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Abstract 

We illustrate the use of formal languages and relations in compact formal derivations of some 
graph algorithms. 

1. Introduction 

The transformational or calculational approach to program development has by 

now a long tradition (see [1,2,4,5,12]). In it, one starts from a (possibly nonexecutable) 

specification and transforms it into a (hopefully efficient) program using semantics- 

preserving rules. Many derivations, however, suffer from the use of lengthy expres- 

sions involving formulae from predicate calculus. However, in particular in the case of 

graph algorithms the calculus of formal languages and relations allows considerable 

compactification. We use a simplified and straightened version of the framework 

introduced in [14] to illustrate this with derivations of algorithms for computing the 

length of a shortest path between two graph vertices and for cycle detection. 

2. The framework 

In connection with graph algorithms we use formal languages to describe sets of 

paths. The letters of the underlying alphabet are interpreted as graph nodes. As 

a special case of formal languages we consider relations of arities d 2. Relations of 

arity 1 represent node sets, whereas binary relations represent edge sets. The only 

two nullary relations (the singleton relation consisting just of the empty word and the 
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empty relation) play the role of the Boolean values. This also allows easy definitions of 

assertions, conditional, and guards. 

Essential operations on languages are (besides union, intersection, and difference) 

concatenation, composition, and join. As special cases of composition we obtain 

image and inverse image as well as tests for intersection, emptiness, and membership. 

The join corresponds to path concatenation on directed graphs; special cases yield 

restriction. 

Proofs are either straightforward or given by Moller [14] and therefore omitted. 

2.1. Operations on sets 

Given a set A we denote by B(A) its power-set. The cardinality of A is, as usual, 

denoted by 1 Al. To save braces, we identify a singleton set with its only element. 

Frequently, we will extend set-valued operations 

f: Al x ... x A, -+ 9(A,+,) (n > 0) 

to the powersets Y(Ai) of the Ai. In these cases we use the same symbolfalso for the 

extended function 

S: P(A,) x ... x g(A,) -+ g(A,+ I) > 

defined by 

fvJ1, . . . 3 U,) “2 u ... ,,J” fh, . . . > x,) 
x1eu1 n n 

(1) 

for Vi E Ai. By this definition, the extended operation distributes through union in all 

arguments: 

&NJ,, . . . > ui-1, (_) Uij, Ui+l,. 1. 2 Un) 
jeJ 

=,~.f(“l~~. . 2 ui-l, Uij, ui+l,. . . > un). 

By taking J = 0 we obtain strictness of the extended operation w.r.t. 0: 

f(ul,. . .Y ui-l,O, ui+l>. . .T u*)=0. 

By taking J = { 1,2) and using the equivalence 

ucvouuv=v, 

(2) 

(3) 

we also obtain monotonicity w.r.t. c in all arguments: 

vi1 E vi* * f(“l, . . . 2 Ui-12 Uil, Ui+l, * . > un) 

cft”l,. . . 7 UiG1, uiZ, Ui+l,. . . T un). (4) 

Moreover, bilinear equational laws are preserved (see e.g. [ll]). 
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2.2. Languages and relations 

Consider an alphabet A. We denote the empty word over A by E and concatenation 

by 0. It is associative, with E as the neutral element: 

U.(V.W) = (U.U).W, (5) 

&Old = u = U@&. (6) 

As usual, a singleton word is not distinguished from the only letter it contains. The 

length of a word u, i.e., the number of letters from A in U, is denoted by J/uJl. The 

reverse of a word u = a, l ... .allull is the word u-r “2’ %ll l ... l a,. The set of all 

words over A is denoted by A(*). 

A (formal) language is a subset of A (*). Concatenation is extended pointwise to 

languages. Since the above laws are bilinear, they carry over to languages U, V, W 

over A: 

U.(V. W) = (U. V)e w, 

amU= U= Ua&. 

The diagonal Vd over a subset V G A is defined by 

(7) 

(8) 

VA “2 u X.X. (9) 
XEV 

A relation of arity n is a language R such that all words in R have length n. Note that 

8 is a relation of any arity. For R # 8 we denote the arity of R by ar R. There are only 

two 0-ary relations, viz. @ and E. For a relation R its converse R-l consists of the 

reverses of all its words. 

