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Abstract

A thermodynamically consistent formulation of nonlocal plasticity in the framework of the internal variable theories of
inelastic behaviors of associative type is presented. A family of mixed variational formulations, with different combinations
of state variables, is provided starting from the finite-step nonlocal elastoplastic structural problem. It is shown that a suit-
able minimum principles provides a rational basis to exploit the iterative elastic predictor-plastic corrector algorithm in
terms of the dissipation functional. A sufficient condition is proved for the convergence of the iterative elastic predic-
tor-plastic corrector algorithm based on a suitable choice of the elastic operator in the prediction phase and a necessary
and sufficient condition for the existence of a unique solution (if any) of the nonlocal problem at hand is then provided.
The nonlinear stability analysis of the nonlocal problem is carried out following the concept of nonexpansivity proposed in
local plasticity.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many materials exhibit a softening behavior which consists in a loss of positive definiteness of the tangent
stiffness operator, i.e. a decrease of stress at increasing strain. Such a behavior is coupled with the strain local-
ization which determines the growing of narrow regions where plastic strains tend to concentrate whereas the
remainder part of the body unloads elastically.

In classical plasticity theories, the deformation can localize in a zone which is infinitely small so that a dis-
placement discontinuity can develop. In fact, classical plasticity does not contain information about the size of
the localization zone which tends to become infinitely thin in the continuum approach or takes on the size of
the smallest finite element in the FE-approach.

One possibility to overcome these shortcomings with local plasticity consists in introducing an internal
length scale parameter into the continuum model of plasticity. Nonlocal effects can then be modeled by defin-
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ing suitably weighted averages, such as in nonlocal formulations, or by defining suitably gradients, such as in
gradient approaches, of a collection of static and/or kinematic fields linked to the inelastic processes.

Contributions to the development of the nonlocal theory can be found in Pijaudier-Cabot and Bažant
(1987), Bažant and Lin (1988) and, more recently, in Planas et al. (1993), Vermeer and Brinkgreve (1994), Nils-
son (1997, 1999), Svedberg and Runesson (1998), Borino et al. (1999), Borino and Failla (2000), Jirásek and
Rolshoven (2003). Gradient plasticity has been discussed in Aifantis (1987), de Borst and Pamin (1996), Ach-
arya and Bassani (2000), Bassani et al. (2001), de Borst (2001), Fleck and Hutchinson (2001), Liebe and Stein-
mann (2001).

In the existing literature on nonlocal plasticity, only few papers (see e.g. Borino et al. (1999) for rate non-
local plasticity) have been devoted to provide a solid variational basis to the nonlocal theory of plasticity so
that most of the FE-algorithms for the resolution of finite-step nonlocal formulations of elastoplasticity are
based on extensions of the relations pertaining to local elastoplasticity.

The purpose of the present paper is to address a general structural model based on the nonlinear constitu-
tive model of nonlocal elastoplasticity recently contributed in Marotti de Sciarra (in press) in order to unify
several models of nonlocal elastoplasticity existing in the literature. The nonlocal elastoplastic model is formu-
lated in a geometrically linear range and is based on the internal variable theories of inelastic behaviors of
associative type (Halphen and Nguyen, 1975).

Performing the time integration of the plastic flow rule according to a fully implicit integration strategy, the
relevant finite-step nonlocal elastoplastic structural problem is provided and the related mixed nonlocal var-
iational formulation in the complete set of state variables is directly derived from the structural model follow-
ing a general procedure. A family of mixed variational formulations, with different combinations of state
variables, can then be obtained by enforcing the fulfilment of field equations and constraint conditions.

Two mixed nonlocal variational principles are then specialized in order to recover the finite-step counter-
part of the corresponding two principles contributed in Borino et al. (1999) in nonlocal rate plasticity.

It is worth noting that, in the field of local plasticity, formulations and algorithms presented in Bird and
Martin (1990) and Reddy and Martin (1991) provide a dual viewpoint of the ones pursued in Ortiz and Popov
(1985) and Simo and Govindjee (1991) since, in the former papers, variational and algorithmic aspects are
based on the evolution law expressed in terms of the dissipation functional and in the latter papers the elas-
toplastic problem is expressed in terms of the convex yield function, normality rule and plastic multiplier.

Hence, a further contribution of this paper is devoted to provide a generalized and unified account of the
nonlocal elastoplastic structural problem since it is shown that a suitable minimum principles provides a
rational basis to exploit the iterative nonlocal elastic predictor-plastic corrector algorithm in terms of the dis-
sipation functional.

Moreover, a sufficient condition is proved for the convergence of the iterative elastic predictor-plastic cor-
rector algorithm based on a suitable choice of the elastic operator in the prediction phase and a necessary and
sufficient condition for the uniqueness of the solution (if any) of the nonlocal problem at hand is then
provided.

A stability analysis of the nonlocal problem is then carried out following the concept of nonexpansivity pro-
posed in local plasticity by Simo and Govindjee (1991) and Reddy and Martin (1991). The analysis shows that
the nonlocal evolution problem meets the property of nonexpansivity for a given displacement history. In par-
ticular, the stability is proved for each of the state variables of the model: stresses, kinematic internal variables
and dual static internal variables.

Finally a model with a nonlocal variable governing the degradation of the yield limit is considered. A new
expression of the space weight function, recently proposed in the literature, is adopted in order to avoid the
use of nonstandard and nonsymmetric weight functions for plastic zones close to the boundary. It is shown
that the considered nonlocal model reduces to a cohesive model and an example is provided with reference
to a one-dimensional bar in tension.

The paper is organized as follows. Section 2 summarizes the basic nonlocal relations. Sections 3 provides
the nonlocal constitutive relations in a fully nonlinear form which are specialized to the case of linear elasticity
with linear hardening and softening. In Section 4 the nonlocal plastic yielding laws are introduced. The struc-
tural model of nonlocal elastoplasticity is presented in Section 5 and its finite-step counterpart based on a fully
implicit integration scheme is then addressed. The mixed variational formulation in the complete set of state
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variables is proved. In Section 6 a family of variational formulations are presented. In Section 7, two general
mixed variational formulations are specialized in order to recover the finite-step counterpart of two principles
contributed in Borino et al. (1999). A one-dimensional bar in tension is considered to show the localization
properties of the model and of the adopted spatial weight function. In Section 8 the convergence criterion
is proved and in Section 9 the stability analysis is carried out. The paper is closed by an Appendix A devoted
to some basic results of convex analysis adopted in the paper.
2. Nonlocal averaging

A quasi-static evolution process under isothermal conditions is considered for an elastoplastic body subject
to a given load history. The nonlocal elastoplastic model is defined on a regular bounded domain B of an
Euclidean space. The time is conceived as a monotonically increasing parameter which orders successive
events. Accordingly, a time-independent mechanical behavior of the body is assumed.

Let D denote the linear space of strains e and S denote the dual space of stresses r. As usual, the total strain
e is assumed to be the sum of an elastic strain e and of a plastic strain p.

In an internal variable approach of associated type (Halphen and Nguyen, 1975), the plastic behavior is
described in terms of dual kinematic and static internal variables which account for the evolution of the hard-
ening/softening phenomena. The kinematic (strain-like) internal variables are denoted by j 2 Y, a1 2 Y1,
a2 2 Y2, a3 2 Y3 and the dual (stress-like) static internal variables are X 2 Y 0, v1 2 Y 01, v2 2 Y 02, v3 2 Y 03,
respectively. The generalized space of kinematic and static internal variables are denoted bybD ¼ Y1 � Y2 � Y3 � Y and bS ¼ Y 01 � Y 02 � Y 03 � Y 0, respectively.

The symbol ðð�; �ÞÞ denotes the inner product in the dual spaces and has the mechanical meaning of the
internal virtual work. For the Cauchy model it results:
ðð�; �ÞÞ ¼
Z
B

� � �dB
where � denotes the simple (double) index saturation operation between vectors (tensors).
Nonlocal constitutive theories are based on the assumption that the local value of the state variables at a

given point cannot be sufficient to evaluate the state of the material at that point. In fact long-range interac-
tions do exist in real media and, in some circumstances, these interactions may be relevant in the quality of the
response of the material.

If the strain field is sufficiently smooth, as often happens in the elastic range, the standard local theory pro-
vides a good approximation and it is not necessary the recourse to nonlocal theories. After strain localization,
nonlocal effects become meaningful so that nonlocal averaging is applied only to internal variables linked to
dissipative processes and nonlocal elastic effects are neglected (see e.g. Bažant and Lin, 1988; Strömber and
Ristinmaa, 1996; Svedberg and Runesson, 1998).

