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Abstract

Approximations to a solution and its derivatives of a boundary value problem of an nth order linear Fredholm integro-differential
equation with weakly singular or other nonsmooth kernels are determined. These approximations are piecewise polynomial functions
on special graded grids. For their finding a discrete Galerkin method and an integral equation reformulation of the boundary value
problem are used. Optimal global convergence estimates are derived and an improvement of the convergence rate of the method for
a special choice of parameters is obtained. To illustrate the theoretical results a collection of numerical results of a test problem is
presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let R=(—o00, 00) and N={1, 2, .. .}. In the present paper we study the convergence behaviour of a discrete Galerkin
method for the numerical solution of boundary value problems of the form

no ) no b )
u ()= "au? ) + Z/ Ki(t, s )u®P(s)ds + f(t), 0<i<b, b>0, (1.1)
=0 i=0 70
n—1 . ‘
> loju®(0) + pju®B)1 =0, j=1.....n, (1.2)
i=0
where n € N, 0<no<n — 1, ocl-j,ﬁij eR,i=0,1,...,n—1; j=1,...,n. We assume that ¢;, f € C™"(0, D),

Kie WV (A),i=0,...,np,me N, veR, —co<v<l.
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The set C™:Y(0, b), withm € N, —oo < v < 1, is defined as the collection of all continuous functions u : [0, b)] — R
which are m times continuously differentiable in (0, b) and such that for allt € (0, b) andi =1, ..., m the following
estimate holds:

1 ifi<l—v,
D) <c{ 1+ |log o(t)| ifi=1—, (1.3)
o= ifi>1—v.

Here ¢ = c(u) is a positive constant and
o(t) =min{t,b —t} (O<t<b)

is the distance from ¢ € (0, b) to the boundary of the interval (0, b).

Note that C™[0, b], the set of m times (m > 1) continuously differentiable functions u : [0, b] — R, belongs to
C™ (0, b) for arbitrary v < 1. Conversely, if u € C""(0,b) and v<1 —k, k=1, ..., m, then the derivative u® is
bounded on (0, ») and the derivatives u/, . . ., u®=1D of i can be extended so that u € C*~! [0, b]. Here and below by
CY10, b] = CJ[0, b] we denote the Banach space of continuous functions u : [0, b] — R equipped with the usual norm
lulloo = maxo<s<plu®)].

The set WY (A), withm € N, —oco <v < 1,

A={(t,s):0<1<b,0<s<b, t # 5}, (1.4)

consists of all m times continuously differentiable functions K : 4 — R satisfying for all (¢, s) € 4 and all nonnegative
integers i and j such that i + j <m the condition

) . if v4+i <0,
ala+afK(t)< £y (1.5)
or o o IR 1+|10g|t'—s|| ifv+i=0, .
[t — |7V if v+i>0,

where ¢ = ¢(K) is a positive constant.

It follows from (1.5) that if K € W™ (A) with some 0 <v < 1, then K (¢, s) may possess a weak singularity at t = s;
if v <0, then K (¢, 5) is bounded on A4 but its derivatives may be singular as s — f. Most important examples of weakly
singular kernels that belongs to W™V (A) are given by the formula

Ko p(t.5) = K1t )|t —s] ™ (og |t — sP + Ka(t, 5),

where K| and K; are some m times continuously differentiable functions on [0, ] x [0, 5], 0<a <1, 0<f < 00,
o+ B # 0. Clearly, Ky 0 € W™"*(4) and K, g € W9+ (A) for some 0 < g <1 — a.

The existence and regularity of the solution of problem (1.1), (1.2) is described in the following lemma proved
in [12].

Lemma 1.1. Letn € N, o;;, /3,-]- eR,i=0,...,n—1;j=1,...,n. Assume that f,a; € C"™"(0,b), K; € W™"(4),
i=0,...,n0,0<no<n—1,m e N, —oco <v < 1. Moreover, assume that problem (1.1), (1.2) with f =0 has only the
trivial solution u = 0 and from all solutions of the equation u™ (1) =0, 0<t <b, only u = 0 satisfies conditions (1.2).

Then problem (1.1), (1.2) possesses a unique solution u € C""Y="(0, b) and for its derivatives u',u”, ..., u™
we have that u® e c™m+n=itv=nti0 py i=1,...,n.

Thus, under the conditions of Lemma 1.1 the higher-order derivatives of the solution of problem (1.1), (1.2) may be
unbounded near the boundary of the interval (0, b). This complicates the construction of high-order methods for the
numerical solution of problem (1.1), (1.2). We refer here to [11,12] where a discussion of the optimal (global and local)
order of convergence of piecewise polynomial collocation methods on graded grids for solving (1.1), (1.2) in case of
nonsmooth input data is given. Similar results may also be found in [3-5,13-15].

In the present paper we will use for the solution of problem (1.1), (1.2) a discretized version of the Galerkin
method that in case of smooth solutions is studied in [7-9], see also [1,2,6]. However, if we allow weakly singular
kernels K; € W™V(4),i =0, ..., ng, then the resulting solution to (1.1), (1.2) is typically nonsmooth on the closed
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interval [0, b] (evenif f, a; € C*°[0, b],i =0, ..., ng) and the results of [7-9] cannot be applied. In order to construct
a high-order discrete Galerkin method for solving (1.1), (1.2) we shall use as in [11,12] a special graded grid reflecting
the possible singular behaviour of the exact solution. Actually, this method exploits a discretized version of an inner
product which is formed from the standard inner product of the space L (0, b) by dividing [0, b] into subintervals and
by substituting on each subinterval the integral with a sum on the basis of a fixed quadrature rule.