2.3. Composition 

For languages V and W over alphabet A we define their composition V; W by 

If V and Ware binary relations this coincides with the usual definition of relational 

composition (see e.g. [20,21]). 

Composition is associative: 

U;(V; IV) = (U; V); w e vy+E J? [(yI( 3 2. 

Composition associates with concatenation: 

U.(V;W)=(U.V);W .S= VyEv: I/y/[ 21, 

U;(V@W)=(U;V).W S= vyev: jlyj( 3 1. 

(11) 

(12) 

(13) 
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We shall omit parentheses whenever one of these laws applies. Moreover, l and ; bind 
stronger than u and n . 

Interesting special cases of relational composition arise when one of the operands 
has arity 1. Suppose 1 = ar R < ar S. Then 

R;S= u u v. 
xsR x.usS 

In other words, R ; S is the image of R under S. Likewise, if 1 = ar T d ar S, then S ; T is 
the inverse image of 
codomain of a binary 

domRd:R;A, 

codRdz A;R. 

T under S. For these reasons we may define domain and 
relation R by 

Suppose now ar R = 1 = ar S and I/ x (I = 1 = 

R’S= i 

E if RnS#@, 

8 if RnS=@, 

R’R= 
F if R#@, 
fj ifR=lj$, 

II Y IO then 

(141 

(15) 

(16) 

(171 

Because these “tests” will be used frequently, we introduce more readable notations 
for them by setting 

(R #@)“z R;R, (20) 

xcRdLfx;R, (21) 

(x=y)%;y, (22) 

RrSdz(RuS=S). (23) 

For binary R and x E dom R, y E cod R we have 

x;R;y= 
E if x*ytzR, 

8 otherwise. 
(24) 

Finally, we note that diagonals are neutral w.r.t. composition. Assume P 2 dom V 
and Q -z cod I/. Then 

P; V= V, (251 

V;Q“ = V. (261 
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2.4. Assertions 

As we have just seen, the nullary relations E and 0 characterize the outcomes of 

certain test operations. More generally, they can be used instead of Boolean values; 

therefore, we call expressions yielding nullary relations assertions. Note that in this 

view “false” and “undefined” both are represented by 8. Negation is defined by 

$Z&-, (27) 

fj “Af 0. (28) 

Note that this operation is not monotonic. 

For assertions B and C we have e.g. the properties 

B*C=BnC, (29) 

BOB= B, (30) 

BOB= 0, (31) 

Bu~?=F, (32) 

B*C=BuC. (33) 

Conjunction and disjunction of assertions are represented by their intersection and 

union. To improve readability, we write B A C for B n C = B l C and B v C for 

B u C. 
For assertion B and arbitrary language R we have 

Hence, B l R (and R l B) behaves like the expression 

B D R = if B then R else error fi 

in [13]. We will use this construct for propagating assertions through recursions. 

2.5. Conditional 

Using assertions we can also define a conditional by 

if B then R else S fi “2 B l R u Be S (35) 

for assertion B and languages R and S. Note that this operation is not monotonic in B. 

2.6. Join 

A useful derived operation is provided by a special case of the join operation as used 

in database theory (see e.g. [8]). Given two languages R and S, their join R WS 
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consists of all words that arise from “glueing” together words from R and from 

S along a common intermediate letter. By our previous considerations, the beginnings 

of words ending with x E A are obtained as R; x, whereas the ends of words which 

start with x are obtained as x ; S. Hence, we define 

RwS “2 u R;x.x*x;S. 
XGA 

(361 

Again, w binds stronger than u and n. 
Join and composition are closely related. To explain this we consider two binary 

relations R, S G A l A: 

R;S= u {xay: x.z~Rr\z*y~S}, 
ZEA 

RwS= u {x*zay: x*z~Rr\z*y~S}. 
ZEA 

Thus, whereas R ; S just states whether there is a path from x to y via some point z E A, 
the relation R w S consists of exactly those paths x l z l y. In particular, the relations 

R, 

RwR, 

Rw(RwR), 

consist of the paths of edge numbers 1,2,3, . . . in the directed graph associated 

with R. 
Other interesting special cases arise when the join is taken w.r.t. the minimum of the 

arities involved. Suppose 1 = ar R < ar S. Then 

RwS = u R;x@x.x;S = u x.x;S. 
XEA XGR 

In other words, R w S is the restriction of S to R. Likewise, for T with 1 = ar T d ar S, 

the language S w T is the corestriction of S to T. 
If even ar R = ar S = 1 we have 

RwS=RnS. 

