraction equal to the ratio between the area of a
circle to the area of its circumscribed hexagon ð/ ¼

ffiffi
3
p

6
p ffi 0:9069Þ. More importantly, such a high volumetric

fraction would violate the hypothesis of scale separation, as the distance between fibres would go towards
zero.
5. Discussion

We have addressed the effect of the presence of fibres on the permeability of a porous composite material, in
the undeformed configuration. The system is comprised of an isotropic porous matrix fully saturated with
fluid and reinforced by impermeable fibres, a description that well represents a large class of biological soft
tissues (e.g., Fung, 1993). The presence of the fibres has been taken into account in terms of their volumetric
fraction and orientation, which was assumed to be governed by a normalised probability distribution function.
The overall permeability tensor of a composite with a given fibre arrangement was obtained as the directional
average of the permeability tensor of an elementary volume constituted by a fibre and its cylindrical
neighbourhood.

In a system with all fibres aligned in one direction, the elementary volume described in Section 3.3 and the
anisotropy factor, v (Eq. (3.26)), represent the whole system.

This is the case for tendons, in which fluid flows preferentially along the axial direction (Han et al., 2000;
Wellen et al., 2004), and for which the anisotropy factor has been estimated experimentally in the range from
0.36 (fresh tendons) to 0.68 (phosphate-buffered-saline (PBS) stored tendons) (Han et al., 2000). A purely geo-
metric evaluation made through Eq. (3.26) gives a range of volumetric fractions from 32% to 64%, which con-
tains the value around 60% measured optically by Han et al. (2000). These considerations on tendons provide
evidence in support of the model.

Furthermore, we have applied this method to articular cartilage, for which there were experimental results
that could not be explained by considerations made on the tissue matrix only (Maroudas and Bullough, 1968).
By means of a position-dependent probability distribution, describing the inhomogeneous arrangement of the
collagen fibres in cartilage, the application of this model (Federico and Herzog, in press) gave good agreement
with experiments (Maroudas and Bullough, 1968).

The proposed model is based on purely mechanical-geometrical considerations. In biological tissues, other
factors, related to the electrochemical interactions between the fluid and the polar regions of the fibres, may
enhance the permeability in the direction of the fibre (see, e.g., Pollack, 2001).

Furthermore, Darcy’s law with constant permeability ceases to be satisfactory in describing fluid flow when
large deformations are taken into account (see., e.g., Rajagopal, 2003). Indeed, when the deformations are
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large, pore size decreases (e.g., Holmes and Mow, 1990), and strain-induced anisotropy may occur due to the
reorientation of the microstructure (e.g., Quinn et al., 2001).

Nevertheless, this model may constitute a starting point, taking into account the effect of fibres on perme-
ability, at the mechanical-geometrical level for composites in the undeformed configuration, or in the small
deformations regime. The natural continuation of this work would be the incorporation of the dependence
of permeability on deformation, and, in a further step, the inclusion of electrochemical interactions and large
deformations.
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