A nonlocal field �a 2 Z will be denoted by a superimposed bar and it can be obtained as a spatial weighted
average of another local variable, say a 2 Y, by the following parametric relation:
�aðxÞ ¼ ðRaÞðxÞ ð1Þ

where R : Y ! Z denotes a suitable linear regularization operator (see Pijaudier-Cabot and Bažant, 1987;
Strömber and Ristinmaa, 1996; Borino et al., 1999; Jirásek and Rolshoven, 2003 for an overview). The kine-
matic internal variable �a turns out to be nonlocal since its value at the point x of the body B depends on the
entire field a.

The expression (1) encompasses both nonlocal and gradient plasticity as shown in Marotti de Sciarra
(2004). In the present paper attention is focused on integral nonlocal averages of the form:
�aðxÞ ¼ ðRaÞðxÞ ¼
Z
B

bxðyÞaðyÞdy
where bxðyÞ is a spatial weighting function depending on a material parameter called the internal length scale.
Different expressions can be given to the spatial weight function b, such as Gauss-like function. Anyway, for
the subsequent developments it is not necessary to assume any explicit expression for b.
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Since a nonlocal behavior must be present for high space variation of the local variable a, it is assumed that
R ¼ I for uniform fields a being I the identity operator.

The dual regularization operator R0 : Z0 ! Y 0 is defined by the relation:
ððn;RaÞÞ ¼ ððR0n; aÞÞ:

The static internal variable R0n is nonlocal since its pointwise value depends upon the entire field n over the

body B, i.e. �nðxÞ ¼ ðR0nÞðxÞ for any x 2 B.
For the Cauchy model, an explicit expression of the dual regularization operator R0 can be deduced from

the following equalities:
ððn;RaÞÞ ¼
Z
B

Z
B

bxðyÞaðyÞdynðxÞdx ¼
Z
B

aðyÞ
Z
B

bxðyÞnðxÞdx dy ¼
Z
B

aðxÞ
Z
B

byðxÞnðyÞdydx

¼ ððR0n; aÞÞ
where
ðR0nÞðxÞ ¼
Z
B

byðxÞnðyÞdy:
If the spatial weighting function bxðyÞ depends only on the difference kx� yk, the regularization operator
and its dual coincide, that is the operator R is self-adjoint, i.e. R ¼ R0:

3. The nonlocal constitutive model

A linear relation is assumed to relate the plastic strain p to the internal variable a1 by means of a linear
operator A : Y1 ! D such that:
p ¼ Aa1:
The operator A is assumed to have a null kernel in order to ensure that the plastic strains can be univocally
deduced from internal variables.

In order to define the free energy, let us introduce the linear operator L : D� Y1 ! D and its dual
L0 : S ! S � Y 01 defined by:
L ¼ ID �A½ �; L0 ¼
IS

�A0

� �
ð2Þ
where A0 : S ! Y 01 is the dual operator of A. Accordingly, the additive decomposition of the total strain e can
be written in the form:
e ¼ Lðe; a1Þ ¼ e� Aa1:
The nonlocal free energy is assumed to be the sum of two functionals: the convex elastic energy Uel and the
saddle functional Uin which accounts for inelastic phenomena:
Uðe; a1; a2; a3; jÞ ¼ ðUel � LÞðe; a1Þ þ Uinða1;Ra2; a3;RjÞ: ð3Þ
The free energy component ðUel � LÞ is convex in ðe; a1Þ and Uin is convex in ða1; a2; a3Þ and concave in j.

3.1. Thermodynamic considerations

The first principle of thermodynamics (see e.g. Lemaitre and Chaboche, 1994) for a nonlocal elastoplastic
model and isothermal processes can be written pointwise in B in the following form:
_e ¼ r � _eþ P
where the explicit dependence on the point has been dropped for simplicity. The internal energy density e de-
pends on strain e, entropy s and internal variables ða1; a2; a3; jÞ related to isotropic hardening/softening behav-
ior. The nonlocality residual function P takes into account the energy exchanges between neighbor particles
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(see e.g. Edelen and Laws, 1971; Polizzotto et al., 2006). Being the body a thermodynamically isolated system
with reference to energy exchanges due to nonlocality, the following insulation condition holds:
Z

B

P dx ¼ 0: ð4Þ
The second principle of thermodynamics for isothermal processes and for a nonlocal behavior, must be
written in global form so that the body energy dissipation W is given by:
W ¼
Z
B

_sT dx ¼ ððr; _eÞÞ �
Z
B

_Udx P 0 ð5Þ
where _s is the internal entropy production rate per unit volume, T is the absolute temperature and U ¼ e� sT
is the Helmholtz free energy. Following the approach developed in Edelen and Laws (1971) and Borino et al.
(1999), the body energy dissipation (5) can be rewritten pointwise by taking into account the nonlocality resid-
ual function. Accordingly the dissipation at a given point of the body is:
D ¼ _sT ¼ r � _e� _Uþ P P 0 ð6Þ
which represents the Clausius–Duhem inequality for isothermal processes differing from its classical format by
the presence of the nonlocality residual function P to guarantee the nonnegativeness of the dissipation and to
account for material nonlocality. Expanding the inequality (6) and recalling the expression (3) of the free en-
ergy, it results:
D ¼ r � _e� deU � _e� da1
U � _a1 � da2

U � _a2 � da3
U � _a3 � djU � _jþ P P 0: ð7Þ
Using standard arguments (see e.g. Lemaitre and Chaboche, 1994) the following state laws hold:
r ¼ deU; �v1 ¼ da1
U; �v2 ¼ da2

U

v3 ¼ da3
U; �X ¼ djU:

ð8Þ
By substituting the relations (8) into the expression (7), the dissipation becomes:
D ¼ v1 � _a1 � �v2 � _a2 � v3 � _a3 þ X � _jþ P P 0: ð9Þ
At every point where an irreversible mechanism develops, the dissipation can be assumed in the following
bilinear form:
D ¼ v1 � _a1 � v2 � _g2 � v3 � _a3 þ X � _g P 0 ð10Þ
where v2 and X are (local) variables thermodynamically conjugated to the variables g2 and g whose expressions
are hereafter identified. In such a way the nonlocality residual function has disappeared from the pointwise
expression of the dissipation. By comparing (9) and (10), the nonlocality residual function is:
P ¼ �v2 � _a2 � X � _j� v2 � _g2 þ X � _g ð11Þ
and, employing the insulation condition (4), it results:
ðð�v2; _a2ÞÞ � ððX ; _jÞÞ � ððv2; _g2ÞÞ þ ððX ; _gÞÞ ¼ 0: ð12Þ
Noting that the following duality conditions hold:
ðð�v2; _a2ÞÞ ¼ ððv2; _a2ÞÞ; ððX ; _jÞÞ ¼ ððX ; _jÞÞ ð13Þ
and substituting the equalities (13) in (12), it results:
ððv2; _a2ÞÞ � ððX ; _jÞÞ � ððv2; _g2ÞÞ þ ððX ; _gÞÞ ¼ 0
for any possible static variable v2 and X. Hence the identifications _g2 ¼ _a2 and _g ¼ _j hold true. The nonlocal-
ity residual function (11) and the dissipation (10) can be given the following explicit expressions at a given
point of the body B:
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P ¼ �v2 � _a2 � X � _j� v2 � _a2 þ X � _j

D ¼ v1 � _a1 � v2 � _a2 � v3 � _a3 þ X � _j P 0:
ð14Þ
If the nonlocal variables are constant in space, the regularization operator becomes the identity operator
and the nonlocal variables turn out to be coincident to their local counterparts, i.e. _a2 ¼ _a2, _j ¼ _j, �v2 ¼ v2

and X ¼ X . As a consequence the relation (14)1 shows that the nonlocality residual function P vanishes,
the inequality (14)2 provides the expression of the dissipation in terms of local variables and the relations
(8) yield the constitutive laws in terms of local fields.

Hence the above analysis shows that the constant field requirement on the operator R and the insulation
condition guarantee that the nonlocal model behaves in all aspects as a local one under uniform fields.

3.2. Nonlocal constitutive relations

Stresses and static internal variables are related to strains and kinematic internal variables by means of the
multi-valued relation:
ðr;�v1; �v2; v3;�X Þ 2 oUðe; a1; a2; a3; jÞ ()
ðr;�v1; �v2; v3Þ � ð�X Þ 2 o1Uðe; a1; a2; a3; jÞ � o2Uðe; a1; a2; a3; jÞ ð15Þ
where o1U denotes the subdifferential (Hiriart-Urruty and Lemarechal, 1993) of U with respect to ðe; a1; a2; a3Þ
and o2U denotes the superdifferential of U with respect to j. For simplicity, the superdifferential of a concave
functional is denoted by the same symbol o of the subdifferential of a convex functional. Moreover the sub-
differential and the superdifferential are both referred to as subdifferential if no confusion can arise. In the se-
quel, the free energy is assumed to be a differentiable functional so that the subdifferentials o appearing in (15)
become the usual derivative d.