Note also that such a discrete Galerkin method is close related to the collocation method considered in [12] and in a
special case these methods coincide. These two methods have nearly the same cost. However, the main advantage of the
discrete Galerkin method over the collocation method is that in the first case we find an approximation to the derivative
u™ of the solution u of (1.1), (1.2) as a continuous spline but in the second case usually as a discontinuous spline.
Therefore, for the calculation of approximate solutions with the same accuracy in the case of the discrete Galerkin
method it is necessary to solve smaller resulting systems of algebraic equations as in the case of the collocation method.

Section 2 below provides necessary background material. In particular, in Lemma 2.1 some error estimates for a
discrete projection of a function in C™:V(0, b) on a graded grid are given. With the help of these estimates in Sections
3 and 4 the convergence behaviour of the discrete Galerkin method is analysed. The main results are formulated in
Theorems 3.1 and 4.1. In Section 5 these results are verified by some numerical examples.

2. Discrete orthogonal projection

For N € N, let
Iy ={ty,....hn : 0=ty <t1 <--- <ty =b}

be a partition (a graded grid) of the interval [0, b] with the grid points

L\ T
b i=0,1,....N
fj—zﬁ ., J=0,1,..., N,

Z‘N+j=b—tN_j, j=1,...,N, 2.1

where r € R, r > 1. If r = 1, then the grid points (2.1) are distributed uniformly; for r > 1 the points (2.1) are more
densely clustered near the endpoints of the interval [0, b].

For given integers m >2 and 0<d <m — 2, let S,(nd)(l'[ ~) be the spline space of piecewise polynomial functions on
the grid I y:

SO UIN) = {v € C0, b1 : v,y 01 € Tty j=1,..., 2N}

Here v|[t_ 1] is the restriction of v onto the subinterval [¢;_1, ¢;] and m,,—1 denotes the set of polynomials of degree
not exceeding m — 1.
Let
1 M
f gx)dx ~ Y wrg ) 22)
0 k=1
be a basic quadrature rule with weights wy >0,k =1, ..., M, and nodes
o<y <~ <y <L 2.3)
Denote
2N M
W @)y =D hji D whti)etn), ¥, ¢ € Cl0, b], 2.4)
j=1 k=1

where hj =t; —tj_1 >0 and

tig=tj—1+mnh;, k=1,....M; j=1,...,2N. (2.5)
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If M>m>2, then (, @)y is an inner product on S,S? ) (Ily), see [10]. We can regard it as an approximation to the
standard inner product of the space L2(0, b).
Further, for any N € N the discrete inner product (2.4) induces a discrete orthogonal projection operator 2y :

C[0, b] — S (I1y) defined by
Pyv e SO(ITy), (Pyv, @)y =W, @)y, veC[0,b], Yo e SOUIy). (2.6)

From [10] we get the following result about the uniform boundness of 2.

Lemma 2.1. Let (2.2) be a quadrature rule with some weights wy >0,k =1,..., M, and nodes (2.3). Let Py :
Cl[0,b] — S,(,?) (IIy) be defined by the settings (2.6) where M >m > 2. Finally, let one of the following three conditions
(1), (ii) or (iii) be fulfilled:

(i) the quadrature rule (2.2) is symmetric, i.e., i =1 =y and wy =wy g1, k=1,..., M;
(i1) the quadrature rule (2.2) is exact for all polynomials of degree 2m — 2;
(iii)) M =mandn; =0,ny, =1.
Then
”t@NU”pgc“U”N,p, UGC[Ovb]v lgpgoo’ (2'7)

with a constant ¢ which is independent of N € N and v € C[0, b]. Here

lvlloo = max [v(®)|, |lvllyco= max  max [|v(j)l,
0<t<b 1<j<2N 1<k<M
b 1/p AN M /p
||v||p=</ |v(s)|"ds> o vlvp =Dk Y wklv@l? |, 1< p<oo,
0 ;
j=1 k=1

Corollary 2.1. Let the conditions of Lemma 2.1 be fulfilled. Then
[Znvlloo <cllvlloo,

where c is a positive constant not depending on N € N and v € C[0, b].

Lemma 2.2. Let the conditions of Lemma 2.1 be fulfilled and let the nodes (2.5) with grid points (2.1) be used. If
v e C™Y0,b),m=2,v <1, then the following estimates for the error v — v hold:

N7 for 1<r < m ,
1—v
m
[v—2NV|oo<c{ N7"(1 +1og N) for er—v:L (2.8)
N—™ forr:i>lorr> n , r>1,
1—v 1—v
lv—2nvll,<cOn(m,v, 71, p), (2.9)
with
N—rd=v+1/p) for 1<r< ———,
1—v+1/p
m
— I N1 + (log N)V/P = >1,
On(m,v,r, p) (1+ (log N)/P)  for r v+ 1/p
m
N~ forr> —  r>1.
1—v+1/p

Here 1 < p <00 and c is a positive constant not depending on N € N.
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Proof. For arbitrary vy € S,("O) (I1) we have Zyvy = vy and
v—2Pyv=v— vy + Py(uy — V).
This together with Lemma 2.1 yields
lv—2nvllp<llv—unlp+clv—ovnlnp I<p<oo. (2.10)

Further, we choose m parameters 1, ..., &, suchthat0 = ¢; <--- <&, = 1 and determine vy € S,(,?) (I1y) from the
interpolation conditions

uv(xj) =v(x), k=1,...,m; j=1,...,2N,

where xj, =t; 1+ &hj,k=1,...,m; j=1,...,2N.Since ||[v — vy |l §,00 <|IV — VN0, estimate (2.8) for p = oo
follows from (2.10) and Lemma 7.2 in [15]. If 1 < p < 00, then due to Lemma 7.2 in [15], [lv — vy || , <cOn(m, v, 1, p).
Moreover, in a similar way as in [15] we can show that |[v — vy ||y, p, <cOn(m, v, 1, p), 1 < p < 00. Now (2.9) follows
from (2.10). O

Remark 2.1. If M =m,n; =0, ), =1, then Pyv € S,(,? ) (IIy) is uniquely determined by the collocation conditions
@nv)tjr) =v(tjr), k=1,...,m; j=1,...,2N, and Lemma 2.2 is an immediate inference from Lemma 7.2
in [15].

