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Discrete Galerkin method for Fredholm integro-differential
equations with weakly singular kernels�
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Abstract

Approximations to a solution and its derivatives of a boundary value problem of an nth order linear Fredholm integro-differential
equation with weakly singular or other nonsmooth kernels are determined. These approximations are piecewise polynomial functions
on special graded grids. For their finding a discrete Galerkin method and an integral equation reformulation of the boundary value
problem are used. Optimal global convergence estimates are derived and an improvement of the convergence rate of the method for
a special choice of parameters is obtained. To illustrate the theoretical results a collection of numerical results of a test problem is
presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let R=(−∞, ∞) and N={1, 2, . . .}. In the present paper we study the convergence behaviour of a discrete Galerkin
method for the numerical solution of boundary value problems of the form

u(n)(t) =
n0∑
i=0

ai(t)u
(i)(t) +

n0∑
i=0

∫ b

0
Ki(t, s)u

(i)(s) ds + f (t), 0� t �b, b > 0, (1.1)

n−1∑
i=0

[�ij u
(i)(0) + �ij u

(i)(b)] = 0, j = 1, . . . , n, (1.2)

where n ∈ N, 0�n0 �n − 1, �ij , �ij ∈ R, i = 0, 1, . . . , n − 1; j = 1, . . . , n. We assume that ai, f ∈ Cm,�(0, b),
Ki ∈ Wm,�(�), i = 0, . . . , n0, m ∈ N, � ∈ R, −∞ < � < 1.
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The set Cm,�(0, b), with m ∈ N, −∞ < � < 1, is defined as the collection of all continuous functions u : [0, b] → R

which are m times continuously differentiable in (0, b) and such that for all t ∈ (0, b) and i = 1, . . . , m the following
estimate holds:

|u(i)(t)|�c

⎧⎪⎨
⎪⎩

1 if i < 1 − �,

1 + | log �(t)| if i = 1 − �,

�(t)1−�−i if i > 1 − �.

(1.3)

Here c = c(u) is a positive constant and

�(t) = min{t, b − t} (0 < t < b)

is the distance from t ∈ (0, b) to the boundary of the interval (0, b).
Note that Cm[0, b], the set of m times (m�1) continuously differentiable functions u : [0, b] → R, belongs to

Cm,�(0, b) for arbitrary � < 1. Conversely, if u ∈ Cm,�(0, b) and � < 1 − k, k = 1, . . . , m, then the derivative u(k) is
bounded on (0, b) and the derivatives u′, . . . , u(k−1) of u can be extended so that u ∈ Ck−1[0, b]. Here and below by
C0[0, b] ≡ C[0, b] we denote the Banach space of continuous functions u : [0, b] → R equipped with the usual norm
‖u‖∞ = max0� t �b|u(t)|.

The set Wm,�(�), with m ∈ N, −∞ < � < 1,

� = {(t, s) : 0� t �b, 0�s�b, t 	= s}, (1.4)

consists of all m times continuously differentiable functions K : � → R satisfying for all (t, s) ∈ � and all nonnegative
integers i and j such that i + j �m the condition

∣∣∣∣∣
(

�

�t

)i( �

�t
+ �

�s

)j

K(t, s)

∣∣∣∣∣ �c

⎧⎪⎨
⎪⎩

1 if � + i < 0,

1 + | log |t − s‖ if � + i = 0,

|t − s|−�−i if � + i > 0,

(1.5)

where c = c(K) is a positive constant.
It follows from (1.5) that if K ∈ Wm,�(�) with some 0�� < 1, then K(t, s) may possess a weak singularity at t = s;

if � < 0, then K(t, s) is bounded on � but its derivatives may be singular as s → t . Most important examples of weakly
singular kernels that belongs to Wm,�(�) are given by the formula

K�,�(t, s) = K1(t, s)|t − s|−�(log |t − s|)� + K2(t, s),

where K1 and K2 are some m times continuously differentiable functions on [0, b] × [0, b], 0�� < 1, 0�� < ∞,
� + � 	= 0. Clearly, K�,0 ∈ Wm,�(�) and K�,� ∈ Wm,�+�(�) for some 0 < � < 1 − �.

The existence and regularity of the solution of problem (1.1), (1.2) is described in the following lemma proved
in [12].

Lemma 1.1. Let n ∈ N, �ij , �ij ∈ R, i = 0, . . . , n − 1; j = 1, . . . , n. Assume that f, ai ∈ Cm,�(0, b), Ki ∈ Wm,�(�),
i = 0, . . . , n0, 0�n0 �n− 1, m ∈ N, −∞ < � < 1. Moreover, assume that problem (1.1), (1.2) with f = 0 has only the
trivial solution u = 0 and from all solutions of the equation u(n)(t) = 0, 0� t �b, only u = 0 satisfies conditions (1.2).

Then problem (1.1), (1.2) possesses a unique solution u ∈ Cm+n,�−n(0, b) and for its derivatives u′, u′′, . . . , u(n)

we have that u(i) ∈ Cm+n−i,�−n+i (0, b), i = 1, . . . , n.

Thus, under the conditions of Lemma 1.1 the higher-order derivatives of the solution of problem (1.1), (1.2) may be
unbounded near the boundary of the interval (0, b). This complicates the construction of high-order methods for the
numerical solution of problem (1.1), (1.2). We refer here to [11,12] where a discussion of the optimal (global and local)
order of convergence of piecewise polynomial collocation methods on graded grids for solving (1.1), (1.2) in case of
nonsmooth input data is given. Similar results may also be found in [3–5,13–15].

In the present paper we will use for the solution of problem (1.1), (1.2) a discretized version of the Galerkin
method that in case of smooth solutions is studied in [7–9], see also [1,2,6]. However, if we allow weakly singular
kernels Ki ∈ Wm,�(�), i = 0, . . . , n0, then the resulting solution to (1.1), (1.2) is typically nonsmooth on the closed
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interval [0, b] (even if f, ai ∈ C∞[0, b], i = 0, . . . , n0) and the results of [7–9] cannot be applied. In order to construct
a high-order discrete Galerkin method for solving (1.1), (1.2) we shall use as in [11,12] a special graded grid reflecting
the possible singular behaviour of the exact solution. Actually, this method exploits a discretized version of an inner
product which is formed from the standard inner product of the space L2(0, b) by dividing [0, b] into subintervals and
by substituting on each subinterval the integral with a sum on the basis of a fixed quadrature rule.