Recalling the expressions (1) and (3), the nonlocal constitutive relations are given by:
ðr;�v1; �v2; v3;�X Þ ¼ dUðe; a1; a2; a3; jÞ

()

r

�v1

� �
¼ dðe;a1ÞUðe; a1; a2; a3; jÞ

�v2 ¼ da2
Uðe; a1; a2; a3; jÞ ¼ da2

Uinða1;Ra2; a3;RjÞ
v3 ¼ da3

Uðe; a1; a2; a3; jÞ ¼ da3
Uinða1;Ra2; a3;RjÞ

X ¼ �djUðe; a1; a2; a3; jÞ ¼ �djUinða1;Ra2; a3;RjÞ

8>>>>><>>>>>:
ð16Þ
The derivative of Uðe; a1; a2; a3; jÞ with respect to the pair ðe; a1Þ can be evaluated by means of a chain rule
of differential calculus (see Appendix A) to get:
dðe;a1ÞUðe; a1; a2; a3; jÞ ¼ dðe;a1ÞðUel � LÞðe; a1Þ þ da1
Uinða1;Ra2; a3;RjÞ

¼ L0dUelðLðe; a1ÞÞ þ da1
Uinða1;Ra2; a3;RjÞ

¼
dUelðe� Aa1Þ
�A0dUelðe� Aa1Þ

� �
þ

0

da1
Uinða1;Ra2; a3;RjÞ

� �
:

Then the constitutive relations assume the form:
r ¼ dUelðe� Aa1Þ
�v1 ¼ �A0rþ da1

Uinða1;Ra2; a3;RjÞ
�v2 ¼ R0d�a2

Uinða1; �a2; a3;RjÞ ¼ R0v

v3 ¼ da3
Uinða1;Ra2; a3;RjÞ

X ¼ �R0d�jUinða1;Ra2; a3; �jÞ ¼ �R0n

8>>>>>><>>>>>>:
ð17Þ
where we have set:
v ¼ d�a2Uinða1; �a2; a3;RjÞ; n ¼ d�jUinða1;Ra2; a3; �jÞ:
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Note that the static internal variable �v2 is a nonlocal variable since its pointwise value depends upon the
entire field v over the body B, i.e. �v2ðxÞ ¼ ðR0vÞðxÞ for any x 2 B. The nonlocal field �v2 is dual of the (local)
kinematic internal variable a2 and �v2 is the R0-transformed of the static internal variable v which is conjugate
to �a2. Analogously the nonlocal internal variable X ¼ �R0n is the dual of the kinematic internal variable j and
turns out to be the opposite of the R0-transformed of the static internal variable n which is conjugate to �j.

In the case of a linear elastic behavior with linear hardening and softening, the free energy is expressed by:
Uðe; a1; a2; a3; jÞ ¼
1

2
ððEðe� Aa1Þ; e� Aa1ÞÞ þ

1

2
ððH1a1; a1ÞÞ þ

1

2
ððh2Ra2;Ra2ÞÞ

þ 1

2
ððh3a3; a3ÞÞ þ

1

2
ððhRj;RjÞÞ ð18Þ
where the operator H1 is positive definite, the moduli h2 and h3 are positive and the softening modulus h is
negative. Then the nonlocal constitutive relations (17) turn out to be:
r ¼ Eðe� Aa1Þ
�v1 ¼ �A0rþH1a1

�v2 ¼ R0h2Ra2 ¼ R0v

v3 ¼ h3a3

X ¼ �R0hRj ¼ �R0n

8>>>>>><>>>>>>:
ð19Þ
where v ¼ h2Ra2 and n ¼ hRj.
The expression (19)1 is the elastic relation being e ¼ e� Aa1 where p ¼ Aa1. The expression (19)2 yields the

static internal variable v1 in terms of r and a1. The expression (19)3 provides the nonlocal static internal force
�v2, conjugate to a2, which is the R0-transformed of the dissipative force v ¼ h2�a2. The expression (19)4 provides
the static internal force v3 conjugate to a3 and the expression (19)5 yields the nonlocal static internal force X ,
conjugate to j, which is the opposite of the R0-transformed of the dissipative force n ¼ h�j.

In order to develop a variational formulation for this class of nonlocal problems, alternative expressions of
the constitutive relations (16) have to be provided.

To this end, the conjugate of the nonlocal free energy provides the complementary nonlocal elastic energy
which is the saddle functional U� : S � bS ! RðR ¼ f�1g [R [ fþ1gÞ, convex in the state variables
ðr; v1; �v2; v3Þ and concave in X , given by:
U�ðr; v1; �v2; v3;X Þ ¼ inf
d

sup
ðg;d1;d2;d3Þ

fððr; gÞÞ þ ððv1; d1ÞÞ þ ðð�v2; d2ÞÞ þ ððv3; d3ÞÞ þ ððX ; dÞÞ

� Uðg; d1; d2; d3; dÞg:
The partial conjugates of the nonlocal free energy with respect to the state variables ðe; a1; a2; a3Þ and with
respect to the kinematic variable j provide the semicomplementary nonlocal free energies, respectively,
expressed by the convex functionals W : S � Y 01 � Y 02 � Y 03 � Y ! R [ fþ1g and W� : D� Y1 � Y2 � Y3�
Y 0 ! R [ fþ1g which are defined by:
Wðr; v1; �v2; v3; jÞ ¼ � inf
Y
fððY ; jÞÞ � U�ðr; v1; �v2; v3; Y Þg

¼ sup
ðg;d1;d2;d3Þ

fððr; gÞÞ þ ððv1; d1ÞÞ þ ðð�v2; d2ÞÞ þ ððv3; d3ÞÞ � Uðg; d1; d2; d3; jÞg

W�ðe; a1; a2; a3;�X Þ ¼ � inf
d
fððX ; dÞÞ � Uðe; a1; a2; a3; dÞg

¼ sup
ðs;n1;�n2;n3Þ

fððs; eÞÞ þ ððn1; a1ÞÞ þ ðð�n2; a2ÞÞ þ ððn3; a3ÞÞ � U�ðs; n1; �n2; n3;X Þg: ð20Þ
The nonlocal elastoplastic constitutive relations (16) can then be formulated according to the following
equivalent expressions:
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ðr;�v1; �v2; v3;�X Þ ¼ dUðe; a1; a2; a3; jÞ;
ðe; a1; a2; a3; jÞ ¼ dU�ðr;�v1; �v2; v3;�X Þ;
ðe; a1; a2; a3;X Þ ¼ dWðr;�v1; �v2; v3; jÞ;
ðr;�v1; �v2; v3; jÞ ¼ dW�ðe; a1; a2; a3;X Þ

ð21Þ
which can be equivalently rewritten in terms of Fenchel’s equalities:
�Wðr;�v1; �v2; v3; jÞ þ U�ðr;�v1; �v2; v3;�X Þ ¼ �ððX ; jÞÞ;
Wðr;�v1; �v2; v3; jÞ þ Uðe; a1; a2; a3; jÞ ¼ ððr; eÞÞ � ððv1; a1ÞÞ þ ðð�v2; a2ÞÞ þ ððv3; a3ÞÞ;
�W�ðe; a1; a2; a3;X Þ þ Uðe; a1; a2; a3; jÞ ¼ �ððX ; jÞÞ;
W�ðe; a1; a2; a3;X Þ þ U�ðr;�v1; �v2; v3;�X Þ ¼ ððr; eÞÞ � ððv1; a1ÞÞ þ ðð�v2; a2ÞÞ þ ððv3; a3ÞÞ;
Uðe; a1; a2; a3; jÞ þ U�ðr;�v1; �v2; v3;�X Þ ¼ ððr; eÞÞ � ððv1; a1ÞÞ þ ðð�v2; a2ÞÞ þ ððv3; a3ÞÞ � ððX ; jÞÞ;
Wðr;�v1; �v2; v3; jÞ þW�ðe; a1; a2; a3;X Þ ¼ ððr; eÞÞ � ððv1; a1ÞÞ þ ðð�v2; a2ÞÞ þ ððv3; a3ÞÞ þ ððX ; jÞÞ:

ð22Þ
4. The plastic yielding laws

The elastic domain C is defined in the space of static internal variables ðv1; �v2; v3;X Þ as the level set of a
convex yield mode G : bS ! R [ fþ1g in the form:
C ¼ fðv1; �v2; v3;X Þ 2 bS : Gðv1; �v2; v3;X Þ 6 0g ð23Þ

provided that the minimum of G is negative.