3. Discrete Galerkin method

First of all we consider a reformulation of problem (1.1), (1.2) based on introducing a new unknown function v=u.
If from all solutions of the linear homogeneous differential equation " = 0 only u = 0 satisfies conditions (1.2), then
the nonhomogeneous equation

u™ @) =v@t), tel0,b], veC[0,b], 3.1)

with boundary conditions (1.2), has a unique solution

b
u(t) :/ G(t,s)v(s)ds, te][O0,b], (3.2)
0

where G (¢, s) is the Green’s function of problem (3.1), (1.2). The derivatives of the function u given by (3.2) can be
expressed in the form

u®@)y=v)(@0), 1€[0,b], i=0,....,n—1, (3.3)

where

b Al
(Jiv)(t)=/ %:;@)ds, tel0,b], i=0,...,n—1. (3.4)
0

Since the general solution of equation ™ (r) = 0 is an arbitrary polynomial of degree n — 1, the Green’s function
G(t,s) for (3.1), (1.2) can be expressed both for ¢ < s and for ¢ > s as the polynomial at most of degree n — 1 with
respect to t and s. Moreover, oGz, s) / ot',i =0, ..., n—2,the derivatives of G (¢, s) with respect to ¢ up to the order
n — 2, are continuous on 4 = [0, b] x [0, b]. Also "~ G(z, s)/az‘"_1 is continuous and bounded in the region 4 (see
(1.4)), but it has a discontinuity at t = s. From this it follows that the operators J;,i =0, ..., n — 1, defined by (3.4),
are linear and compact as operators from C[0, b] into C[O, b].

Using ™ = v and (3.3), problem (1.1), (1.2) may be rewritten as a linear operator equation of the second kind with
respect to v:

v=Tv+ f, 3.5)
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where
no
T =) (Adi + T ), (3.6)
i=0
b
(Ajv)(@) = a;(Hv(t), (Tv)(1) =/ Ki(t,s)v(s)ds, t€0,b], i =0,...,no. 3.7
0

Further, we look for an approximation vy to the solution v of Eq. (3.5) in S,(,? ) (I1y),m, N € N, m>2. We determine
vy by the discrete Galerkin method (see, e.g., [2,7]) as follows:

find vy € S (ITy) such that (vy — Toy — f, @)y =0 Vo € SO UTy). (3.8)
Method (3.8) can be presented equivalently in the following form: find vy such that
vy =2PNToy + 2PN ], 3.9)

where 2y is defined by (2.6).
Having determined the approximation vy for v=u", we determine the approximation uﬁ\(,)) for the solution u = u®

of problem (1.1), (1.2) and the approximations ug\l,), ey ug\';_l) for the corresponding derivatives u", ..., u~D of u
by the formulas
W) =Jioy, i=0,...,n—1. (3.10)

We will call both (3.8), (3.10) and (3.9), (3.10) as a discrete Galerkin method for the numerical solution of problem
(1.1), (1.2).

Remark 3.1. If vy € S,(,?) (I1y) then (see Remark 4.1 in [12])

ul) = Jioy € SUT0 UIy) € C"70,b], i=0,...,n— L
Remark 3.2. If M =m, n; =0, 11, = 1 then the discrete Galerkin method (3.8), (3.10) or (3.9), (3.10) coincides with
the collocation method considered in [12].

In the sequel, for given Banach spaces E and F we denote by #(E, F') the Banach space of linear bounded operators
A : E — F with the norm ||A|l g, Fy = sup{llAullr : u € E, ||x]|[g <1}. By ¢, c; and ¢; we will denote positive
constants that are independent of N and may have different values in different occurrences.

For the convergence of the discrete Galerkin method the following result is valid.

Theorem 3.1. Let the conditions of Lemmas 1.1 and 2.1 be fulfilled and let nodes (2.5) with grid points (2.1) be used.

Then there exists an integer No € N such that, for N > Ny, Eq. (3.9) possesses a unique solution vy € S,(,? ) (Il1y) and
the following error estimates hold:

N—rad=v) for 1<r < n ,
1—v
m
lu™ —oylloo<e { N7"(L+log N) - for r=— =1, 3.11)
m
N~ for r = >1orr> , r>=1,
1—v 1—v
N—7@=V) for 1<r<—m ,
2—v
. m
max [u® — Jivyllo<c § N7"(1+1og N)  for r = 5—>1, (3.12)
0<i<n—1 2—v

m
N~ forr>m, r>1.
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Here c is a positive constant which is independent of N, u = u%) is the solution of problem (1.1), (1.2) and J; is defined
by formula (3.4).