Note also that such a discrete Galerkin method is close related to the collocation method considered in [12] and in a
special case these methods coincide. These two methods have nearly the same cost. However, the main advantage of the
discrete Galerkin method over the collocation method is that in the first case we find an approximation to the derivative
u(n) of the solution u of (1.1), (1.2) as a continuous spline but in the second case usually as a discontinuous spline.
Therefore, for the calculation of approximate solutions with the same accuracy in the case of the discrete Galerkin
method it is necessary to solve smaller resulting systems of algebraic equations as in the case of the collocation method.

Section 2 below provides necessary background material. In particular, in Lemma 2.1 some error estimates for a
discrete projection of a function in Cm,�(0, b) on a graded grid are given. With the help of these estimates in Sections
3 and 4 the convergence behaviour of the discrete Galerkin method is analysed. The main results are formulated in
Theorems 3.1 and 4.1. In Section 5 these results are verified by some numerical examples.

2. Discrete orthogonal projection

For N ∈ N, let

�N = {t0, . . . , t2N : 0 = t0 < t1 < · · · < t2N = b}
be a partition (a graded grid) of the interval [0, b] with the grid points

tj = b

2

(
j

N

)r

, j = 0, 1, . . . , N ,

tN+j = b − tN−j , j = 1, . . . , N , (2.1)

where r ∈ R, r �1. If r = 1, then the grid points (2.1) are distributed uniformly; for r > 1 the points (2.1) are more
densely clustered near the endpoints of the interval [0, b].

For given integers m�2 and 0�d �m − 2, let S
(d)
m (�N) be the spline space of piecewise polynomial functions on

the grid �N :

S(d)
m (�N) = {v ∈ Cd [0, b] : v|[tj−1,tj ] ∈ 	m−1, j = 1, . . . , 2N}.

Here v|[tj−1,tj ] is the restriction of v onto the subinterval [tj−1, tj ] and 	m−1 denotes the set of polynomials of degree
not exceeding m − 1.

Let ∫ 1

0
g(x) dx ∼

M∑
k=1

wkg(
k) (2.2)

be a basic quadrature rule with weights wk > 0, k = 1, . . . , M , and nodes

0�
1 < · · · < 
M �1. (2.3)

Denote

(�, �)N =
2N∑
j=1

hj

M∑
k=1

wk�(tjk)�(tjk), �, � ∈ C[0, b], (2.4)

where hj = tj − tj−1 > 0 and

tjk = tj−1 + 
khj , k = 1, . . . , M; j = 1, . . . , 2N . (2.5)
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If M �m�2, then (�, �)N is an inner product on S
(0)
m (�N), see [10]. We can regard it as an approximation to the

standard inner product of the space L2(0, b).
Further, for any N ∈ N the discrete inner product (2.4) induces a discrete orthogonal projection operator PN :

C[0, b] → S
(0)
m (�N) defined by

PNv ∈ S(0)
m (�N), (PNv, �)N = (v, �)N , v ∈ C[0, b], ∀� ∈ S(0)

m (�N). (2.6)

From [10] we get the following result about the uniform boundness of PN .

Lemma 2.1. Let (2.2) be a quadrature rule with some weights wk > 0, k = 1, . . . , M , and nodes (2.3). Let PN :
C[0, b] → S

(0)
m (�N) be defined by the settings (2.6) where M �m�2. Finally, let one of the following three conditions

(i), (ii) or (iii) be fulfilled:

(i) the quadrature rule (2.2) is symmetric, i.e., 
k = 1 − 
M−k+1 and wk = wM−k+1, k = 1, . . . , M;
(ii) the quadrature rule (2.2) is exact for all polynomials of degree 2m − 2;

(iii) M = m and 
1 = 0, 
M = 1.

Then

‖PNv‖p �c‖v‖N,p, v ∈ C[0, b], 1�p�∞, (2.7)

with a constant c which is independent of N ∈ N and v ∈ C[0, b]. Here

‖v‖∞ = max
0� t �b

|v(t)|, ‖v‖N,∞ = max
1� j �2N

max
1�k �M

|v(tjk)|,

‖v‖p =
(∫ b

0
|v(s)|p ds

)1/p

, ‖v‖N,p =
⎛
⎝ 2N∑

j=1

hj

M∑
k=1

wk|v(tjk)|p
⎞
⎠

1/p

, 1�p < ∞.

Corollary 2.1. Let the conditions of Lemma 2.1 be fulfilled. Then

‖PNv‖∞ �c‖v‖∞,

where c is a positive constant not depending on N ∈ N and v ∈ C[0, b].

Lemma 2.2. Let the conditions of Lemma 2.1 be fulfilled and let the nodes (2.5) with grid points (2.1) be used. If
v ∈ Cm,�(0, b), m�2, � < 1, then the following estimates for the error v − PNv hold:

‖v − PNv‖∞ �c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(1−�) for 1�r <
m

1 − �
,

N−m(1 + log N) for r = m

1 − �
= 1,

N−m for r = m

1 − �
> 1 or r >

m

1 − �
, r �1,

(2.8)

‖v − PNv‖p �c 
N(m, �, r, p), (2.9)

with


N(m, �, r, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(1−�+1/p) for 1�r <
m

1 − � + 1/p
,

N−m(1 + (log N)1/p) for r = m

1 − � + 1/p
�1,

N−m for r >
m

1 − � + 1/p
, r �1.

Here 1�p < ∞ and c is a positive constant not depending on N ∈ N.
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Proof. For arbitrary vN ∈ S
(0)
m (�N) we have PNvN = vN and

v − PNv = v − vN + PN(vN − v).

This together with Lemma 2.1 yields

‖v − PNv‖p �‖v − vN‖p + c‖v − vN‖N,p, 1�p�∞. (2.10)

Further, we choose m parameters �1, . . . , �m such that 0 = �1 < · · · < �m = 1 and determine vN ∈ S
(0)
m (�N) from the

interpolation conditions

vN(xjk) = v(xjk), k = 1, . . . , m; j = 1, . . . , 2N ,

where xjk = tj−1 + �khj , k = 1, . . . , m; j = 1, . . . , 2N . Since ‖v − vN‖N,∞ �‖v − vN‖∞, estimate (2.8) for p = ∞
follows from (2.10) and Lemma 7.2 in [15]. If 1�p < ∞, then due to Lemma 7.2 in [15], ‖v−vN‖p �c
N(m, �, r, p).
Moreover, in a similar way as in [15] we can show that ‖v − vN‖N,p �c
N(m, �, r, p), 1�p < ∞. Now (2.9) follows
from (2.10). �

Remark 2.1. If M = m, 
1 = 0, 
M = 1, then PNv ∈ S
(0)
m (�N) is uniquely determined by the collocation conditions

(PNv)(tjk) = v(tjk), k = 1, . . . , m; j = 1, . . . , 2N , and Lemma 2.2 is an immediate inference from Lemma 7.2
in [15].