In particular, if ar R = 1 and (1 x I( = 1 = II y II, 

RwR=R, 

(37) 

x 
xwR=Rwx= 

if xER, 

8 if x$R, 

i 

x if x=y, 
xwy=ywx= 

8 if x#y. 

(38) 

(39) 

(40) 
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For binary R, x E dom R and y E cod R, this implies 

xwRwy= 
x.y if x*yeR, 

8 otherwise. 
(41) 

In special cases, the join can be expressed by a composition: assume arP = 

1 = ar Q. Then 

PwR = PA;R, (42) 

RwQ=R;Q’. (43) 

By the associativity of composition (11) also join and composition associate: 

(RwS);T=Rw(S;T), (44) 

R;(SwT)=(R;S)wT. (45) 

provided ar S 3 2. 

Moreover, also joins associate: 

Rw(SwT)=(RwS)wT. (46) 

2.7. Kleene algebras and closures 

A Kleene algebra (see [7]) is a tuple (S, C, O,O, 1) consisting of a set S, operations 

C: Y(S) -+ S and o : S l S + S and elements 0,l E S such that (S, 0, 1) is a monoid and 

c(b=o, 

C{x} = X (XES), 

C( u X-) = Z{CK:K E X} (X- s B(S)), 
(47) 

C(KoL) = (CK)O(CL) (KYLE 9(S)), 

where in this latter equation o is the pointwise extension of the monoid operation. 

Note that this implies that 0 is a zero with respect to 0 or, in other words, that 0 is 

strict with respect to 0: 

00x = 0 = x00. (48) 

The binary version of C is 

x+yd~Z{x,y}, (49) 

which makes (S, +, 0) a commutative monoid. By our definitions, for an alphabet A, 

LAN 2 (B(A’*‘),U,a,$,&), 

REL 2 (Y(A.A),U,;,@,A’), 
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all form Kleene algebras. Given a Kleene algebra one can define a partial order < by 

clef 
xby 0 x+y=y. (50) 

This makes (S, <) into a complete lattice. Moreover, o is continuous w.r.t. <. In our 

examples < coincides with c . One can then define a closure operator .* by 

x*d$y.l+xoy, (51) 

where 1 is the least fixpoint operator. Using continuity we can represent the closure 

also by Kleene’s approximation sequence (see [lo]) as 

x* = C(xj: jE N}, (52) 

where 

xo d&f 1 3 (53) 

xj+l “Lf xOxj. (54) 

For our particular Kleene algebras we denote the closure operations by .(*), .*, and 

. *, respectively. 

Consider now a binary relation R E A. A and let G be the directed graph asso- 

ciated with R, i.e., the graph with vertex set A and arcs between the vertices 

corresponding to the pairs in R. We have, in REL, 

” Ri’y = 

E if there is a path with i edges from x to y in G, 

0 otherwise. 
(55) 

Hence, 

x’R* ” = 

E if there is a path from x to y in G, 

8 otherwise. 
(56) 

For S c A, the set S; R* gives all points in A reachable from points in S via paths in G, 

whereas R*; S gives all points in A from which some point in S can be reached. 

Finally, 

S;R”;T= 
E if S and T are connected by some path in G, 

8 otherwise. 
(57) 

As usual, we set 

R+ “2 R;R* = R*;R. (58) 

Analogously, the path closure R * in PAT consists of all finite paths in G. Hence, 

xwR’wy 

is the language of all paths between x and y in G. 

(59) 
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Moving away from the graph view, the path closure is also useful for general binary 

relations. Let e.g. d be a partial order. Then d * is the language of all <- 

nondecreasing sequences. If < is even a linear order then <’ is the language of all 

sequences which are sorted w.r.t. 6. This is exploited in [16,19] for the derivation of 

sorting algorithms. 

We now state some important induction principles for closures. We call a predicate 

P over a Kleene algebra (S, Z;, o, 0,l) continuous if for all T E S 

=z+ P[CT]. (60) 

Lemma 2.1. Consider a jixed z E S and let P be continuous. lf P[l] and 
P[x] = P [z o x] or P[x] 3 P[x o z] then P[z*] holds as well. 