Proof. Due to the assumptions of Lemma 1.1, the operators A; and 7;,i =0, ..., ng, defined by (3.7), are linear and
bounded as operators from C[0, b] into C[0, b]. Now it follows from (3.6) that T is linear and compact as an operator
from C[O0, b] into C[O0, b]. On the basis of Lemmas 2.1 and 2.2 we obtain that (cf. [5])

||T — -—ﬁ/NTHS’(C[O,b],C[O,b]) —0 as N — oo. (3.13)

Since equation v = T'v has in C[0, b] only the trivial solution v = 0, there exists an inverse operator (I — 7)™ €
Z(CI0, b], C[0, b]) where I is the identity mapping. This together with (3.13) yields that there exists a number Ny € N
such that for N > Ny the operator (I — ZyT) is invertible in C[0, b] and

I —2yT) "l #cropncrosy <c,  N=No. (3.14)

Thus, since f € C[0, b], Eq. (3.9) possesses a unique solution vy € C[0, b] for N > Ny. Actually, vy € S,(no) IIy). It
follows from (3.5) and (3.9) that

(I —2nT)v—vy)=v— Py (3.15)
On the basis of (3.14) we obtain from (3.15) that
[lv—ovnlo<cllv = ZNvlloos N = No. (3.16)

Due to Lemma 1.1, v = u™ € C™"(0, b). Now (3.16) and (2.8) yield estimate (3.11).
Further, since

(I =2NT) =1+ =2?yT)'PNT, N=No,
we get from (3.15) and (3.3) that, for N > Ny,

u® — Jivy = Ji(v — Pyv) + J;(I = PNT) ' PyT (v — Pyv), i=0,....n— L (3.17)
Using (3.4), (3.6), (3.14) and Corollary 2.1, we obtain from (3.17) that

lu® — Jivylleo <cllv — Pyvlli, N>=No, i=0,....,n—1.

This together with v € C™"(0, b) and (2.9) yields estimate (3.12). [
4. Higher-order estimates

It follows from Theorem 3.1 that for method (3.8), (3.10) a convergence of order O(N ~) can be expected, using
sufficiently large values of the grid parameter r. With respect to the underlying quadrature rule (2.2) it is sufficient to
require only the symmetricity of it (even it is not necessary that the corresponding quadrature sum is an approximation
of the integral). Actually, under stronger conditions on the quadrature rule (2.2) it is possible to improve the covergence
rate of method (3.8), (3.10). In particular, if we suppose that the quadrature rule (2.2) is exact for all polynomials of
degree 2m — 1 and the derivatives up to a certain order of the solution u of problem (1.1), (1.2) are bounded on the
interval [0, b], then it follows from the results of the paper [7] that for all values of > 1 (thus also for the uniform grid)
and for sufficiently large N we can get the following error estimate:

max  [u') — Jjvoy oo <eN TRy — g — 1L (4.1)

0<j<i
In our case the derivatives of the solution of problem (1.1), (1.2) are typically unbounded on the interval [0, b] (see
Lemma 1.1). Therefore, in general, the results of [7] cannot be applied. Below we show (see Theorem 4.1) that estimate
(4.1) is valid also in case of integro-differential equations with weakly singular kernels for sufficienly large values of
r. This result we will obtain from (3.17) on the basis of an estimate for || J; (v — ZNVl||o0, i =0, ..., n — 1, proved in
Lemma 4.2. First of all we present in a suitable for us form an estimate for the error of a polynomial interpolation.
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Lemma 4.1. Let[tj_1,t;] C[0,b],hj=t; —tj_1>0,y € Cp’l[tjfl, til, y(P) e L*®(tj_1,tj), p € N. Then there
exists a polynomial ¢ of degree at most ¢ — 1 such that

pj—1) =ytj-1), @) =7, 4.2)
max_ [y*(s) — W )<ch? " sup P9, p=0,...,9 -1, 4.3)
1j-1S8 <1 tj_1<s<tj

where g = max{2, p} and the constant c is independent of hj and t;.

Proof. Let the function y(s) be given. Lets =¢; | + hjx € [t;_1, t;] and denote
gx) =y{tj—1 +hjx)=y(s), x¢€[0,1].

Taking ¢ = max{2, p} parameters 0 = {; <, <--- < ¢, = 1, we construct the Lagrange’s interpolation polynomial
Zzzlik(x)g(ék) for g(x), with A¢(x), k=1, ..., g, the polynomials of degree g — 1 such that A; (&) =1and A4 (&;) =0
ifi #k,i=1,...,q.With the help of the Taylor formula
L 1
— N ) i
g0 =) g0+ -

i=0

fxu —orlg g de, x el0,1]
D! Jo

we observe that

q p—1
1
g0 =Y k(8@ =) -8 (0) [x —szmék]

k=1 10 k=1

T [/ (x = &P gV de

1. pé
—Zfo kﬂ*(x)(ék—é)l’—‘g”’)(@dé}, x [0, 1].
k=1

Since the polynomial ZZ: 14k (x)g (&x) coincides with the function g(x) if g is a polynomial of degree at most ¢ — 1,
we get

q 1
gx) = Y (0)g(&) = /O I(x, &gP(©dé, xelo, 1], (44)

k=1

where I'(x, &) is the Peano kernel (see, e.g., [3]):

1 P _
I'ix,& = T |:(x - f)i - Z)-k(x)(fk - ﬁ)i 1:| )
: k=1
(x = &P~ if x>¢,
(x—&f! {
0 if x <¢.
We take

w(s)-Zﬂk<

Clearly, ¢(s) is a polynomial of degree at most ¢ — 1 satisfying the conditions (4.2). Because g‘” (x) = hf (P (s) we
obtain from (4.4) that

)V(t] 1 +hil), s eltj-1,tl

! — 1t
7(8) = ¢(s) :hj-’/o r<sh—“ é) PP+ hOdE, s ety

J
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This yields (4.3) for p>2 and for p =1, u =0, since

ot (x, &)
sup ok <c,

(x, £)e(0,1)x(0,1)

w=0,...,p—1.