3. Discrete Galerkin method

First of all we consider a reformulation of problem (1.1), (1.2) based on introducing a new unknown function v=u(n).
If from all solutions of the linear homogeneous differential equation u(n) = 0 only u = 0 satisfies conditions (1.2), then
the nonhomogeneous equation

u(n)(t) = v(t), t ∈ [0, b], v ∈ C[0, b], (3.1)

with boundary conditions (1.2), has a unique solution

u(t) =
∫ b

0
G(t, s)v(s) ds, t ∈ [0, b], (3.2)

where G(t, s) is the Green’s function of problem (3.1), (1.2). The derivatives of the function u given by (3.2) can be
expressed in the form

u(i)(t) = (Jiv)(t), t ∈ [0, b], i = 0, . . . , n − 1, (3.3)

where

(Jiv)(t) =
∫ b

0

�iG(t, s)

�t i
v(s) ds, t ∈ [0, b], i = 0, . . . , n − 1. (3.4)

Since the general solution of equation u(n)(t) = 0 is an arbitrary polynomial of degree n − 1, the Green’s function
G(t, s) for (3.1), (1.2) can be expressed both for t < s and for t > s as the polynomial at most of degree n − 1 with
respect to t and s. Moreover, �iG(t, s)/�t i , i = 0, . . . , n − 2, the derivatives of G(t, s) with respect to t up to the order
n − 2, are continuous on �̄ = [0, b] × [0, b]. Also �n−1G(t, s)/�tn−1 is continuous and bounded in the region � (see
(1.4)), but it has a discontinuity at t = s. From this it follows that the operators Ji , i = 0, . . . , n − 1, defined by (3.4),
are linear and compact as operators from C[0, b] into C[0, b].

Using u(n) = v and (3.3), problem (1.1), (1.2) may be rewritten as a linear operator equation of the second kind with
respect to v:

v = T v + f , (3.5)
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where

T =
n0∑
i=0

(AiJi + TiJi), (3.6)

(Aiv)(t) = ai(t)v(t), (Tiv)(t) =
∫ b

0
Ki(t, s)v(s) ds, t ∈ [0, b], i = 0, . . . , n0. (3.7)

Further, we look for an approximation vN to the solution v of Eq. (3.5) in S
(0)
m (�N), m, N ∈ N, m�2. We determine

vN by the discrete Galerkin method (see, e.g., [2,7]) as follows:

find vN ∈ S(0)
m (�N) such that (vN − T vN − f, �)N = 0 ∀� ∈ S(0)

m (�N). (3.8)

Method (3.8) can be presented equivalently in the following form: find vN such that

vN = PNT vN + PNf , (3.9)

where PN is defined by (2.6).
Having determined the approximation vN for v =u(n), we determine the approximation u

(0)
N for the solution u=u(0)

of problem (1.1), (1.2) and the approximations u
(1)
N , . . . , u

(n−1)
N for the corresponding derivatives u(1), . . . , u(n−1) of u

by the formulas

u
(i)
N = JivN , i = 0, . . . , n − 1. (3.10)

We will call both (3.8), (3.10) and (3.9), (3.10) as a discrete Galerkin method for the numerical solution of problem
(1.1), (1.2).

Remark 3.1. If vN ∈ S
(0)
m (�N) then (see Remark 4.1 in [12])

u
(i)
N = JivN ∈ S

(n−i)
m+n−i (�N) ⊂ Cn−i[0, b], i = 0, . . . , n − 1.

Remark 3.2. If M = m, 
1 = 0, 
M = 1 then the discrete Galerkin method (3.8), (3.10) or (3.9), (3.10) coincides with
the collocation method considered in [12].

In the sequel, for given Banach spaces E and F we denote by L(E, F ) the Banach space of linear bounded operators
A : E → F with the norm ‖A‖L(E,F ) = sup{‖Au‖F : u ∈ E, ‖x‖E �1}. By c, c1 and c2 we will denote positive
constants that are independent of N and may have different values in different occurrences.

For the convergence of the discrete Galerkin method the following result is valid.

Theorem 3.1. Let the conditions of Lemmas 1.1 and 2.1 be fulfilled and let nodes (2.5) with grid points (2.1) be used.
Then there exists an integer N0 ∈ N such that, for N �N0, Eq. (3.9) possesses a unique solution vN ∈ S

(0)
m (�N) and

the following error estimates hold:

‖u(n) − vN‖∞ �c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(1−�) for 1�r <
m

1 − �
,

N−m(1 + log N) for r = m

1 − �
= 1,

N−m for r = m

1 − �
> 1 or r >

m

1 − �
, r �1,

(3.11)

max
0� i �n−1

‖u(i) − JivN‖∞ �c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(2−�) for 1�r <
m

2 − �
,

N−m(1 + log N) for r = m

2 − �
�1,

N−m for r >
m

2 − �
, r �1.

(3.12)
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Here c is a positive constant which is independent of N, u=u(0) is the solution of problem (1.1), (1.2) and Ji is defined
by formula (3.4).