Proof. A straightforward induction shows P[z’] for all i E N. Now Kleene’s approx- 

imation (52) and continuity show the claim. 0 

Corollary 2.2. Considerjxed U E Y(A(*‘), R c A l A and suppose that P is a continu- 
ous predicate on .Y(A(*)). If P[U] and P[ V] * P[ V; R] then P [U; R*] as well. 

Proof. Define Q [X] over ??‘(A l A) by 

Q[X] “g P[U;X]. 

Then Q satisfies the assumptions of Lemma 2.1 showing the claim. 0 

A variant of the general induction principle of Lemma 2.1 allows us to extend 

properties of x to x*. 

Lemma 2.3. Let P be continuous and assume P[l] and P[x] A P [y] * P[x o y]. 
Then P[x] * P[x*] holds as well. 

Proof. Analogous to the proof of Lemma 2.1. 0 

We shall see various applications of these principles later on. 

3. Graph algorithms 

We now want to apply the framework in case studies of some simple graph 

algorithms. 
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3.1. Length of a shortest connecting path 

3.1 .l. Specljication and first recursive solution 
We consider a finite set A of vertices and a binary relation R E A l A. The problem 

is to find the length of a shortest path from a vertex x-to a vertex y. Therefore, we 

define 

shortestpath(x, y) “2 min(edgelengths(x w R” w y)) , (61) 

where, for a set S of (nonempty) paths, 

edgelengths “2 U ( (/ s )I - 1) 
SES 

(62) 

calculates the set of path lengths, i.e., the number of edges in each path, and, for a set 

N of natural numbers. 

def 
min(N) = 

k if kENr\NEk;<, 
8 if N = @. (63) 

It is obvious that edgelengths is strict and distributes through union. Moreover, for 

unary S, 

edgelengths(Sw T) = 1 + edgelengths(S; T), 

and, for M, N G fW, 

(64) 

min(M u N) = min(min(M) u min(N)), (65) 

min(0 u M) = 0. (66) 

For deriving a recursive version of shortestpath we generalize it to a function sp 

which calculates the length of a shortest path from a set S of vertices to a vertex y: 

sp(S, y) “2 min(edgelengths(S w R’w y)). (67) 

The embedding 

shortestpath(x, y) = sp(x, y) 

is straightforward. 

We calculate 

SP(S, Y) 

= {definition] 

(68) 

min(edgelengths(S w R’w y)) 

= @by (51)D 

min(edgelengths(S w (A u R w R’) w y)) 

= {distributivity] 
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min(edgeZengths(S w Aw y) u edgelengths(S w R w R’ w y)) 

= @by (37)D 

min(edgelengths(S w y) u edgelengths(S w R w R’ w y)) . 

By (39) the subexpression SW y can be simplified according to whether y E S or not. 

Case 1: y E S. 

min(edgelengths(S w y) u edgeZengths(S w R w R’ w y)) 

= {by (39), since y E SD 

min(edgelengths(y) u edgelengths(S w R w R’ WY)) 

= {definition of edgelengths] 

min(O u edgelengths(S w R w R’ w y)) 

= @by (WD 

0. 

Case 2: y$S. 

min(edgelengths(S w y) u edgeZengths(S w R w R’ w y)) 

= {by (39), since y #SD 

min(edgelengths(@) u edgelengths(S w R w R’ w y)) 

= {strictness, neutrality] 

min(edgelengths(S w R w R’ w y)) 

= @by (640 

min(1 + edgelengths(S; R w R’ w y)) 

= {distributivity] 

1 + min(edgelengths(S; R w R’ w y)) 

= {definition) 

1 + sp(S;Ry). 

Altogether we have derived the recursion equation 

sp(S, y) = if y E S then 0 else 1 + sp(S; R, y) fi. (69) 

Note, however, that termination cannot be guaranteed for this recursion. To make 

progress in that direction we show some additional properties of sp. 
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Lemma 3.1. u T,y) = min(sp(S,y) u sp(T,y)). 

Proof. 