If p =1 and u =1 then we can immediately to check that (4.3) also holds. [

Lemma 4.2. Let the conditions of Lemma 2.1 be fulfilled and let v € C%-Y(0, b), where g; = m + min{m, n — i} with
somei € {0,...,n— 1} andv < 1. Moreover, assume that from all polynomials u of degree n — 1 only u = 0 satisfies
conditions (1.2), quadrature rule (2.2) is exact for all polynomials of degree q; — 1 and nodes (2.5) with grid points
(2.1) are used where

7 > max —,L , r>=1.
1—v 2—v
Then
[Ji(v — ZNV)lo <cNTY, 4.5)

where J; and P are defined, respectively, by (3.4) and (2.6) and c is a positive constant not depending on N.

Proof. Suppose that v € C%-"(0, b). Then

braiGa,
[ (v — Py o)) = fo [# - w(S)} (v — Pyv)(s) ds
b
+/ o(s)(W — Pyv)(s)ds, te[0,b], i €{0,...,n—1}, (4.6)
0

where G (t, s) is the Green’s function of problem (3.1), (1.2) and ¢ € S,(,? ) (IIy) is generated on the basis of Lemma 4.1
in the following way. Recall that G (¢, s) is both for # < s and for > s a polynomial at most of degree n — 1 with respect
to 7 and s, the derivatives 0’/ G (z, 5)/0t'0s/ are continuous for (¢, s) € [0, b] x [0, b] if i + j <n — 2 and they have
a bounded discontinuity att =s ifi + j =n — 1.

Letus fixt € (0,b) andi € {0, ...,n — 1}. We denote

0'G (1, s)

e p=min{m,n —i}.

y(s) =

Note that, for simplicity of the presentation, we do not show the dependence of y (below also ¢) on ¢ and i.
Ift € (—1,f]foranl € {1,...,2N}and p=>2 (ie.,i € {0,...,n —2}) theny € CP2[f_y, 1] and y(p_l) €
L*(t;—1, ;). Due to Lemma 4.1, there exist a polynomial ¢ at most of degree ¢ — 2, ¢ = max{3, p}, such that
o(t—1) =yMm-1), @) =),

sup  [p0(s) — P () <ch! T sup P V(s), w=0,....q—2. 4.7)

n_1<s<t; h—1<s<t

Here and below c is a positive constant not depending on ¢ € (0, b).
Ifr € (t—1,t)and p=1(i.e.,i =n — 1) then y(s) has a finite jump discontinuity at s =7 and y € L*(#;_1, ;). The
value y(s) at s =t we determine as a right-hand limit of y(s) at . Now we can define

1
Ps) =p(m-1) + h—l[V(ll) = p@-DIs —ti-1), s € [1-1, 1]
This polynomial satisfies (4.7) by x = 0 and the condition

sup |<p’<s>|<hi, i=n—1 4.8)
[

n_1<s<t
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Ifj#1,j=1,...,2N thent ¢ (t;_1,t;],y € CP[tj_1, t;] and there exists a polynomial ¢ of degree at mostg — 1,
g = max{2, p}, which satisfies the conditions (4.2) and (4.3). In particular, it follows from (4.3) for u = 0 that
max_[7(s) = @)|<chf sup P ()] (4.9)
1j—1 <SS tj—1<s<tj

For a function ¢ € Sfio) (Ily) C Sﬁ? ) (IIn) (g = max{2, p} <m), determined in such a way as above, we get from
(4.3) and (4.7) the following estimates:

max max sup oW (s)|<e, i€{0,....,n—2), (4.10)
n=0,...m—1 j=1,....2N tj_1<s<tj
max s)|<ec, max su '$H<e, i=n—1. 4.11
Jmax le@lse,  max P [AQIES (4.11)

Further, it follows from (4.7) and (4.9) that for the first integral on right-hand side of (4.6) we have

b rAi
[ [F52 -00 ] 0= 2no0 e
0 ot

2Ny
= / [7(5) — @()](v — 2y v)(s) ds
j=1“t-1

2N
<c h;’—}- Z hj-)-H lv—2nVco, t€—1,t1], [=1,...,2N.
J=L1j#l

This together withO <h; =t; —t; 1 <br/(2N), j=1,...,2N,v € C4%-Y(0, b) and Lemma 2.2 yields

broiGg,s) P m
sup ——— —(s) | (v —2PNV)(s)ds| <cN™Y if r> , r>=1, (4.12)
0<t<b1J0 or! 1—v
where g =m + p=m +min{m,n —i},i € {0,...,n —1}.
Now we restrict our attention to the last integral in (4.6). Since 2y is determined by (2.6), ¢ € S,(,?)(H ~N), the
quadrature rule (2.2) is exact for all polynomials of degree g; and ¢ Zyv isineachinterval [t;_1,;] (j=1,...,2N)

a polynomial of degree at most ¢; — 1, we have

b
/0 @) (ZNv)(s)ds = (PNnv, @)y = (v, Q) y.