In the applications the nonlocal yield mode G is usually written in terms of the convex yield function g in
the form:
Gðv1; �v2; v3;X Þ ¼ gðv1Þ � �v2 � v3 � X � v0 6 0 ð24Þ

where v0 represents a constant scalar value which characterize the initial yield limit. The choice of the function
g depends on the particular yield criterion adopted for the material, see e.g. Salençon (1983). Note that the
yield function g is expressed in terms of the static internal variable v1 which is linked to the stress r by the
relation (17)2 and the static internal variables �v2, v3 and X control the size of the elastic domain.

In the proposed model some of the static internal variables are treated as local and some as nonlocal in
order to get a nonlocal elastoplastic problem which can be specialized to several existing model of nonlocal
plasticity as provided in Marotti de Sciarra (in press). The variable v1 is linked to the stress as reported in
(17)2 so that a kinematic hardening is introduced in the model since the stress r is admissible if the associated
thermodynamic force A0r belongs to the transformation of the elastic domain C by the amount da1

Uin.
Depending on the expression of the free energy, the static internal variable v1 can coincide to the stress r
so that the yield function g is expressed in terms of stresses.

If, besides the static internal variable v1, one local internal variable is introduced in the model, say v3, the
free energy is given by Uðe; a3Þ and the elastic domain is given in the form Gðv1; v3Þ ¼ gðv1Þ � v3 � v0 6 0 so
that the model is, trivially, local. If one nonlocal internal variables is considered, say X , the free energy is given
by Uðe; jÞ and the elastic domain is given as Gðv1;X Þ ¼ gðv1Þ � X � v0 6 0. The model does not act as a gen-
uine localization limiter since it does not prevent localization of plastic strains into a set of zero measure. A
theoretical and computational discussion on this issue is provided in Section 7.

As a consequence two internal variables v3 and X must be related to plastic softening. An additional var-
iable �v2 is introduced in the nonlocal model since the internal variables �v2, v3 and X can be combined in var-
ious ways in the expression of the free energy so that several existing softening models can be recovered as
special cases of the present model (Marotti de Sciarra, in press).

A mechanical interpretation of the dual kinematic internal variables is given in the sequel after the speci-
fication of the flow rule.

The generalized flow rule is given in the following three equivalent forms:
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ð _a1;� _a2;� _a3; _jÞ 2 N Cðv1; �v2; v3;X Þ
ðv1; �v2; v3;X Þ 2 oDð _a1;� _a2;� _a3; _jÞ
tCðv1; �v2; v3;X Þ þ Dð _a1;� _a2;� _a3; _jÞ ¼ ððv1; _a1ÞÞ � ðð�v2; _a2ÞÞ � ððv3; _a3ÞÞ þ ððX ; _jÞÞ

ð25Þ
where tCðv1; �v2; v3;X Þ is the indicator of the elastic domain and D : bD ! R [ fþ1g has the physical meaning
of dissipation associated with a given rate ð _a1;� _a2;� _a3; _jÞ of internal kinematic variables. The functional D is
the support functional of the elastic domain C:
Dð _a1;� _a2;� _a3; _jÞ ¼ supfððs1; _a1ÞÞ � ðð�s2; _a2ÞÞ � ððs3; _a3ÞÞ þ ððY ; _jÞÞ s:t: ðs1;�s2;s3;Y Þ 2 Cg; ð26Þ
where ‘‘s.t.’’ stands for ‘‘subject to’’. The sup operation is then performed with respect to the state variables
ðs1;�s2;s3;Y Þ belonging to the elastic domain C.

The dissipation D turns out to be nonnegative if and only if the null static internal variables belong to the
elastic domain C. Moreover the functional D is strictly positive if and only if the null static internal variables
lie in the interior of the elastic domain C (see Romano et al., 1993b, in the case of local plasticity).

The dissipation attains its maximum at the point ðv1; �v2; v3;X Þ which fulfils the normality rule with the rate
of the kinematic internal variables ð _a1;� _a2;� _a3; _jÞ and is given by (Marotti de Sciarra, in press):
Dð _a1;� _a2;� _a3; _jÞ ¼ ððv1; _a1ÞÞ � ðð�v2; _a2ÞÞ � ððv3; _a3ÞÞ þ ððX ; _jÞÞ: ð27Þ
Recalling the expression (24) of the yield mode, the flow rule (25)1 can be equivalently rewritten in terms of
the plastic multiplier k. In fact, being tCðv1; �v2; v3;X Þ ¼ ðtR� � GÞðv1; �v2; v3;X Þ, where R� denotes the set of
nonpositive scalars, it results (Marotti de Sciarra, 2004):
otCðv1; �v2; v3;X Þ ¼ oðtR� � GÞðv1; �v2; v3;X Þ ¼ otR� ½ðGv1; �v2; v3;X Þ�ðdGv1; �v2; v3;X Þ:
Noting that otR� ½ðGv1; �v2; v3;X Þ� ¼ NR� ½ðGv1; �v2; v3;X Þ�, where NR� denotes the normal cone to the set R�,
the flow rule (25)1 can be rewritten in the equivalent forms:
ð _a1;� _a2;� _a3; _jÞ 2 otCðv1; �v2; v3;X Þ
ð _a1;� _a2;� _a3; _jÞ ¼ kdGðv1; �v2; v3;X Þ s:t: k 2 NR� ½Gðv1; �v2; v3;X Þ�
ð _a1;� _a2;� _a3; _jÞ ¼ kdGðv1; �v2; v3;X Þ

s:t: k P 0; gðv1Þ � �v2 � v3 � X � v0 6 0

k½gðv1Þ � �v2 � v3 � X � v0� ¼ 0:

ð28Þ
Recalling the expression (24), the flow rule (28)3 can be explicitly rewritten as:
_a1 ¼ kdv1
Gðv1; �v2; v3;X Þ ¼ kdgðv1Þ

� _a2 ¼ kd�v2
Gðv1; �v2; v3;X Þ ¼ �k

� _a3 ¼ kdv3
Gðv1; �v2; v3;X Þ ¼ �k

_j ¼ kdX Gðv1; �v2; v3;X Þ ¼ �k

8>>><>>>: ð29Þ
under the complementarity conditions:
k P 0; gðv1Þ � �v2 � v3 � X � v0 6 0

k½gðv1Þ � �v2 � v3 � X � v0� ¼ 0:
ð30Þ
As a result, the kinematic internal variable a1 coincides to the plastic strain if A ¼ I and the flow rule (29)1 is
expressed in terms of the plastic strain rate. Moreover the rate of the kinematic internal variables _a2, _a3 and � _j
coincide to the plastic multiplier k. Since in the elastic range a2 ¼ a3 ¼ j ¼ 0, the relations (29)2–4 yield the
equalities a2 ¼ a3 ¼ �j and they coincide to the actual value of the plastic multiplier.

If the yield mode fulfils the condition kdgðv1Þk ¼ 1, it results _a2 ¼ _a3 ¼ � _j ¼ k _a1k being
k _a1k ¼ kkdgðv1Þk ¼ k. Hence the kinematic internal variables a2, a3 and j can be related to the accumulated
generalized plastic strain in the following form:
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a2 ¼ a3 ¼ �j ¼
Z t

0

k _a1ðsÞkds ¼ ap:
In most of nonlocal elastoplastic models, the flow rule is expressed in terms of plastic strains. This require-
ment can be fulfilled by assuming that the operator A coincides to the identity one so that a1 ¼ p and the accu-
mulated generalized plastic strain coincides to the effective plastic strain ep, i.e. ap ¼ ep ¼

R t
0
k _pðsÞkds.

Accordingly the kinematic internal variables a2 ¼ a3 ¼ �j have the physical meaning of the effective plastic
strain. In this case the size of the elastic domain is driven by the sum of the static internal variables
�v2 þ v3 þ X which depend on the effective plastic strain.

Assuming a linear behavior with linear hardening/softening and a macroscopically homogeneous material
for which the moduli h, h2 and h3 are constant in space, the dissipative force is given by:
q ¼ �v2 þ v3 þ X ¼ R0h2Ra2 þ h3a3 � R0hRj ¼ h3a2 þ R0ðh2 þ hÞRa2:
The size of the elastic domain is then controlled by the sum of a local variable and of a nonlocal one so that
a localized plastic zone of nonzero measure can be obtained.