SP(S u T,Y) 

= {definition] 

min(edgelengths((S u T) w R’ w y)) 

= {distributivity] 

min(edgelengths(S w R” w y) u edgelengths( T w R’ w y)) 

= @by (65)D 

min(min(edgelengths(S w R’ w y)) u min(edgelengths(T w R’ w y))) 

= {definition] 

min(sp(S, Y) u sp(T, Y)). q 

We now consider again the case y#S. From (69) we obtain 

sp(S; R, Y) f sp(S, Y) > 

and hence 

(70) 

sp(S, Y) 

= {by y 4 S and (69)) 

1 + sp(S;R, y) 

= @by (70)D 

1 + mWsp(S, Y) u SP@; R, ~1) 

= {by Lemma 3.1) 

1 + sp(S u S; R,y). 

so that a second recursion equation for sp is 

sp(S,y)=ify~SthenOelse l+sp(SuS;R,y)fi. (71) 

Now, although the first parameter is nondecreasing in each recursive call, still 

nontermination is guaranteed if there is no path from S to y. However, in that case by 

finiteness of A the recursive calls of sp eventually become stationary, i.e., eventually 

S = S u S ; R holds, which is equivalent to S; R c S. We consider that case in the 

following lemma. 

Lemma 3.2. If y $ S and S; R G S then S w R’ w y = 0, i.e., there is no path from set 
S to vertex y, and therefore sp(S, y) = 8. 
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Proof. We use the induction principle of Lemma 2.1 with the predicate 

P[X] 2t swxDayc@. 

To show P[A] we calculate 

SwAwy 

= {neutrality of Al 

s WJ’ 

= {by (39), since y$ SD 

8. 

Now assume P[X]. We calculate 

SwRwXwy 

= eby (420 

SA,RwXwy 

c {by SA E S l S and monotonicityJ 

S.S;RwXwy 

_c {by S; R c S and monotonicityj 

S.SwXDay 

E {by P[X] and monotonicityJ 

SOB 

= @trictnessj 

8. 

Now the claim is immediate from the definition of sp. 0 

Altogether we have 

shortestpath(x. y) = sp(x, y) , 

sp(S, y) = if y E S then 0 

else if S;R E S then 8 

else 1 + sp(S u S;R,y)fi fi. (72) 

Now termination is guaranteed, since S increases for each recursive call and is 

bounded by the finite set A of all vertices. 
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3.1.2. Improving eficiency 
One may argue that in the above version, accumulating vertices in the parameter 

S is not efficient because it makes calculating S ; R more expensive. So, in an improved 

version of the algorithm, we shall keep as few vertices as possible in the parameter 

S and the set of vertices already visited in an additional parameter T, tied to S by an 

assertion. Let 

sp2(S,T,y)d~(SnT=@~y$T)*sp(Su T,y), (73) 

with the embedding 

shortestpath(x, y) = sp2(x, $, y). 

Now assume S n T = 8 A y ef T. Again we distinguish two cases. 

(74) 

Case 1: y E S. 

sp2(S, T, Y) 

= {definition] 

MS u T,Y) 

= {by y E S c_ S u T and (72)] 

0. 

Case 2: y $ S. 

sp2(S, T, Y) 

= {definition) 

SP(S u T,Y) 

= {by y$S u Tand (72)) 

if (Su T);R ESU Tthen0 

else1 +sp(Su Tu(Su T);R,y)fi 

= {set theory] 

if (Su T);R E Su Tthen0 

else 1 + sp(((S u T); R)\(S u T) u (S u T),y)fi 

= {definition and y C$ S u Tj 

if (Su T);R CSU Tthen0 

else1 + sp2(((S u T);R)\(S u T),S u T,y)fi. 
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Altogether, 

shortestpath(x, y) = sp2(x, 8, y) , 

sp2(S,T,y)=(SnT=0r\y$#T)* 

ifyES 

then 0 

elseif(Su T);RzSu T 

then 0 

else1 + spZ(((S u T);R)\(S u T),S u T,y)fifi. 

This version is still very inefficient. However, a simple analysis shows that the 

assertion of sp2 can be strengthened by the conjunct T; R c S v T. Thus, one can 

simplify the program to 

shortestpath(x, y) = sp3(x, 0, y) , 

sp3(S,T,y)=(SnT=0r\y$Tr\T;R~SvT). 

if YES 

then 0 

el.seifS;RcSu T 

then 0 

else1 + sp3((S;R)\(S u T),S u T,y)fifi. 