Thus,
b 2N tj M
/0 @(s)(v — Pyv)(s)ds = Z |:/ v(s)p(s)ds — hj Z wkv(tjk)(ﬁ(tjk):|
j=1 L7t k=1
or
b 2N
/0 o(s)(v — Pnv)(s)ds = Z E;, (4.13)
j=1
where
tj M
Ej =/ Y(s)ds —hy Y wih(tie).  j=1.....2N. Y =vep. (4.14)
fj-1 k=1

Next we will estimate E;, j =1, ..., 2N. First we consider the case where i € {0,...,n —2}.
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Since v € C97(0, b), the function Y (s) = v(s)@(s) is g; times continuously differentiable in each interval (¢;_1, ;),
j=1,...,2N, and

m—1

, qi .
Yl ()= ( ’) V4 ()W (s), s e(tj-1,t;), j=1,...,2N.
u

=0

This together with (1.3) and (4.10) yields

1 if gi<1l—v,

9 ()| < § 1+ [log o) if gi=1—v, (4.15)
o) i g > 1,

wheres € (tj_1,t;), j=1,...,2N, o(s) =min{s, b — s} and c is a positive constant not depending on jand ¢ € (0, b).

Using in (4.14) a change of variables s = ;1 + hjx we get

1 M
Ej=h; [/0 g(x)dx—zwkg(nk)] j=1,...,2N,

k=1

where g(x) =y/(tj—1 + hjx) =y(s). For j =2,...,2N — 1, we have g € C%]0, 1] and by a Taylor’s expansion

qi—1
1 1 * 1 (o
HOEDS ng(ow MP—Ty /0 (x — O g (& de, x€]0,1],
u=0 " ' '
we obtain
qi—1 1 1 M
Ej=h; Z —'g(“) 0) / xMdx — Z wknf
u=o H 0 k=1

L flfx — 59— 1,@) gy dédyx — . /nk — 51,45 q
+(qi—1)!|:0 O(x QN g (9 dcdx ];wko (g — T g 1(OHd .

Since the quadrature rule (2.2) is exact for polynomials of degree at most ¢; — 1 and g\ (x) = h?.” 1//(‘1" )(s), we can
present £ in the form

Ej=hjf01r(g*)g<qi>(5)d§=hji“f0]r(f)wm(rj_l+hj§)d5, j=2,...,2N —1, (4.16)
where
reo=—1 [fl(x BV f)i’;‘l] .
T @—=DhJo =1
For j=2,..., N wehave o(tj) =tjand t;_| <t; <2"t;—1. As maxg< < [T'($)|<c, then it follows from (4.16)
and (4.15) that, for j =2,..., N,
1 if gi<1—v,
[Ejl<ch™ 3 1+ [log 1] if gi=1—, (4.17)
o if gi>1—v,

J
with a constant ¢ which is independent of j and ¢ € (0, b). Actually, (4.17) is valid for j = 1, also.
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Indeed, using in (4.14) a Taylor expansion

gi—1 3
1 1 s
Yis) =Y =) — )t + —f (s — D% YU (r)ydr, s €0,
1=0 :u' (CII - 1)' 1
we obtain
1 1 s M ik
El=— / / (s — D% YU (tydrds — by Y wk/ (tx — %Y (ryde | (4.18)
(‘]i - 1)' 0 n k=1 141
With the help of (4.15) we get
thi if gg<1—v,
S
sup / (s — % W@ (ryde| <c {1l A+ [log t]) if gi=1—,
O<s<t IV

1 if gi>1—v.

This together with (4.18) and #; = h yields (4.17) for j = 1.

Further, we have

b= PN ochimi <N 1N (4.19)
I=5 N/ j=1j ]—1\2,/ » J=1 .0 V. .

For r(2 —v) > g; > 1 — v it follows from (4.17) and (4.19) that

N N N

} : i+1 1—v—g; —r(2— g(2=V)—g; — —a:
|E1|<C§ h‘]]t tj q’§C1N r(2—v) E Jr(2 V)—qi 1<C2N qi

j=I j=1 j=1

For ¢; <1 — v we obtain that Zj’v=1 |Ej|<cN~9% if r>1. In a similar way we get that Z?ZN+1|EJ'| <cN™ Y for
r(2—v)>gq;>1—vandforg; <1 —v,r>1.Thus, due to (4.13),

b 2N .
’/ P(s)(v — Zyv)(s)ds| < D |Ej|<eN~4 if r> (LIS (4.20)
0 st 2—v
where i € {0, ...,n — 2} and c is a constant not depending on ¢ € (0, b). Actually, (4.20) holds for i =n — 1 also.

Indeed, leti =n — 1. Thenq; =m + 1, p =min{m,n — i} = 1 and ¢ is a linear polynomial on every subinterval
s € (tj-1,tj), j=1,...,2N. Therefore,

Y () = v (9)p(s) + (m + D™ ()'(s), s € (tj—1,1)), j=1,...,2N.
Ift € (-1, ;], then it follows from (4.8) and (4.11) that

WD @) <™ )+ B ™ N, s € (-1, 1),

WD )<+ @1, s € @it j#EL j=1,....2N.

Thus, if j #1, j =1,..., N, then estimates (4.15) and (4.17) are valid withi =n — land g,—1 =m + 1. If j =1,
2<I< N and m + 1 > 2 — v, then on the basis of (4.16) and (1.3) we obtain the estimate

2, —v— 1, 1—v—
|E1|§C(h;"+ tl v m+h;"+ tl v m).
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In a similar way as above we can show that the last estimate is valid for [ = 1, also. Hence, due to (4.19), we get for
rQ—v)>m+1>2—vand 1 <I<N, that

N N

. m+2 —v—m m+1 1—v—m
Y IEjI<c | Y R 4 ny
j=1 j=1

N
<c N—r(2—v) Z jr(2—v)—m—2 + N—r(2—v)lr(2—v)—m—1 <6‘2N_m_1.
j=1

Ift{m+1=2—v,r>1}or{m+1<2—v,r>1}, then we get also that Zy=1|Ej|<cN_m_l. Due to symmetry of the

grid (2.1), we obtain the estimate Z?Z NatlEjIScN —m—1 provided thatr > (m+1)/(2—v), r > 1. These observations

yield (4.20) fori =n — 1 (gy—1 =m + 1).
This completes the proof of Lemma 4.2 since (4.5) is a consequence of (4.6), (4.12) and (4.20). O

Now it is easy to prove our main result about the convergence of the discrete Galerkin method.