Proof. Due to the assumptions of Lemma 1.1, the operators Ai and Ti , i = 0, . . . , n0, defined by (3.7), are linear and
bounded as operators from C[0, b] into C[0, b]. Now it follows from (3.6) that T is linear and compact as an operator
from C[0, b] into C[0, b]. On the basis of Lemmas 2.1 and 2.2 we obtain that (cf. [5])

‖T − PNT ‖L(C[0,b],C[0,b]) → 0 as N → ∞. (3.13)

Since equation v = T v has in C[0, b] only the trivial solution v = 0, there exists an inverse operator (I − T )−1 ∈
L(C[0, b], C[0, b]) where I is the identity mapping. This together with (3.13) yields that there exists a number N0 ∈ N

such that for N �N0 the operator (I − PNT ) is invertible in C[0, b] and

‖(I − PNT )−1‖L(C[0,b],C[0,b]) �c, N �N0. (3.14)

Thus, since f ∈ C[0, b], Eq. (3.9) possesses a unique solution vN ∈ C[0, b] for N �N0. Actually, vN ∈ S
(0)
m (�N). It

follows from (3.5) and (3.9) that

(I − PNT )(v − vN) = v − PNv. (3.15)

On the basis of (3.14) we obtain from (3.15) that

‖v − vN‖∞ �c‖v − PNv‖∞, N �N0. (3.16)

Due to Lemma 1.1, v = u(n) ∈ Cm,�(0, b). Now (3.16) and (2.8) yield estimate (3.11).
Further, since

(I − PNT )−1 = I + (I − PNT )−1PNT , N �N0,

we get from (3.15) and (3.3) that, for N �N0,

u(i) − JivN = Ji(v − PNv) + Ji(I − PNT )−1PNT (v − PNv), i = 0, . . . , n − 1. (3.17)

Using (3.4), (3.6), (3.14) and Corollary 2.1, we obtain from (3.17) that

‖u(i) − JivN‖∞ �c‖v − PNv‖1, N �N0, i = 0, . . . , n − 1.

This together with v ∈ Cm,�(0, b) and (2.9) yields estimate (3.12). �

4. Higher-order estimates

It follows from Theorem 3.1 that for method (3.8), (3.10) a convergence of order O(N−m) can be expected, using
sufficiently large values of the grid parameter r. With respect to the underlying quadrature rule (2.2) it is sufficient to
require only the symmetricity of it (even it is not necessary that the corresponding quadrature sum is an approximation
of the integral). Actually, under stronger conditions on the quadrature rule (2.2) it is possible to improve the covergence
rate of method (3.8), (3.10). In particular, if we suppose that the quadrature rule (2.2) is exact for all polynomials of
degree 2m − 1 and the derivatives up to a certain order of the solution u of problem (1.1), (1.2) are bounded on the
interval [0, b], then it follows from the results of the paper [7] that for all values of r �1 (thus also for the uniform grid)
and for sufficiently large N we can get the following error estimate:

max
0� j � i

‖u(j) − JjvN‖∞ �cN−m−min{m,n−i}, i = n0, . . . , n − 1. (4.1)

In our case the derivatives of the solution of problem (1.1), (1.2) are typically unbounded on the interval [0, b] (see
Lemma 1.1). Therefore, in general, the results of [7] cannot be applied. Below we show (see Theorem 4.1) that estimate
(4.1) is valid also in case of integro-differential equations with weakly singular kernels for sufficienly large values of
r. This result we will obtain from (3.17) on the basis of an estimate for ‖Ji(v − PNv‖∞, i = 0, . . . , n − 1, proved in
Lemma 4.2. First of all we present in a suitable for us form an estimate for the error of a polynomial interpolation.
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Lemma 4.1. Let [tj−1, tj ] ⊂ [0, b], hj = tj − tj−1 > 0, � ∈ Cp−1[tj−1, tj ], �(p) ∈ L∞(tj−1, tj ), p ∈ N. Then there
exists a polynomial � of degree at most q − 1 such that

�(tj−1) = �(tj−1), �(tj ) = �(tj ), (4.2)

max
tj−1 � s � tj

|�(�)(s) − �(�)(s)|�ch
p−�
j sup

tj−1<s<tj

|�(p)(s)|, � = 0, . . . , q − 1, (4.3)

where q = max{2, p} and the constant c is independent of hj and tj .

Proof. Let the function �(s) be given. Let s = tj−1 + hjx ∈ [tj−1, tj ] and denote

g(x) = �(tj−1 + hjx) = �(s), x ∈ [0, 1].
Taking q = max{2, p} parameters 0 = �1 < �2 < · · · < �q = 1, we construct the Lagrange’s interpolation polynomial∑q

k=1�k(x)g(�k) for g(x), with �k(x), k=1, . . . , q, the polynomials of degree q−1 such that �k(�k)=1 and �k(�i )=0
if i 	= k, i = 1, . . . , q. With the help of the Taylor formula

g(x) =
p−1∑
i=0

1

i!g
(i)(0)xi + 1

(p − 1)!
∫ x

0
(x − �)p−1g(p)(�) d�, x ∈ [0, 1]

we observe that

g(x) −
q∑

k=1

�k(x)g(�k) =
p−1∑
i=0

1

i!g
(i)(0)

[
xi −

q∑
k=1

�k(x)�i
k

]

+ 1

(p − 1)!
[∫ x

0
(x − �)p−1g(p)(�) d�

−
q∑

k=1

∫ �k

0
�k(x)(�k − �)p−1g(p)(�) d�

]
, x ∈ [0, 1].

Since the polynomial
∑q

k=1�k(x)g(�k) coincides with the function g(x) if g is a polynomial of degree at most q − 1,
we get

g(x) −
q∑

k=1

�k(x)g(�k) =
∫ 1

0
�(x, �)g(p)(�) d�, x ∈ [0, 1], (4.4)

where �(x, �) is the Peano kernel (see, e.g., [3]):

�(x, �) = 1

(p − 1)!

[
(x − �)

p−1
+ −

q∑
k=1

�k(x)(�k − �)
p−1
+

]
,

(x − �)
p−1
+ =

{
(x − �)p−1 if x��,

0 if x < �.

We take

�(s) =
q∑

k=1

�k

(
s − tj−1

hj

)
�(tj−1 + hj�k), s ∈ [tj−1, tj ].

Clearly, �(s) is a polynomial of degree at most q − 1 satisfying the conditions (4.2). Because g(p)(x) = h
p
j �(p)(s) we

obtain from (4.4) that

�(s) − �(s) = h
p
j

∫ 1

0
�

(
s − tj−1

hj

, �

)
�(p)(tj−1 + hj�) d�, s ∈ [tj−1, tj ].
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This yields (4.3) for p�2 and for p = 1, � = 0, since

sup
(x, �)∈(0,1)×(0,1)

∣∣∣∣���(x, �)

�x�

∣∣∣∣ �c, � = 0, . . . , p − 1.