If the material parameters are such that h2 þ h ¼ bm and h3 ¼ ð1� bÞm, where b is a suitable material
parameter and m < 0 is a plastic modulus, softening is driven by the linear combination
q ¼ ð1� bÞma2 þ bm~a2
where ~a2 ¼ R0Ra2. A model similar to the one proposed by Vermeer and Brinkgreve (1994) is thus recov-
ered. For b ¼ 0 the local model of plasticity is recovered and for b ¼ 1 the cohesive model is obtained.
For 0 6 b 6 1, Planas et al. (1993) proved in the one-dimensional setting that the plastic strain localizes
into a set of zero measure that is a single cross section of the bar. The plastic zone has a nonzero measure
if b > 1.

The size of the elastic domain is controlled by the variable q so that the kinematic internal variables a2 can
be assumed as the driving variable of the softening law.
5. The structural problem for nonlocal elastoplasticity

Let one assume that displacements u belong to the Sobolev space U ¼ HmðBÞ of fields which are
square integrable in B together with their distributional derivatives up to the order m (Brezis, 1983).
Conforming displacement fields fulfil linear constraint conditions and belong to a closed linear subspace
L 	 U .

The kinematic operator B 2 LinfU ;Dg is a bounded linear operator from U to the Hilbert space of square
integrable strain fields e 2 D.

Denoting by F the subspace of external forces, which is dual of U, the continuous operator
B0 2 LinfS;Fg, dual of B, is the equilibrium operator. The symbol h�; �i denotes the duality pairing between
U and its dual F .

Let ‘ ¼ ft; bg 2 F be the load functional where t and b denote the tractions and the body forces. For sim-
plicity, imposed strains and displacements are not considered.

The equilibrium equation and the compatibility condition are:
f ¼ B0r where f 2 F ; r 2 S; e ¼ Bu where e 2 D; u 2 U :
The external relation between reactions and displacements is assumed to be given by:
r 2 o� ðuÞ
being � : U ! R [ f�1g a concave functional. Accordingly, the inverse relation is expressed as:
u 2 o� �ðrÞ
where the concave functional � � : F ! R [ f�1g represents the conjugate of � and Fenchel’s relation holds:
� ðuÞ þ � �ðrÞ ¼ hr; ui: ð31Þ
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Different expressions can be given to the functional � depending on the type of external constraints such as
bilateral, unilateral, elastic or convex. A survey of the particular expression assumed by the functional in each
of these cases can be found in Romano (2002). For future reference we report the expressions of � and � � in
the case of external frictionless bilateral constraints with homogeneous boundary conditions. Noting that the
subspace of the external constraint reactions R is the orthogonal complement of the subspace of conforming
displacements L, that is R ¼ L?, the functional � turns out to be:
� ðuÞ ¼ uLðuÞ ¼
0 if u 2 L

�1 otherwise

�

and
� �ðrÞ ¼ uL?ðrÞ ¼
0 if r 2 L? ¼ R

�1 otherwise:

(

Accordingly the relation r 2 o� ðuÞ is equivalent to state u 2 L and r 2 R ¼ L?, i.e. hr; ui ¼ 0 for any con-
forming displacement u 2 L.

The relations governing the nonlocal elastoplastic structural problem for a given load history ‘ðtÞ are:
B0r ¼ ‘þ r equilibrium

Bu ¼ e compatibility

ð _a1;� _a2;� _a3; _jÞ 2 N Cðv1; �v2; v3;X Þ flow rule

ðr;�v1; �v2; v3;�X Þ ¼ dUðe; a1; a2; a3; jÞ constitutive relation

u 2 o� �ðrÞ external relation:

8>>>>>><>>>>>>:
ð32Þ
The evolution analysis of a nonlocal elastoplastic problem can be performed by solving a sequence of prob-
lems in which the load increment is applied and the state variables are updated at the end of each increment
(see e.g. Reddy and Martin, 1991; Simo et al., 1988).

Attention is focused on a single step of the procedure for which the load increment is given. Accordingly
one needs to evaluate the finite increments of the unknown variables corresponding to the increment of strain
when their values are assigned at the beginning of the step. Let ð�Þo denote the known quantities ð�Þ at the
beginning of each step. In order to formulate the finite-step counterpart of the flow rule (32)3, the time deriv-
ative is replaced by the finite increment ratio ðDa1;�Da2;�Da3;DjÞ=Dt where D� ¼ ð�Þ � ð�Þo. Adopting a
fully implicit time integration scheme, the flow rule of the nonlocal model is enforced at the end of the step
according to the relation:
1

Dt
ðDa1;�Da2;�Da3;DjÞ 2 NCðv1; �v2; v3;X Þ
which, being N Cðv1; �v2; v3;X Þ a convex cone, can be rewritten in the equivalent forms:
ðDa1;�Da2;�Da3;DjÞ 2 NCðv1; �v2; v3;X Þ
ðv1; �v2; v3;X Þ 2 oDðDa1;�Da2;�Da3;DjÞ
tCðv1; �v2; v3;X Þ þ DðDa1;�Da2;�Da3;DjÞ ¼ ððv1;Da1ÞÞ � ðð�v2;Da2ÞÞ � ððv3;Da3ÞÞ þ ððX ;DjÞÞ:

ð33Þ
The finite-step nonlocal elastoplastic model is then given by
B0r ¼ ‘þ r equilibrium

Bu ¼ e compatibility

ðDa1;�Da2;�Da3;DjÞ 2 NCðv1; �v2; v3;X Þ finite-step flow rule

ðr;�v1; �v2; v3;�X Þ ¼ dUðe; a1; a2; a3; jÞ constitutive relation

u 2 o� �ðrÞ external relation:

8>>>>>><>>>>>>:
ð34Þ
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Introducing the product space W ¼ U � S � bS �D� bD � F and its dual space W 0, the finite-step struc-
tural problem (34) can be arranged to build up a global multi-valued structural operator S : W !W 0 govern-
ing the whole problem:
0 2 SðwÞ ¼ bSðwÞ þ wo; w 2W; wo 2W 0:
The explicit expression of the structural operator bS is:
bS ¼

0 B0 0 0 0 0 0 0 0 0 0 �IF

B 0 0 0 0 0 �ID 0 0 0 0 0

0 0 0 IY1
0 0 0 0

0 0 0 0 �IY2
0 0 0

�otC

0 0 0 0 0 �IY3
0 0

0 0 0 0 0 0 IY 0

0 �IS 0 0 0 0 0 0

0 0 IY0
1

0 0 0 0 0

0 0 0 �IY 0
2

0 0 0 0

dU

0 0 0 0 �IY0
3

0 0 0

0 0 IY 0 0 0

�IU 0 0 0 0 0 0 0 0 0 0 o� �

26666666666666666666666666666666664

37777777777777777777777777777777775

;

and the vectors w and wo are given by
wT ¼ u r v1 �v2 v3 X e a1 a2 a3 j r
� �

;

wo ¼ �‘ 0 �a1o a2o a3o �jo 0 0 0 0 0 0½ �:
It is apparent that the present nonlocal model is governed by single-valued and multi-valued operators so
that it is necessary the recourse to the potential theory for multi-valued operators (Romano et al., 1993a) in
order to derive, in a direct manner, the general mixed functional whose generalized gradient yields back the
field equations and the constitutive relations (34).

Accordingly the conservativity of the structural operator follows from the duality existing between the pairs
ðB;B0Þ, ðID; ISÞ, ðIY1

; IY0
1
Þ, ðIY2

; IY0
2
Þ, ðIY3

; IY0
3
Þ, ðIY ; IY 0 Þ, ðIU ; IF Þ, the conservativity of dU and the conservativity

of the subdifferentials otC and o� �.
The related potential can be evaluated by summing up the potentials of each component operator so that it

turns out to be:
XðwÞ ¼
Z 1

0

ððSðtwÞ;wÞÞdt ¼
Z 1

0

ððbSðtwÞ;wÞÞdt � h‘; ui � ððv1; a1oÞÞ þ ðð�v2; a2oÞÞ þ ððv3; a3oÞÞ � ððX ; joÞÞ;
to get:
Xðu; r; v1; �v2; v3;X ; e; a1; a2; a3; j; rÞ ¼ Uðe; a1; a2; a3; jÞ � tCðv1; �v2; v3;X Þ � ððr; eÞÞ
þ ððr;BuÞÞ þ ððv1; a1 � a1oÞÞ � ðð�v2; a2 � a2oÞÞ � ððv3; a3 � a3oÞÞ
þ ððX ; j� joÞÞ þ � �ðrÞ � h‘þ r; ui:
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The potential X turns out to be linear in ðu; rÞ, jointly convex with respect to the state variables ðe; a1; a2; a3Þ
and jointly concave with respect to ðv1; �v2; v3;X ; j; rÞ. The stationary conditions of X enforced at the point
ðu; r; v1; �v2; v3;X ; e; a1; a2; a3; j; rÞ provides the operator form of the structural problem (34). In fact the sta-
tionary condition:
0 2 oXðwÞ ()

0 2 ouXðwÞ
0 2 orXðwÞ
ð0; 0; 0; 0Þ 2 oðv1;�v2;v3;X ÞXðwÞ
ð0; 0; 0; 0; 0Þ 2 oðe;a1;a2;a3;jÞXðwÞ
0 2 orXðwÞ

8>>>>>><>>>>>>:

yields the relations:
B0r ¼ ‘þ r

Bu ¼ e

ðDa1;�Da2;�Da3;DjÞ 2 otCðv1; �v2; v3;X Þ
ðr;�v1; �v2; v3;�X Þ ¼ dUðe; a1; a2; a3; jÞ
u 2 o� �ðrÞ:

8>>>>>><>>>>>>:

By reverting the steps above, it can be shown that a solution of the finite-step nonlocal elastoplastic prob-

lem makes the functional X stationarity. The following statement then holds.