Theorem 4.1. Let the conditions of Lemmas 1.1 and 2.1 be fulfilled and let nodes (2.5) with grid points (2.1) be used.
Assume in addition that f,a; € C?V(0,b), K; € W9V (A),i =0, ..., ny, and that the quadrature rule (2.2) is exact
for all polynomials of degree g — 1, where ¢ = m + min{m, n} and v < 1.

Then the statements of Theorem 3.1 are valid and for N > Ny the following error estimate holds:

max [« = Jiom) oo <eN™% ifr>max|——) L U > 421)
0<)<i / 1—v' 2—v

Here u is the solution of (1.1), (1.2), vy is the solution of (3.9), J; is defined by (3.4),i =no,...,n — 1, g =m +
min{m, n — i} and c is a positive constant which is independent of N.

Proof. From (3.17) and (3.6) we obtain for j =0, ...,n — 1 that

no
1D — Jjom) oo <ITj (0 = Zy0)lloo + ¢ Y I1Tu(0 = ZyV) oo N = No.
=0

Due to Lemma 1.1, v € C47(0, b). Since ¢; <q,i =0, ...,n — 1, estimate (4.21) follows from Lemma 4.2. [J
5. Numerical experiments

Let us consider the following boundary value problem:

1
M(;):/ It — s 2u(s)ds + (1), t€l0,1], 5.1
0

u(0) =u(l)=0. (5.2)
The forcing function f'is selected so that
u@) =r*+1-1°? -1

is the exact solution. Actually, this is a problem of form (1.1), (1.2), where n=2,n0=0,b=1, ag=0, Ko (t, s)=|t —s]| —1/2
and f (1) = —g(t) — g(1 — ) with

5 1 5 1 23
g(t) = Rnﬁ + ﬁ(s +10t +1529)/1—1 + Et3 In ;(2 —t142J/1=1)— Z“/;‘

It is easy to check that Ky € W™V (A) and f € C™"(0, 1) with v = % and arbitrary m € N.
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Table 1
Resultsin the case 17, = 0,17, = 1, w; =wp = %

r=1 r=14 r=2 r=3
4 19E -3 4.37 1.7E -3 443 2.5E -3 3.89 44E -3 3.43
4.5E —4 4.26 4.1E — 4 4.17 6.2E — 4 3.95 1.2E-3 3.78
16 1.IE -4 4.19 1.0E — 4 4.07 1.6E — 4 3.99 3.0E -4 3.93
32 2.6E -5 4.14 25E -5 4.02 39E -5 4.00 7.5E =5 3.98
64 6.4E — 6 4.10 6.3E — 6 4.01 9.8E — 6 4.00 1.9E -5 4.00
r=1 r=14 r=2 r=3
oW W & & W o
4 3.0E -2 2.63 1.8E —2 3.46 14E -2 3.92 1.8E —2 3.65
1.IE -2 2.70 5.0E -3 3.58 34E -3 3.98 47E -3 3.89
16 4.0E -3 2.74 14E -3 3.65 8.6E — 4 3.99 1.2E-3 3.97
32 14E -3 2.77 3.7E -4 3.71 22E -4 4.00 3.0E -4 3.99
64 52E—4 2.79 9.8E -5 3.74 54E -5 4.00 74E -5 4.00
r=1 r=2 r=4 r=>5
N ey oy ey oy ey oy ey oy
4 0.33 1.40 0.161 1.97 9.2E-2 3.27 13E—1 2.93
0.23 1.41 0.081 1.98 27E -2 3.35 39E -2 3.24
16 0.16 1.41 0.041 1.99 7.8E -3 3.52 1.2E -2 3.41
32 0.12 1.41 0.020 2.00 2.1E-3 3.69 32E-3 3.61
64 0.08 1.41 0.010 2.00 5.5E -4 3.82 8.5E —4 3.77

Problem (5.1), (5.2) is solved numerically by discrete Galerkin method (3.8), (3.10) in the case m = 2. An approx-
imation vy € Séo)(HN) to v =u" is presented in the form vy = Z?Zocj ¢ j where @, ..., @, are the linear basic

splines on the grid [Ty with nodes (2.1) by b=1: ¢, € S (IIy), ¢ (tj) =1 and ¢ (1) =0if i # j, i, j=0,...,2N.
We take in (3.8) ¢ = ¢;,i =0, ..., 2N, and so we get for the coefficients cj, j =0....,2N, asystem of 2N + 1 linear

2) 0)
N N

algebraic equations. Having determined the approximation u 5’ = vy to u”, the approximations u’ = Jovy to u and

u%) = Jivy to u’ are found by formula (3.4) where b = 1 and

t(s—1) fort<s,
G(t,s):{

(t—1)s fort>s.

0 54(12)

. . . . )
Since vy is a linear spline, u 5, N

(IIn) is a cubic spline and u,,” € S;l) (IIy) is a quadratic spline.