If p = 1 and � = 1 then we can immediately to check that (4.3) also holds. �

Lemma 4.2. Let the conditions of Lemma 2.1 be fulfilled and let v ∈ Cqi,�(0, b), where qi = m + min{m, n − i} with
some i ∈ {0, . . . , n − 1} and � < 1. Moreover, assume that from all polynomials u of degree n − 1 only u = 0 satisfies
conditions (1.2), quadrature rule (2.2) is exact for all polynomials of degree qi − 1 and nodes (2.5) with grid points
(2.1) are used where

r > max

{
m

1 − �
,

qi

2 − �

}
, r �1.

Then

‖Ji(v − PNv)‖∞ �cN−qi , (4.5)

where Ji and PN are defined, respectively, by (3.4) and (2.6) and c is a positive constant not depending on N.

Proof. Suppose that v ∈ Cqi,�(0, b). Then

[Ji(v − PNv)](t) =
∫ b

0

[
�iG(t, s)

�t i
− �(s)

]
(v − PNv)(s) ds

+
∫ b

0
�(s)(v − PNv)(s) ds, t ∈ [0, b], i ∈ {0, . . . , n − 1}, (4.6)

where G(t, s) is the Green’s function of problem (3.1), (1.2) and � ∈ S
(0)
m (�N) is generated on the basis of Lemma 4.1

in the following way. Recall that G(t, s) is both for t < s and for t > s a polynomial at most of degree n−1 with respect
to t and s, the derivatives �i+jG(t, s)/�t i�sj are continuous for (t, s) ∈ [0, b] × [0, b] if i + j �n − 2 and they have
a bounded discontinuity at t = s if i + j = n − 1.

Let us fix t ∈ (0, b) and i ∈ {0, . . . , n − 1}. We denote

�(s) = �iG(t, s)

�t i
, p = min{m, n − i}.

Note that, for simplicity of the presentation, we do not show the dependence of � (below also �) on t and i.
If t ∈ (tl−1, tl] for an l ∈ {1, . . . , 2N} and p�2 (i.e., i ∈ {0, . . . , n − 2}) then � ∈ Cp−2[tl−1, tl] and �(p−1) ∈

L∞(tl−1, tl). Due to Lemma 4.1, there exist a polynomial � at most of degree q − 2, q = max{3, p}, such that

�(tl−1) = �(tl−1), �(tl) = �(tl),

sup
tl−1<s<tl

|�(�)(s) − �(�)(s)|�ch
p−1−�
l sup

tl−1<s<tl

|�(p−1)(s)|, � = 0, . . . , q − 2. (4.7)

Here and below c is a positive constant not depending on t ∈ (0, b).
If t ∈ (tl−1, tl] and p = 1 (i.e., i = n − 1) then �(s) has a finite jump discontinuity at s = t and � ∈ L∞(tl−1, tl). The

value �(s) at s = t we determine as a right-hand limit of �(s) at t. Now we can define

�(s) = �(tl−1) + 1

hl

[�(tl) − �(tl−1)](s − tl−1), s ∈ [tl−1, tl].

This polynomial satisfies (4.7) by � = 0 and the condition

sup
tl−1<s<tl

|�′(s)|� c

hl

, i = n − 1. (4.8)
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If j 	= l, j =1, . . . , 2N , then t /∈ (tj−1, tj ], � ∈ Cp[tj−1, tj ] and there exists a polynomial � of degree at most q −1,
q = max{2, p}, which satisfies the conditions (4.2) and (4.3). In particular, it follows from (4.3) for � = 0 that

max
tj−1 � s � tj

|�(s) − �(s)|�ch
p
j sup

tj−1<s<tj

|�(p)(s)|. (4.9)

For a function � ∈ S
(0)
q (�N) ⊂ S

(0)
m (�N) (q = max{2, p}�m), determined in such a way as above, we get from

(4.3) and (4.7) the following estimates:

max
�=0,...,m−1

max
j=1,...,2N

sup
tj−1<s<tj

|�(�)(s)|�c, i ∈ {0, . . . , n − 2}, (4.10)

max
0� s �b

|�(s)|�c, max
j=1,...,2N,j 	=l

sup
tj−1<s<tj

|�′(s)|�c, i = n − 1. (4.11)

Further, it follows from (4.7) and (4.9) that for the first integral on right-hand side of (4.6) we have∣∣∣∣
∫ b

0

[
�iG(t, s)

�t i
− �(s)

]
(v − PNv)(s) ds

∣∣∣∣
=

∣∣∣∣∣∣
2N∑
j=1

∫ tj

tj−1

[�(s) − �(s)](v − PNv)(s) ds

∣∣∣∣∣∣
�c

⎛
⎝h

p
l +

2N∑
j=1,j 	=l

h
p+1
j

⎞
⎠ ‖v − PNv‖∞, t ∈ (tl−1, tl], l = 1, . . . , 2N .

This together with 0 < hj = tj − tj−1 �br/(2N), j = 1, . . . , 2N , v ∈ Cqi,�(0, b) and Lemma 2.2 yields

sup
0<t<b

∣∣∣∣
∫ b

0

[
�iG(t, s)

�t i
− �(s)

]
(v − PNv)(s) ds

∣∣∣∣ �cN−qi if r >
m

1 − �
, r �1, (4.12)

where qi = m + p = m + min{m, n − i}, i ∈ {0, . . . , n − 1}.
Now we restrict our attention to the last integral in (4.6). Since PN is determined by (2.6), � ∈ S

(0)
m (�N), the

quadrature rule (2.2) is exact for all polynomials of degree qi and � PNv is in each interval [tj−1, tj ] (j = 1, . . . , 2N)

a polynomial of degree at most qi − 1, we have∫ b

0
�(s)(PNv)(s) ds = (PNv, �)N = (v, �)N .

Thus,

∫ b

0
�(s)(v − PNv)(s) ds =

2N∑
j=1

[∫ tj

tj−1

v(s)�(s) ds − hj

M∑
k=1

wkv(tjk)�(tjk)

]

or ∫ b

0
�(s)(v − PNv)(s) ds =

2N∑
j=1

Ej , (4.13)

where

Ej =
∫ tj

tj−1

�(s) ds − hj

M∑
k=1

wk�(tjk), j = 1, . . . , 2N, � = v�. (4.14)

Next we will estimate Ej , j = 1, . . . , 2N . First we consider the case where i ∈ {0, . . . , n − 2}.
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Since v ∈ Cqi,�(0, b), the function �(s)=v(s)�(s) is qi times continuously differentiable in each interval (tj−1, tj ),
j = 1, . . . , 2N , and

�(qi )(s) =
m−1∑
�=0

(
qi

�

)
v(qi−�)(s)�(�)(s), s ∈ (tj−1, tj ), j = 1, . . . , 2N .