The formal derivations steps for this are similar to the ones above and hence we omit 

them. 

Termination is guaranteed, since T increases for each recursive call and is bounded 

by the finite set A of all vertices. 

Note that a tail-recursive variant can easily be derived from sp3 by introducing an 

accumulator. A corresponding algorithm in iterative form can be found in the 

literature, e.g. in [9] (but there unfortunately not faultless). 

Further, our algorithm also solves the problem whether a vertex y is reachable from 

a vertex x, since 

reachable(x, y) = (shortestpath(x, y) # 0). (75) 

3.2. Cycle detection 

3.2.1. Problem statement andfirst solution 

Consider again a finite set A of vertices and a binary relation R c A l A. The 

problem consists in determining whether R contains a cyclic path, i.e. a path in which 

a node occurs twice. 
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Lemma 3.3. The following statements are equivalent: 

(1) R contains a cyclic path. 

(2) R+ n AA #8. 

(3) RIA’ # 0. 

(4) RIA’; A # 0. 

(5) A; RIA’ # 0. 

Proof. (1) =j (2): Let p = u l x l u l x l w with x E A and u, u, w E A(*) be a cyclic path. 

Then x l x E R+ and the claim follows. 

(2) 5 (3): Assume x l x E R+ and let n be the smallest number such that there are 

x0, . .> x, E A with 

n-1 
i~oxi*xi+~GR and x0=x=x,. 

Then 
IAl 
l Ximodn 

i=O 

is a path as well and hence the claim holds. 

(3) q (4): Trivial, since RI”; A is the domain of RIAI. 

(4) G- (5): Trivial, since a relation with nonempty domain also has a nonempty 

codomain. 

(5) * (1): We have y E A ; R IAl iff there is an x E A and a path from x to y with 

(Al + 1 nodes. By the pigeonhole principle this path must contain at least one node 

twice and hence is cyclic. q 

By (5) we may specify our problem as 

hascycle “2 (A; RIAl # 0). 

To compute A ; RIAl we define Ai “g A; R’ and use the properties of the powers of R: 

Ao=A;Ro=A;AA=A, 

Ai+l = A;R’+’ = A;(R’;R) = (A;R’);R = Ai;R. 

The associated function 

f :XHX;R 

is monotonic. We now prove a general theorem about monotonic functions on 

noetherian partial orders. A partial order (M, <) is noetherian if each of its non- 

empty subsets has a minimal element w.r.t. <. An element x E S E M is minimal in 

S if y E S and y < x imply y = x. Using reflexivity of d we therefore have that x is 

minimal in S iff 

<;xnS=x. (76) 
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Viewing a function f : M 4 M as a binary relation, we can form its closuref *. Then, 

for x E M, we have 

x;f * = {fi(x): iEN}, (77) 

where the fi are defined as usual. 

Theorem 3.4. Let (M, <) be a noetherian partial order and f : M --f M a monotonic 

total function. 

(1) 
(2) 

(3) 

Iffor x E M we have f (x) d x then x, 2’ glb (x; f *) exists and is afixpoint off. 

Assume x as in (1) and y E M with x, < y d x. Then also y, = glb(y; f *) exists 

and y, =xm. 

If M has a greatest element T then T, exists and is the greatest jixpoint off: 

Proof. We first restate in relational notation some of the notions involved. 

(a)jisatotalfunctioniffAdEf;fU1andf-’;fzAd. 

(b) f is monotonic iff< ; f c f; < 

(c) u < v is equivalent to both u z d ; v and v c u; d. 

(d) By our convention about singleton sets, f(x) and x ; f are the same for a total 

function f. 

In particular, (a) implies, for S G M. 

(S;f)” = f -‘;P;f. (78) 

We now treat the claims in order. 

(1) We first show that 

VyEx;f*:f(y)< y. (79) 

Relationally, this means (x ; f *)” E f; <. We use the induction principle from Corol- 

lary 2.2 with the predicate 

P[X] z Xdzf; < 

and U = x, R = f. P[x] holds by assumption. To infer P[X; f ] from P[X] we 

calculate 

(X;_f)A 

= IIby (78)) 

f -‘;XA;f 

G {by P[X] and monotonicityj 

f -‘if; G;f 

G (Tf is a function, neutrality] 
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G Qf monotonic] 

f;<. 