Proposition 1. The set of state variables ðu; r; v1; �v2; v3;X ; e; a1; a2; a3; j; rÞ is a solution of the saddle problem
min
ðe;a1;a2;a3Þ

max
ðv1;�v2;v3;X ;j;rÞ

stat
ðu;rÞ

Xðu; r; v1; �v2; v3;X ; e; a1; a2; a3; j; rÞ
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

A family of potentials can be recovered from the potential X by enforcing the field equations, the consti-
tutive relations and the external relation. All these functionals assume the same value when they are evaluated
at a solution point of the nonlocal elastoplastic structural problem.

6. Variational principles

Quite a few variational formulations have been proposed for the nonlocal elastoplastic problem (see e.g.
Borino et al., 1999 for rate nonlocal elastoplasticity, Mühlhaus and Aifantis, 1991 for gradient plasticity).
In the sequel different functionals in a reduced number of state variables and the related variational principles
are derived starting from the potential X. Such formulations are compared with the corresponding ones exist-
ing in the literature (if any) in the case of nonlocal or local plasticity.

Imposing in the expression of the potential X the finite-step flow rule (34)3, in terms of Fenchel’s equality
(33)3, and the constitutive relation (34)4, in terms of Fenchel’s equation (22)3, we get the following variational
formulation.

Proposition 2. The set ðu; r;X ; e; a1; a2; a3; j; rÞ is a solution of the saddle problem
min
ðe;a1;a2;a3;j;X Þ

max
r

stat
ðu;rÞ

X1ðu; r;X ; e; a1; a2; a3; j; rÞ
where
X1ðu; r;X ; e; a1; a2; a3; j; rÞ ¼ W�ðe; a1; a2; a3;X Þ � ððX ; jÞÞ þ DðDa1;�Da2;�Da3;DjÞ � ððr; eÞÞ
þ ððr;BuÞÞ þ � �ðrÞ � h‘þ r; ui
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

The stationary conditions of X1 enforced at the point ðu; r;X ; e; a1; a2; a3; j; rÞ are given by:
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ð0; 0; 0; 0; 0; 0; 0; 0; 0Þ 2 oX1ðu; r;X ; e; a1; a2; a3; j; rÞ

()

0 2 ouX1ðu; r;X ; e; a1; a2; a3; j; rÞ
0 2 orX1ðu; r;X ; e; a1; a2; a3; j; rÞ
0 2 oX X1ðu; r;X ; e; a1; a2; a3; j; rÞ
0 2 oeX1ðu; r;X ; e; a1; a2; a3; j; rÞ
ð0; 0; 0; 0Þ 2 oða1;a2;a3;jÞX1ðu; r;X ; e; a1; a2; a3; j; rÞ
0 2 orX1ðu; r;X ; e; a1; a2; a3; j; rÞ

8>>>>>>>><>>>>>>>>:

which yield the relations:
B0r ¼ ‘þ r

Bu ¼ e

j ¼ dX W�ðe; a1; a2; a3;X Þ
r ¼ deW

�ðe; a1; a2; a3;�X Þ
ð�dða1;a2;a3ÞW

�ðe; a1; a2; a3;�X Þ;X Þ 2 oða1;a2;a3;jÞDðDa1;�Da2;�Da3;DjÞ
u 2 o� �ðrÞ:

8>>>>>>>><>>>>>>>>:
ð35Þ
The relation (35)1 provides the equilibrium equation. The relation (35)2 represents the compatibility condi-
tion. The relations (35)3–4 yield the constitutive relations in terms of stresses r and of nonlocal kinematic inter-
nal variables j, according to (21)4. The relation (35)5 shows, according to (21)4, that the triplet
ð�v1; �v2; v3Þ ¼ dða1;a2;a3ÞW

�ðe; a1; a2; a3;X Þ is such that ðv1;��v2;�v3;X Þ 2 oða1;a2;a3;jÞDðDa1;�Da2;�Da3;DjÞ
which is equivalent to the flow rule ðv1; �v2; v3;X Þ 2 oDðDa1;�Da2;�Da3;DjÞ where the subdifferential is per-
formed with respect to the arguments of D. The relation (35)6 provides the external constraint. The structural
model is thus obtained. By reverting the steps above, a solution of the finite-step nonlocal elastoplastic prob-
lem makes the functional X1 stationarity.

The direct proof of the subsequent variational principles is omitted for conciseness and it can be performed
following the reasoning shown above for Proposition 2. It is worth noting that a new variational formulation
is obtained from an existing one by enforcing the fulfilment of the field equations and of the constitutive rela-
tions pertaining to the nonlocal model (34). Hence the variational formulations turn out to be equivalent each
other.

A variational principle in terms of the displacements, kinematic internal variables, static internal variable X
and external reactions can be obtained from the expression of the potential X1 by imposing the compatibility
condition (34)2 to get the next variational formulation.

Proposition 3. The set ðu; a1; a2; a3; j;X ; rÞ is a solution of the saddle problem
min
ðu;a1;a2;a3;j;X Þ

max
r

X2ðu; a1; a2; a3; j;X ; rÞ
where
X2ðu; a1; a2; a3; j;X ; rÞ ¼ W�ðBu; a1; a2; a3;X Þ � ððX ; jÞÞ þ DðDa1;�Da2;�Da3;DjÞ þ � �ðrÞ � h‘þ r; ui
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

Imposing in the expression of the potential X2 the external relation (34)5 in terms of Fenchel’s equality (31),
it turns out to be the following minimum principle holds.

Proposition 4. The set ðu; a1; a2; a3; j;X Þ is a solution of the convex optimization problem
min
ðu;a1;a2;a3;j;X Þ

X3ðu; a1; a2; a3; j;X Þ
where
X3ðu; a1; a2; a3; j;X Þ ¼ W�ðBu; a1; a2; a3;X Þ � ððX ; jÞÞ þ DðDa1;�Da2;�Da3;DjÞ � � ðuÞ � h‘; ui
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if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

Remark 5. It is of interest to investigate the condition for the finite-step nonlocal elastoplastic structural prob-
lem (34) to admit a unique solution. In fact, minimum principles in structural mechanics are relevant since
solution techniques can be exploited and existence and uniqueness results can be provided by recourse to func-
tional analysis. In particular, uniqueness of the solution is ensured if the functional to be minimized is strictly
convex. If the semicomplementary free energy W� pertaining to the nonlocal constitutive model is strictly con-
vex, the functional X3 turns out to be strictly convex and the finite-step nonlocal elastoplastic structural model
(34) admits a unique solution (if any). Since the constitutive model is usually formulated in terms of the free
energy U, it is useful to provide the uniqueness condition in terms of the free energy. Noting that a convex
functional is strictly convex if and only if its conjugate is differentiable, the functional W� turns out to be
strictly convex if and only if the free energy U is differentiable with respect to the kinematic internal variable
j and strictly convex with respect to the state variables ðe; a1; a2; a3Þ. Existence of the solution is still an open
problem.

The extension to the present nonlocal context of the classical one-field variational formulation in stress
rates, known as Prager–Hodge principle (Prager and Hodge, 1951) can be obtained from the potential X
by imposing the equilibrium equation (34)1 and the constitutive relation (34)4 in terms of Fenchel’s equality
(22)2:
X4ðr; v1; �v2; v3;X Þ ¼ �U�ðr;�v1; �v2; v3;�X Þ � tCðv1; �v2; v3;X Þ � ððv1; a1oÞÞ þ ðð�v2; a2oÞÞ þ ððv3; a3oÞÞ
� ððX ; joÞÞ þ � �ðB0r� ‘Þ

¼ �W �ðr; v1; �v2; v3;X Þ þ � �ðB0r� ‘Þ
where
W �ðr; v1; �v2; v3;X Þ ¼ U�ðr;�v1; �v2; v3;�X Þ þ tCðv1; �v2; v3;X Þ þ ððv1; a1oÞÞ � ðð�v2; a2oÞÞ � ððv3; a3oÞÞ
þ ððX ; joÞÞ:
It is worth noting that the potential X4 is concave in ðr; v1; �v2; v3Þ and convex in X if the static internal vari-
ables belong to the elastic domain since the indicator of the elastic domain vanishes. The following result thus
holds.