This together with (1.3) and (4.10) yields

|�(qi )(s)|�c

⎧⎪⎨
⎪⎩

1 if qi < 1 − �,

1 + | log �(s)| if qi = 1 − �,

�(s)1−�−qi if qi > 1 − �,

(4.15)

where s ∈ (tj−1, tj ), j =1, . . . , 2N, �(s)=min{s, b− s} and c is a positive constant not depending on j and t ∈ (0, b).
Using in (4.14) a change of variables s = tj−1 + hjx we get

Ej = hj

[∫ 1

0
g(x) dx −

M∑
k=1

wkg(
k)

]
, j = 1, . . . , 2N ,

where g(x) = �(tj−1 + hjx) = �(s). For j = 2, . . . , 2N − 1, we have g ∈ Cqi [0, 1] and by a Taylor’s expansion

g(x) =
qi−1∑
�=0

1

�!g
(�)(0)x� + 1

(qi − 1)!
∫ x

0
(x − �)qi−1g(qi )(�) d�, x ∈ [0, 1],

we obtain

Ej = hj

qi−1∑
�=0

1

�!g
(�)(0)

[∫ 1

0
x� dx −

M∑
k=1

wk

�
k

]

+ hj

(qi − 1)!

[∫ 1

0

∫ x

0
(x − �)qi−1g(qi )(�) d� dx −

M∑
k=1

wk

∫ 
k

0
(
k − �)qi−1g(qi )(�) d�

]
.

Since the quadrature rule (2.2) is exact for polynomials of degree at most qi − 1 and g(qi )(x) = h
qi

j �(qi )(s), we can
present Ej in the form

Ej = hj

∫ 1

0
�(�)g(qi )(�) d� = h

qi+1
j

∫ 1

0
�(�)�(qi )(tj−1 + hj�) d�, j = 2, . . . , 2N − 1, (4.16)

where

�(�) = 1

(qi − 1)!

[∫ 1

0
(x − �)

qi−1
+ dx −

M∑
k=1

wk(
k − �)
qi−1
+

]
.

For j = 2, . . . , N we have �(tj ) = tj and tj−1 < tj �2r tj−1. As max0���1 |�(�)|�c, then it follows from (4.16)
and (4.15) that, for j = 2, . . . , N ,

|Ej |�ch
qi+1
j

⎧⎪⎪⎨
⎪⎪⎩

1 if qi < 1 − �,

1 + | log tj | if qi = 1 − �,

t
1−�−qi

j if qi > 1 − �,

(4.17)

with a constant c which is independent of j and t ∈ (0, b). Actually, (4.17) is valid for j = 1, also.
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Indeed, using in (4.14) a Taylor expansion

�(s) =
qi−1∑
�=0

1

�!�
(�)(t1)(s − t1)

� + 1

(qi − 1)!
∫ s

t1

(s − �)qi−1�(qi )(�) d�, s ∈ [0, t1],

we obtain

E1 = 1

(qi − 1)!

[∫ t1

0

∫ s

t1

(s − �)qi−1�(qi )(�) d� ds − h1

M∑
k=1

wk

∫ t1k

t1

(t1k − �)qi−1�(qi )(�) d�

]
. (4.18)

With the help of (4.15) we get

sup
0<s<t1

∣∣∣∣
∫ s

t1

(s − �)qi−1�(qi )(�) d�

∣∣∣∣ �c

⎧⎪⎨
⎪⎩

t
qi

1 if qi < 1 − �,

t
qi

1 (1 + | log t1|) if qi = 1 − �,

t1−�
1 if qi > 1 − �.

This together with (4.18) and t1 = h1 yields (4.17) for j = 1.
Further, we have

tj = b

2

(
j

N

)r

, 0 < hj = tj − tj−1 � br

2
j r−1N−r , j = 1, . . . , N . (4.19)

For r(2 − �) > qi > 1 − � it follows from (4.17) and (4.19) that

N∑
j=1

|Ej |�c

N∑
j=1

h
qi+1
j t

1−�−qi

j �c1N
−r(2−�)

N∑
j=1

j r(2−�)−qi−1 �c2N
−qi .

For qi �1 − � we obtain that
∑N

j=1 |Ej |�cN−qi if r �1. In a similar way we get that
∑2N

j=N+1|Ej |�cN−qi for
r(2 − �) > qi > 1 − � and for qi �1 − �, r �1. Thus, due to (4.13),

∣∣∣∣
∫ b

0
�(s)(v − PNv)(s) ds

∣∣∣∣ �
2N∑
j=1

|Ej |�cN−qi if r >
qi

2 − �
, r �1, (4.20)

where i ∈ {0, . . . , n − 2} and c is a constant not depending on t ∈ (0, b). Actually, (4.20) holds for i = n − 1 also.
Indeed, let i = n − 1. Then qi = m + 1, p = min{m, n − i} = 1 and � is a linear polynomial on every subinterval

s ∈ (tj−1, tj ), j = 1, . . . , 2N. Therefore,

�(m+1)(s) = v(m+1)(s)�(s) + (m + 1)v(m)(s)�′(s), s ∈ (tj−1, tj ), j = 1, . . . , 2N .

If t ∈ (tl−1, tl], then it follows from (4.8) and (4.11) that

|�(m+1)(s)|�c[|v(m+1)(s)| + h−1
l |v(m)(s)|], s ∈ (tl−1, tl),

|�(m+1)(s)|�c[|v(m+1)(s)| + |v(m)(s)|], s ∈ (tj−1, tj ), j 	= l, j = 1, . . . , 2N .

Thus, if j 	= l, j = 1, . . . , N , then estimates (4.15) and (4.17) are valid with i = n − 1 and qn−1 = m + 1. If j = l,
2� l�N and m + 1 > 2 − �, then on the basis of (4.16) and (1.3) we obtain the estimate

|El |�c(hm+2
l t−�−m

l + hm+1
l t1−�−m

l ).
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In a similar way as above we can show that the last estimate is valid for l = 1, also. Hence, due to (4.19), we get for
r(2 − �) > m + 1 > 2 − � and 1� l�N , that

N∑
j=1

|Ej |�c

⎡
⎣ N∑

j=1

hm+2
j t−�−m

j + hm+1
l t1−�−m

l

⎤
⎦

�c1

⎡
⎣N−r(2−�)

N∑
j=1

j r(2−�)−m−2 + N−r(2−�)lr(2−�)−m−1

⎤
⎦ �c2N

−m−1.