Since (M, <) is noetherian, x ; f * has a minimal element x, . For this we calculate 

X, 

= {by minimality (76)l 

b;x, nx;f* 

=, {by (79) and monotonicity of n] 

x,;fnx;f* 

= 4 sincex,;f E x;f*J 

x,;f. 

However, by totality off this means x, ; f = x, so that x, is a fixpoint off. We shall 
see below that x, = glb(x; f *). 

(2) Using the induction principle from Lemma 2.3 it is immediate to show the 

following facts: 

X;fsX * X;f*EX, (80) 

<;f sf;< * d;f* c f*;<, (81) 

x;f s d;x =- x;f* E <;x. (82) 

From (80) and X E X ; f * by Ad s f * we infer 

X;fsX - X;f*=X. (83) 

Now consider u, v E M with u d v. Then 

U<V 

0 {image] 

vGu;< 

* {monotonicity] 

v;f* cu; d ;f* 

* {f monotonic and (81)) 

v;f* G u;f*;B, 
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so that u ;f* is a minorant for v ;f *. In particular, taking u = x, and v = x or v = y 

and using (83) and (82) we see that x, is a lower bound for both y ; f* and x; f*. This 

also implies X, = glb(x;f*). Moreover, y;f* is a minorant of x; f * so that every 

lower bound z for y ; f * also is a lower bound for x ; f * and hence satisfies z d x, But 

this shows x co = glb(y;f*) = Y,. 

(3) Trivially,f(T) < T, and hence T, exists by (1). Let x be a fixpoint of5 By the 

proof of (2) we know that T;f* c x;f* ; d = x ; < so that x is a lower bound for 

T;f*. This implies x < glb(T;f*) = T,. 0 

A similar theorem has been stated by Cai and Paige [6]. 

Corollary 3.5. If T, d x for some x E M then T, = x,. 

Proof. By (2) of the above theorem. 0 

To calculate x, we define a function inf by 

inf (y) “2 (x m<y6X).X,, 

which determines x, using an upper bound y. We have the embedding x, = inf (x). 
Now from the proof of the above theorem the following recursion is immediate: 

inf(y) = (x, d y d x)0 if y = f (y) then y else inf (f (y)) fi. 

This recursion terminates for every y satisfying f (y) < y, since monotonicity then also 

shows f (f (y)) d f (y), so that in each recursive call the parameter decreases properly. 

In particular, the call inf (x) terminates. This algorithm is an abstraction of many 

iteration methods on finite sets. 

We now return to the special case of cycle detection. By finiteness of A the partial 

order (P(A), 5 ) is noetherian with greatest element A. Therefore, A, exists. More- 

over, we have the following corollary. 

Corollary 3.6. A, Al = A,. 

Proof. The length of any properly descending chain in P(A) is at most (A( + 1. Hence, 

we have AlAI+ = AlAl and thus AlAl = A,. 0 

So we have reduced our task to checking whether A, # 8, i.e., whether inf (A) # 8. 

For our special case the recursion for inf reads (omitting the trivial part W E A) 

inf(W) = (A, s W)@ 

if W = W; R then W else inf (W; R) fi . 

We want to improve this by avoiding the computation of W; R. By the above 

considerations we may strengthen the assertion of inf by adding the conjunct 
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W; R E W. We define 

SK(W) “2 W\(W;R). 

This is the set of sources of W, i.e., the set of nodes in W which do not have 

a predecessor in W. 

Now, assuming W; R E W, we have W = W; R o SK(W) = 0 and W; R = 

W\src( W) so that we can rewrite inf into 

inf(W)=(A,~ Wr\W;Rs W). 

if src( W) = 8 then W else inf( W\src( W)) fi . 

This is an improvement in that src( W) usually will be small compared to W, moreover, 

the computation of src( W) can be facilitated by a suitable representation of R. 
Plugging this into our original problem of cycle recognition we obtain 

hascycle = hey(A) , (84) 

where 

hey(W) = (A, c WA W;R c W). 

if src( W) = 0 then W # 0 else hcy( W\src(W))fi , (85) 

which is one of the classical algorithms which works by successive removal of sources 

(see e.g. [3]). Note that Lemma 3.3(4) suggests a dual specification to the one we have 

used; replaying our development for it would lead to an algorithm that works by 

successive removal of sinks. 