Proposition 6 (Finite-step nonlocal Prager–Hodge principle). The set ðr; v1; �v2; v3;X Þ is a solution of the

optimization problem:
max
ðr;v1;�v2;v3Þ

stat
X

X4ðr; v1; �v2; v3;X Þ
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

The extension to the present nonlocal context of the classical one-field variational formulation in displace-
ment rates, due to Greenberg (Greenberg, 1949), can be obtained from the potential X3 by performing the
following minimization:
W ðBuÞ ¼ inf
ða1;a2;a3;j;X Þ

W�ðBu; a1; a2; a3;X Þ � ððX ; jÞÞ þ
�

DðDa1;�Da2;�Da3;DjÞg:
Substituting the functional W into the expression of the potential X3, the following convex functional is
obtained
X5ðuÞ ¼ W ðBuÞ � � ðuÞ � h‘; ui

and the next statement then holds.

Proposition 7 (Finite-step nonlocal Greenberg principle). The displacement u is a solution of the convex
optimization problem:
min
u

X5ðuÞ



F. Marotti de Sciarra / International Journal of Solids and Structures 45 (2008) 2322–2354 2337
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

The corresponding of the finite-step Greenberg principle in which the plastic multiplier k explicitly appears
as an independent variable is derived hereafter.

To this end the complementarity conditions (30) can be rewritten in the form:
k 2 otR� ½Gðv1; �v2; v3;X Þ� () Gðv1; �v2; v3;X Þ 2 otþRðkÞ ð36Þ

being tR� and tRþ conjugate functionals. By virtue of Fenchel’s equality (Hiriart-Urruty and Lemarechal,
1993), the relation (36) between k and G can be equivalently formulated in the form:
tR� ½Gðv1; �v2; v3;X Þ� þ tRþðkÞ ¼ ððk;Gðv1; �v2; v3;X ÞÞÞ: ð37Þ

Recalling that tCðv1; �v2; v3;X Þ ¼ tR� ½Gðv1; �v2; v3;X Þ� and inserting (37) in the expression of the functional

W, it results:
W ðBu; kÞ ¼ inf
ða1;a2;a3jÞ

stat
j
fUðBu; a1; a2; a3; jÞ þ DðDa1;�Da2;�Da3;DjÞg

¼ inf
ða1;a2;a3;jÞ

sup
ðv1;�v2;v3;X Þ

fUðBu; a1; a2; a3; jÞ � tCðv1; �v2; v3;X Þ þ ððv1;Da1ÞÞ � ðð�v2;Da2ÞÞ

� ððv3;Da3ÞÞ þ ððX ;DjÞÞg
¼ inf
ða1;a2;a3;jÞ

sup
ðv1;�v2;v3;X Þ

fUðBu; a1; a2; a3; jÞ � ððk;Gðv1; �v2; v3;X ÞÞÞ þ ððv1;Da1ÞÞ � ðð�v2;Da2ÞÞ

� ððv3;Da3ÞÞ þ ððX ;DjÞÞg þ tRþðkÞ:
The variational principle in terms of ðu; kÞ is the nonlocal counterpart of the variational formulation intro-
duced by Capurso (1969), Capurso and Maier (1970) for local rate plasticity. It follows from X5 by consid-
ering the above expression of the functional W to get the next variational principle.

Proposition 8. The set ðu; kÞ is a solution of the convex optimization problem:
min
ðu;kÞ

X6ðu; kÞ
where
X6ðu; kÞ ¼ W ðBu; kÞ � � ðuÞ � h‘; ui

if and only if it is a solution of the finite-step nonlocal elastoplastic problem (34).

Minimum principles are relevant in structural mechanics since, as previously shown, uniqueness can be
inferred by the recourse to properties of convex functionals, and, moreover, existence results can be provided
under suitable conditions and solution techniques based on minimization procedure can be exploited.

From a computational point of view, algorithms of convex optimization can be adopted for the numerical
solution of the optimization finite-step problem which arises from a space discretization by the finite element
method.

In particular, the variational formulation stated in Proposition 4 has been accounted for in the discussion of
uniqueness and will be resorted to for the consistent formulation of the predictor-corrector algorithm and for
the convergence analysis of the method in Section 8. The results of Propositions 6–8 are the generalization to
the present nonlocal context of the classical principles of Prager–Hodge, Greenberg and Capurso and Maier
for local rate plasticity. From the Proposition 8 a convex optimization problem will be derived (see Section 7)
in order to show that the present general theory can be specialized to recover existing variational formulations
for nonlocal models contributed in the literature.

7. A model with a nonlocal softening variable

The general constitutive model adopted in this paper can be specialized to several existing softening models
of plasticity based upon an integral approach (Marotti de Sciarra, in press). The proposed variational formu-
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lations can then be used to recover in a straightforward manner the structural model associated with the con-
sidered constitutive model. The procedure consists in the following steps: (i) define the linear operator L intro-
duced in (2) in order to provide the correspondence between the plastic strain p and the kinematic internal
variable a1; (ii) specialize the expression of the free energy (3); (iii) specialize the expression of the elastic
domain C given by (24); (iv) specialize the general variational formulation expressed in terms of the potential
X. Such a procedure can be repeated with reference to the other functionals provided in this paper.

Hereafter the model contributed in Borino et al. (1999) is considered in which the softening behavior is gov-
erned by one nonlocal internal variable.

The linear operator L is defined in Table 2(i) so that the kinematic internal variable a1 has the mechanical
meaning of the plastic strain p. The additive expression (3) of the free energy is reported in Table 2(ii) where
the elastic component ðUel � LÞ is convex in ðe; pÞ and the inelastic component ðUin � RÞ is concave in j.

The convex elastic domain C is defined in the space of static internal variables ðv1;X Þ as the level set of a
convex yield mode G in the form:
Table
Indepe

X
X1

X2

X3

X4

X5

X6

Table
Model

(i)
(ii)
(iii)
(iv)
C ¼ fðv1;X Þ 2 Y 01 � Y 0 : Gðv1;X Þ 6 0g
where G is reported in Table 2(iii).
Imposing in the expression of the functional X the compatibility condition (34)2 and the external relation

(34)5 in terms of Fenchel’s equality (31), the potential X1B reported in Table 2(iv) is recovered.
The potential X1B turns out to be jointly convex with respect to the state variables ðu; pÞ and jointly concave

with respect to ðv1;X ; jÞ. The stationary conditions of X1B enforced at the point ðu; v1;X ; p; jÞ in the form:
0 2 ouX1Bðu; v1;X ; p; jÞ
0 2 opX1Bðu; v1;X ; p;jÞ
0 2 ojX1Bðu; v1;X ; p; jÞ
ð0; 0Þ 2 oðv1;X ÞX1Bðu; v1;X ; p; jÞ

8>>>><>>>>:

provide the structural problem associated with the model of Borino et al. (1999):
B0dUelðBu� pÞ � ‘ 2 o� ðuÞ
v1 ¼ dUelðBu� pÞ
X ¼ �R0dUinð�jÞ
Dp ¼ kdgðv1Þ; Dj ¼ �k;

8>>><>>>: ð38Þ
1
ndent fields appearing in the variational principles

Independent fields

u r v1 �v2 v3 X e a1 a2 a3 j r k

% % _ _ _ _ ^ ^ ^ ^ _ _

% % ^ ^ ^ ^ ^ ^ _

^ ^ ^ ^ ^ ^ _

^ ^ ^ ^ ^ ^

_ _ _ _ ^

^

^ ^

2
with a local plastic strain

L ¼ ½ID � ID�; e ¼ Lðe; a1Þ ¼ e� a1 ¼ e� p
Uðe; p; jÞ ¼ Uelðe� pÞ þ UinðRjÞ
Gðv1;X Þ ¼ gðv1Þ � X � v0

X1Bðu; v1;X ; p;jÞ ¼ UelðBu� pÞ þ UinðRjÞ � tCðv1;X Þ þ ððv1; p � poÞÞ þ ððX ;j� joÞÞ � � ðuÞ � h‘; ui
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s.t. k P 0, Gðv1;X Þ 6 0 and kGðv1;X Þ ¼ 0.
The relation (38)1 shows that there exist a strain e ¼ Bu, a stress r ¼ dUelðBu� pÞ and an external reaction

r 2 o� ðuÞ which fulfil the equilibrium equation B0r ¼ ‘þ r. The equality (38)2 shows that the static internal
variable v1 coincides to the stress r. The relation (38)3 shows that the nonlocal static internal force X is the
opposite of the R0-transformed of the dissipative force d�jUinð�jÞ. The equality (38)4 provides the finite-step flow
rule. The model proposed in Borino et al. (1999) is thus recovered.