If {m+ 1 = 2 − �, r > 1} or {m+ 1 < 2 − �, r �1}, then we get also that
∑N

j=1|Ej |�cN−m−1. Due to symmetry of the

grid (2.1), we obtain the estimate
∑2N

j=N+1|Ej |�cN−m−1 provided that r > (m+1)/(2−�), r �1. These observations
yield (4.20) for i = n − 1 (qn−1 = m + 1).

This completes the proof of Lemma 4.2 since (4.5) is a consequence of (4.6), (4.12) and (4.20). �

Now it is easy to prove our main result about the convergence of the discrete Galerkin method.

Theorem 4.1. Let the conditions of Lemmas 1.1 and 2.1 be fulfilled and let nodes (2.5) with grid points (2.1) be used.
Assume in addition that f, ai ∈ Cq,�(0, b), Ki ∈ Wq,�(�), i = 0, . . . , n0, and that the quadrature rule (2.2) is exact
for all polynomials of degree q − 1, where q = m + min{m, n} and � < 1.

Then the statements of Theorem 3.1 are valid and for N �N0 the following error estimate holds:

max
0� j � i

‖u(j) − JjvN)‖∞ �cN−qi if r > max

{
m

1 − �
,

q

2 − �

}
, r �1. (4.21)

Here u is the solution of (1.1), (1.2), vN is the solution of (3.9), Jj is defined by (3.4), i = n0, . . . , n − 1, qi = m +
min{m, n − i} and c is a positive constant which is independent of N.

Proof. From (3.17) and (3.6) we obtain for j = 0, . . . , n − 1 that

‖u(j) − JjvN)‖∞ �‖Jj (v − PNv)‖∞ + c

n0∑
�=0

‖J�(v − PNv)‖∞, N �N0.

Due to Lemma 1.1, v ∈ Cq,�(0, b). Since qi �q, i = 0, . . . , n − 1, estimate (4.21) follows from Lemma 4.2. �

5. Numerical experiments

Let us consider the following boundary value problem:

u′′(t) =
∫ 1

0
|t − s|−1/2u(s) ds + f (t), t ∈ [0, 1], (5.1)

u(0) = u(1) = 0. (5.2)

The forcing function f is selected so that

u(t) = t5/2 + (1 − t)5/2 − 1

is the exact solution.Actually, this is a problem of form (1.1), (1.2), where n=2, n0=0, b=1, a0=0, K0(t, s)=|t−s|−1/2

and f (t) = −g(t) − g(1 − t) with

g(t) = 5

16
	t3 + 1

24
(8 + 10t + 15t2)

√
1 − t + 5

16
t3 ln

1

t
(2 − t + 2

√
1 − t) − 23

4

√
t .

It is easy to check that K0 ∈ Wm,�(�) and f ∈ Cm,�(0, 1) with � = 1
2 and arbitrary m ∈ N.
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Table 1
Results in the case 
1 = 0, 
2 = 1, w1 = w2 = 1

2

r = 1 r = 1.4 r = 2 r = 3

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N

4 1.9E − 3 4.37 1.7E − 3 4.43 2.5E − 3 3.89 4.4E − 3 3.43
8 4.5E − 4 4.26 4.1E − 4 4.17 6.2E − 4 3.95 1.2E − 3 3.78
16 1.1E − 4 4.19 1.0E − 4 4.07 1.6E − 4 3.99 3.0E − 4 3.93
32 2.6E − 5 4.14 2.5E − 5 4.02 3.9E − 5 4.00 7.5E − 5 3.98
64 6.4E − 6 4.10 6.3E − 6 4.01 9.8E − 6 4.00 1.9E − 5 4.00

r = 1 r = 1.4 r = 2 r = 3

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N

4 3.0E − 2 2.63 1.8E − 2 3.46 1.4E − 2 3.92 1.8E − 2 3.65
8 1.1E − 2 2.70 5.0E − 3 3.58 3.4E − 3 3.98 4.7E − 3 3.89
16 4.0E − 3 2.74 1.4E − 3 3.65 8.6E − 4 3.99 1.2E − 3 3.97
32 1.4E − 3 2.77 3.7E − 4 3.71 2.2E − 4 4.00 3.0E − 4 3.99
64 5.2E − 4 2.79 9.8E − 5 3.74 5.4E − 5 4.00 7.4E − 5 4.00

r = 1 r = 2 r = 4 r = 5

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N

4 0.33 1.40 0.161 1.97 9.2E−2 3.27 1.3E − 1 2.93
8 0.23 1.41 0.081 1.98 2.7E − 2 3.35 3.9E − 2 3.24
16 0.16 1.41 0.041 1.99 7.8E − 3 3.52 1.2E − 2 3.41
32 0.12 1.41 0.020 2.00 2.1E − 3 3.69 3.2E − 3 3.61
64 0.08 1.41 0.010 2.00 5.5E − 4 3.82 8.5E − 4 3.77

Problem (5.1), (5.2) is solved numerically by discrete Galerkin method (3.8), (3.10) in the case m = 2. An approx-
imation vN ∈ S

(0)
2 (�N) to v = u′′ is presented in the form vN = ∑2N

j=0cj�j where �0, . . . ,�2N are the linear basic

splines on the grid �N with nodes (2.1) by b=1: �j ∈ S
(0)
2 (�N), �j (tj )=1 and �j (ti)=0 if i 	= j, i, j =0, . . . , 2N .

We take in (3.8) �=�i , i = 0, . . . , 2N , and so we get for the coefficients cj , j = 0. . . . , 2N , a system of 2N + 1 linear

algebraic equations. Having determined the approximation u
(2)
N = vN to u′′, the approximations u

(0)
N = J0vN to u and

u
(1)
N = J1vN to u′ are found by formula (3.4) where b = 1 and

G(t, s) =
{

t (s − 1) for t < s,

(t − 1)s for t > s.

Since vN is a linear spline, u
(0)
N ∈ S

(2)
4 (�N) is a cubic spline and u

(1)
N ∈ S

(1)
3 (�N) is a quadratic spline.