3.2.2. Improving eficiency 

We want to improve the computation of the sets src( W). We observe that 

x E src( W) 

= XE W\(W;R) 

=XE Wr\x$W;R 

=XE Wr\R;xn W=@ 

=XE Wr\(R;xn Wj=O. 

So we define for W G A the relation in(W) by 

x;in(W) “2 ]R;x n WJ. (86) 

Hence, x; in( W) gives the indegree of x w.r.t. W and 

src(W) = Wn in(W);O. (87) 

In final implementation, in(W) will, of course, be realized by an array. We aim at an 

incremental updating of in in the course of our algorithm. We calculate 
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x;in(W\src(W)) 

= {definition] 

IR;x n (W\src(W)I 

= {set theory) 

I(R;x n W\sWVl 

= Q(A\B( = (A( - IA n BID 

j(R;x n W)l - IR;x n Wn PC(W)] 

= {src( W) z PVJ 

((R;x n W)l - IR;x n src(W)I 

= {definition) 

x; in(W) - x; in(src( W)). 

For binary relationsf, g with the same domain and subsets of N as codomains and 

arithmetic operator 2 we define f {g by 

x;(Rg) “2 (x;f)<(x;g). (88) 

Then 

in( W\src( W)) = in(W) - in(src( W)). 

For the computation of in we observe that 

in(@) = 0, 

(89) 

(90) 

where 

x;o “Af 0. 

Moreover, if S # 8 and q E S is arbitrary we have 

x ; in(s) 

= x; in(q u S\q) 

(91) 

=IR;xn(quS\q)l 

= l(R;x n 4) u (R;x n S\q)l 

= lR;x n q1+ IR;x n S\ql 

= x; in(q) + x; in(S\q), 

when 

x;in(q) = if q;R;x then 1 else 0 fi. (92) 
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Then 

in(S) = in(q) + in(S\q). (93) 

We forego a transformation of in into tail recursive form, since this is completely 

standard using associativity of +. 

Now we can administer the source sets more efficiently. We introduce additional 

parameters for carrying along SYC( W) and in(W) and adjust these parameters by the 

technique of finite differencing (see e.g. [18]). We set, for S c W c A and relation f, 

hc( W, S,f) 2 (S = src( W) A f= in(W)) l hcy( W)), (94) 

with the embedding 

hcy( W) = hc( W, src( W), in(W)) . 

Now 

hc(W,S,f) 

= {definition$ 

(95) 

if src(W) = 0 then W # 0 else hcy(W\src(W)) 

= {assertionJ 

if S = 0 then W # 8 else hcy(W\S) 

= {embedding] 

if S = $ then W # 8 else hc(W\S,src(W\S), in(W\S)) 

= {introducing auxiliaries] 

if S=@then W#8 

elselet T”z W\S 

let g “2 in(T) 

inhc(T,src(T),g)fi. 

= {by (89) and (87)) 

if S=Othen W#0 

else let T “2 W\S 

let g d2f- in(S) 

inhc(T, T n g;O,g) fi. 

A final improvement would consist in merging the computation of g with that of 

T n g ;O using the tupling strategy (see e.g. [18]). 
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4. Conclusion 

The calculus of formal languages and relations has proved to speed up derivations; 

in particular, the way from “nonoperational” specifications involving the closures R* 
and R’ to first recursive solutions. However, also the tuning steps in improving the 

recursions have benefitted from the quantifier-free notation. If the resulting deriv- 

ations still appear lengthy, this is to a great deal due to the fact that the assertions have 

been constructed in a stepwise fashion (for mastering complexity) rather than in one 

blow. Further case studies which demonstrate the viability of the approach in more 

complicated examples are under way. Moreover, the framework has been applied to 

other problem areas as well (see [l&17]). 

Currently, we are working the definition of a more general program development 

language based on this approach. While other authors use a purely relational 

approach employing mostly even only binary relations, we find that relations with 

their fixed arity are too unflexible and lead to a lot of unnecessary encoding and 

decoding. 
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