In Tables 1 and 2 some results for different values of the parameters N and r are presented. The quantities 81(\3)
(i =0, 1, 2) are the approximate values of the norms [|lu®) — ug\',) lloo (i =0, 1,2), calculated as follows:
@ _ @) (@)
&y = max max |u"(tix) —uy (Tip)l,
N T 12N k=0,..‘,10| () = uy (@]

wherei =0, 1,2 and

k
k=t g~ o). k=0...10; j=1.... 2N,

with the grid points {¢;}, defined by the formula (2.1) for b = 1. In Tables the ratios
(@)

. &
W="20 =012
EN

characterizing the actual convergence rate, are also presented.
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Table 2
Results in the case 7, = (3 — V3)/6, m=1—-n,w=w= %

r=1 r=14 r=2 r=3
0 0 0 0 0 (© 0 0
N 65\,) ng) 85\]) ng) sjv) QN) €§V> QEV)
4 6.2E —5 5.50 1.6E — 5 10.8 37E -5 10.8 1.2E — 4 7.0
8 1.LIE—-5 5.59 13E—-6 12.2 29E -6 12.9 I.LIE-5 10.6
16 2.0E -6 5.62 1.1IE—-17 11.8 2.0E -7 14.5 8.6E —7 13.1
32 35E—-7 5.64 1.0E — 8 11.1 1.3E -8 15.3 S9E -8 14.6
64 6.2E — 8 5.68 9.0E — 10 11.2 83E - 10 15.7 38E -9 15.7
r=1 r=14 r=2 r=3
N 85\}) 05\}) 85\}) H5\}) 8;\}) QE\}) 81(\}) QE\P
4 1.6E —3 2.81 6.1E — 4 4.20 S4E —4 6.93 14E -3 4.88
8 5.6E — 4 2.82 1.4E — 4 4.25 74E -5 7.24 22E -4 6.42
16 2.0E —4 2.82 34E -5 4.27 9.8E -6 7.58 3.1E-5 7.15
32 7.0E -5 2.82 79E -6 4.28 13E—-6 7.79 4.1E—-6 7.57
64 25E -5 2.83 1.8E — 6 4.28 1.6E — 7 7.90 53E-7 7.79
r=1 r=2 r=4 r=>5
2 2 2 2 2 2 2 2
N 85\/) QEV) ejv) ng) 85\/) QSV) ng) QEV)
4 0.41 1.42 0.193 1.98 72E -2 4.46 1.LIE—-1 4.12
8 0.29 1.42 0.097 2.00 2.1E -2 3.39 3.1E-2 3.47
16 0.21 1.42 0.048 2.00 6.1E —3 3.50 9.1E -3 3.35
32 0.15 1.41 0.024 2.00 1.6E —3 3.75 25E-3 3.67
64 0.10 1.41 0.012 2.00 4.2E —4 3.88 6.5E — 4 3.84

Table 1 shows the dependence of the convergence rate on the grid parameter r, when the trapezoidal rule (2.2) with
M=m=2,1,=0,my=1,wy=wy=11 5 is used. In this case the discrete Galerkin method coincides with the collocation
method. From Theorem 3.1 it follows that for sufficiently large N

y N2 if 1<r <4,
~ |lu” —leloo<c{ ,
N~ if r>4,

e (5.3)

. , . N732 if 1<r <4/3,
max 85\11) ~ max |[u® — ug\',)Hooéc{ h 54
i=0,1 i=0,1 N7  ifr>4/3.

Due to (5.3), the ratio Q(z) ought to be approximately 2//2 = (N/2)™"/2/N~"/2 for 1<r <4 and 4 for r >4, ie.,

(2) ~ 141 forr =1, Qﬁ) 2 for r =2 and QE\%) ~ 4 for r >4 is expected. Due to (5.4), max;—o, 1 QX,) ougth to be

approx1mate1y 23/2 ~ 2.83 for r=1and 4 for r > 1.4. As we can see in Table 1, the observed errors 81(3) and max;—o, 181(\])

are in good accordance with the theoretical estimates (5.3) and (5.4), respectively. Actually, if » = 1, then the decrease
of 85\9) is faster than it is predicted by the right-hand side of estimate (5.4). However, there is no any improvement in the
convergence rate if r is increasing and in all cases the maximal convergence rate is of order O(N ~2) as it is prescribed
by (5.3) and (5.4).

The results in Table 2 correspond to the case when the Gaussian quadrature formula (2.2) with M = m = 2,

n=@0G- «/_)/6 m=1-n=0G+ «/§)/6, wp = wy = % is used. As we can see from Table 2, the observed

errors 81(\]) lu” — vnllco are in good agreement with the theoretical estimate (5.3). They are comparable to those

in Table 1 and the use of quadrature rules of higher precision does not give any improvement in the convergence rate
of vy to u”. However, the convergence rate of J; vy and especially of Jovy is much better in this case (compared with
Table 1). Since the Gaussian quadrature formula with two Gaussian points #; and 7, is exact for polynomials up to
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the degree 2M — 1 = 3, it follows from Theorem 4.1 that for > 4 and for sufficiently large N
e\ ~ llu — Jounloo <cN ™4, ey ~ Jlu' — Jjoylloo <eN T2 (5.5)

Thus, for r >4 the ratios 958) and QE\}) ought to be approximately 2* = 16 and 23 = 8, respectively. From Table 2
we see that such convergence rates occur already by r = 2. By larger values of r the convergence rate is the same:
81(\(,)) =O(N~* and 85\}) =0O(N73), as prescribed by (5.5). However, the corresponding convergence rate is achieved
for smaller value of the parameter r than predicted by Theorem 4.1. The question regarding the optimal value of r in
estimate (4.21) will be discussed elsewhere.

We finish with the remark that nearly the same convergence rates as in Table 2 will take place when instead of the
two point Gaussian quadrature the three point Gaussian quadrature or the Simpson’s rule is used.
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