In Tables 1 and 2 some results for different values of the parameters N and r are presented. The quantities ε
(i)
N

(i = 0, 1, 2) are the approximate values of the norms ‖u(i) − u
(i)
N ‖∞ (i = 0, 1, 2), calculated as follows:

ε
(i)
N = max

j=1,...,2N
max

k=0,...,10
|u(i)(�jk) − u

(i)
N (�jk)|,

where i = 0, 1, 2 and

�jk = tj−1 + k

10
(tj − tj−1), k = 0, . . . , 10; j = 1, . . . , 2N ,

with the grid points {tj }, defined by the formula (2.1) for b = 1. In Tables the ratios

�(i)
N = ε

(i)
N/2

ε
(i)
N

, i = 0, 1, 2,

characterizing the actual convergence rate, are also presented.
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Table 2
Results in the case 
1 = (3 − √

3)/6, 
2 = 1 − 
1, w1 = w2 = 1
2

r = 1 r = 1.4 r = 2 r = 3

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N ε
(0)
N �(0)

N

4 6.2E − 5 5.50 1.6E − 5 10.8 3.7E − 5 10.8 1.2E − 4 7.0
8 1.1E − 5 5.59 1.3E − 6 12.2 2.9E − 6 12.9 1.1E − 5 10.6
16 2.0E − 6 5.62 1.1E − 7 11.8 2.0E − 7 14.5 8.6E − 7 13.1
32 3.5E − 7 5.64 1.0E − 8 11.1 1.3E − 8 15.3 5.9E − 8 14.6
64 6.2E − 8 5.68 9.0E − 10 11.2 8.3E − 10 15.7 3.8E − 9 15.7

r = 1 r = 1.4 r = 2 r = 3

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N ε
(1)
N �(1)

N

4 1.6E − 3 2.81 6.1E − 4 4.20 5.4E − 4 6.93 1.4E − 3 4.88
8 5.6E − 4 2.82 1.4E − 4 4.25 7.4E − 5 7.24 2.2E − 4 6.42
16 2.0E − 4 2.82 3.4E − 5 4.27 9.8E − 6 7.58 3.1E − 5 7.15
32 7.0E − 5 2.82 7.9E − 6 4.28 1.3E − 6 7.79 4.1E − 6 7.57
64 2.5E − 5 2.83 1.8E − 6 4.28 1.6E − 7 7.90 5.3E − 7 7.79

r = 1 r = 2 r = 4 r = 5

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N ε
(2)
N �(2)

N

4 0.41 1.42 0.193 1.98 7.2E − 2 4.46 1.1E − 1 4.12
8 0.29 1.42 0.097 2.00 2.1E − 2 3.39 3.1E − 2 3.47
16 0.21 1.42 0.048 2.00 6.1E − 3 3.50 9.1E − 3 3.35
32 0.15 1.41 0.024 2.00 1.6E − 3 3.75 2.5E − 3 3.67
64 0.10 1.41 0.012 2.00 4.2E − 4 3.88 6.5E − 4 3.84

Table 1 shows the dependence of the convergence rate on the grid parameter r, when the trapezoidal rule (2.2) with
M =m=2, 
1 =0, 
2 =1, w1 =w2 = 1

2 is used. In this case the discrete Galerkin method coincides with the collocation
method. From Theorem 3.1 it follows that for sufficiently large N

ε
(2)
N ≈ ‖u′′ − vN‖∞ �c

{
N−r/2 if 1�r < 4,

N−2 if r �4,
(5.3)

max
i=0,1

ε
(i)
N ≈ max

i=0,1
‖u(i) − u

(i)
N ‖∞ �c

{
N−3r/2 if 1�r < 4/3,

N−2 if r > 4/3.
(5.4)

Due to (5.3), the ratio �(2)
N ought to be approximately 2r/2 = (N/2)−r/2/N−r/2 for 1�r < 4 and 4 for r �4, i.e.,

�(2)
N ≈ 1.41 for r = 1, �(2)

N ≈ 2 for r = 2 and �(2)
N ≈ 4 for r �4 is expected. Due to (5.4), maxi=0,1 �(i)

N ougth to be

approximately 23/2 ≈ 2.83 for r=1 and 4 for r �1.4.As we can see in Table 1, the observed errors ε
(2)
N and maxi=0,1ε

(i)
N

are in good accordance with the theoretical estimates (5.3) and (5.4), respectively. Actually, if r = 1, then the decrease
of ε

(0)
N is faster than it is predicted by the right-hand side of estimate (5.4). However, there is no any improvement in the

convergence rate if r is increasing and in all cases the maximal convergence rate is of order O(N−2) as it is prescribed
by (5.3) and (5.4).

The results in Table 2 correspond to the case when the Gaussian quadrature formula (2.2) with M = m = 2,

1 = (3 − √

3)/6, 
2 = 1 − 
1 = (3 + √
3)/6, w1 = w2 = 1

2 is used. As we can see from Table 2, the observed

errors ε
(2)
N ≈ ‖u′′ − vN‖∞ are in good agreement with the theoretical estimate (5.3). They are comparable to those

in Table 1 and the use of quadrature rules of higher precision does not give any improvement in the convergence rate
of vN to u′′. However, the convergence rate of J1vN and especially of J0vN is much better in this case (compared with
Table 1). Since the Gaussian quadrature formula with two Gaussian points 
1 and 
2 is exact for polynomials up to
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the degree 2M − 1 = 3, it follows from Theorem 4.1 that for r > 4 and for sufficiently large N

ε
(0)
N ≈ ‖u − J0vN‖∞ �cN−4, ε

(1)
N ≈ ‖u′ − J1vN‖∞ �cN−3. (5.5)

Thus, for r > 4 the ratios �(0)
N and �(1)

N ought to be approximately 24 = 16 and 23 = 8, respectively. From Table 2
we see that such convergence rates occur already by r = 2. By larger values of r the convergence rate is the same:
ε
(0)
N = O(N−4) and ε

(1)
N = O(N−3), as prescribed by (5.5). However, the corresponding convergence rate is achieved

for smaller value of the parameter r than predicted by Theorem 4.1. The question regarding the optimal value of r in
estimate (4.21) will be discussed elsewhere.

We finish with the remark that nearly the same convergence rates as in Table 2 will take place when instead of the
two point Gaussian quadrature the three point Gaussian quadrature or the Simpson’s rule is used.
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