From a mechanical point of view, the kinematic internal variable a1 coincides to the plastic strain and its
conjugate static variable v1 turns out to be equal to the stress r. The kinematic internal variable j is the soft-
ening variable and has the physical meaning of the opposite of the cumulative plastic strain for suitable choices
of the yield mode. The related dual force X is the variable that controls the size of the elastic domain.

Being r ¼ v1, the elastic domain and the finite-step flow rule (38)4 can be expressed in terms of stresses and
the following variational principle holds.

Proposition 9. The set ðu; r;X ; p; jÞ is a solution of the saddle problem:
min
ðu;pÞ

max
ðv1;X ;jÞ

X1Bðu; r;X ; p; jÞ
if and only if it is a solution of the finite-step nonlocal elastoplastic problem (38).

The mixed min–max problem above is the finite-step counterpart of the mixed-type principle reported in
Borino et al. (1999) for the rate problem.

Form the mechanical point of view the kinematic internal variable j is related to the effective plastic strain
ep if the yield mode is such that kdgðrÞk ¼ 1. In fact, being k _pk ¼ kkdgðrÞk ¼ k and noting the equalities
� _j ¼ k ¼ k _pk, the opposite of the kinematic internal variable j has the meaning of the accumulated plastic
strain �j ¼

R t
0
k _pðsÞkds ¼ ep. As a consequence, the degradation of the yield stress is driven by the nonlocal

variable X which depends on the effective plastic strain ep.
The finite-step counterpart of the kinematic-type variational principle reported in Borino et al. (1999) for

the rate problem can be obtained from the potential X6. In fact it turns out to be:
W ðBu; kÞ ¼ U Bu; po þ kdrGðr;X Þ; jo þ kdX Gðr;X Þ
� 	

ð39Þ
subject to k P 0, Gðr;X Þ 6 0 and kGðr;X Þ ¼ 0. In the case of linear elasticity and softening, assuming the
expression of Table 2(iii) for the yield mode G with r ¼ v1 and external frictionless bilateral constraints,
the potential X6, recalling the relation (39), becomes:

Proposition 10. The set ðu; kÞ is a solution of the convex optimization problem:
min
ðu;kÞ

X2Bðu; kÞ
where
X2Bðu; kÞ ¼
1

2
ððEðBu� pðkÞÞ;Bu� pðkÞÞÞ þ 1

2
ððhNLRjðkÞ;RjðkÞÞÞ � h‘; ui
under the conditions u 2 L and
p � po ¼ kdgðrÞ j� jo ¼ �k

k P 0;Gðr;X Þ 6 0; kGðr;X Þ ¼ 0;

�

with r ¼ EðBu� pðkÞÞ, X ¼ �R0hNLRjðkÞ being hNL a negative modulus, if and only if it is a solution of the

finite-step nonlocal elastoplastic problem (38).

The above minimum principle is also the nonlocal finite-step counterpart of the principle given by
Mühlhaus and Aifantis (1991) for gradient plasticity.

7.1. Bar under uniaxial tension

To fix the ideas, let the nonlocal counterpart �j of the kinematic variable j, linked to X which governs the
size of the elastic domain, be defined in the following form:
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�jðxÞ ¼ ðRjÞðxÞ ¼
Z
B

bxðnÞjðnÞdn 8 x 2 B ð40Þ
where the volume B of the structure is referred to a Cartesian orthogonal co-ordinate system x. The linear
regularization operator R : Y ! Z transforms the local kinematic internal variable j into the related nonlocal
variable �j since its value at the point x of the body B depends on the entire field j.

In the equality (40), b is the space weight function which describes the mutual long-range elastic interaction.
From a mechanical standpoint, the space weight function b is positive, have its maximum for x ¼ n and
decreases monotonically and rapidly to zero approaching the boundary of the interaction zone. For
kx� nkP R, where R is the chosen influence distance, the space weight function b vanishes.

It is worth emphasizing that a nonlocal behavior must be present for high space variation of a local field so
that it should be R ¼ I for uniform fields being I the identity operator. Accordingly the weight function b must
fulfil the normalizing condition:
Z

B

bxðnÞdn ¼ 1 ð41Þ
for any x in B. In order to impose such a condition, also for points close to the boundary of the body in which
the interaction zone is deprived of a contribution, the following nonstandard weight function is commonly
assumed (see e.g. Pijaudier-Cabot and Bažant, 1987; Jirásek and Rolshoven, 2003):
bxðnÞ ¼
1

V ðxÞ gðx; nÞ ð42Þ
where the scalar function gðx; nÞ is the attenuation (or influence) function and
V ðxÞ ¼
Z
B

gðx; nÞdn ð43Þ
is called the representative volume.
The attenuation function gðx; nÞ usually depends upon the Euclidean distance kx� nk and is governed by

the material internal length scale l since the regularization takes place if the distance between the source point
n, at which a local variable is considered, and the point x, where the nonlocal effect is considered, is less than
the influence distance R which is a multiple of the internal length. A more refined dependence of g on the pair
ðx; nÞ in the case of nonhomogeneous materials and for a body having cracks or gaps in the convexity of the
domain B occupied by the structure can be found in Polizzotto et al. (2004, 2006).

Note that the nonstandard weight function (42) is not symmetric, that is bxðnÞ 6¼ bnðxÞ due to the require-
ment to accommodate the uniform field condition near to the boundary of the body.

Typical choices for the attenuation functions are the Gauss-like function:
gðx; nÞ ¼ 1

l
ffiffiffiffiffiffi
2p
p exp �kx� nk2

2l2

 !
; ð44Þ
the bi-exponential function:
gðx; nÞ ¼ 1

2l
exp �kx� nk

l

� �
ð45Þ
where it is assumed l ¼ R=6 in the examples, or the bell-shaped polynomial function:
gðx; nÞ ¼ 15

16R
1� kx� nk2

R2

 !2

; ð46Þ
if kx� nk 6 R and gðx; nÞ ¼ 0 if kx� nk > R.
The Gauss-like and the bi-exponential functions have an unbounded support so that the nonlocal interac-

tions have effects at arbitrary distances. Since the decay of the exponential function for increasing kx� nk=l is
very fast, from a computational point of view, it is possible to assume that the attenuation function gðx; nÞ is
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vanishing if kx� nk > R, being R the interaction distance. On the contrary the bell-shaped polynomial func-
tion (46) has a bounded support and gðx; nÞ vanishes for kx� nk > R.

In order to get a symmetric weight function b, the following expression is considered in the sequel:
bxðnÞ ¼ 1� a
V ðxÞ
V 1

� �
dðx; nÞ þ a

V 1
gðx; nÞ ð47Þ
where the symbol dðx; nÞ denotes the Dirac delta function, V 1 is the value assumed by the representative vol-
ume V for an unbounded body and a is an dimensional scalar parameter which can be calibrated by suitable
identification tests. Accordingly the regularization operator is self-adjoint, i.e. R ¼ R0. The expression (47) fol-
lows from the one proposed in Borino et al. (2003) within the context of nonlocal damage.

Let us consider a one-dimensional bar of length L = 100 cm which is fixed at one end and loaded by an
applied displacement at the opposite end. The material length scale is l = 2 cm, the interaction distance
R = 12 cm and a = 1. The uniaxial strain distribution is uniform along the bar before the peak of the
stress–strain curve. After the peak the stress remains uniform and decreases but the plastic zone is localized
into a narrow band and, sometimes, into a single cross section. Typically it is necessary to distinguish between
the case in which the plastic zone is far from the boundaries so that the analysis can be carried out as if the bar
is infinite and the case in which the plastic region is close to the boundary and the scaling effects of the non-
local weight must be considered. On the contrary, in the proposed approach, the two cases depicted above can
be analyzed in a unitary framework since the symmetric weight function (47) is adopted.

For a uniform kinematic internal variable, Fig. 1a–c report the plots of the functions W ðxÞ ¼
R
B
bxðnÞdn,

ð1� aV ðxÞ=V 1Þ, aV ðxÞ=V 1 and of the representative volume V ðxÞ in which the attenuation function g is,
respectively, chosen as the Gauss-like function (44), the bi-exponential function (45) and the bell-shaped poly-
nomial function (46). It is worth emphasizing that the considered weight function preserve constant fields since
the normalizing condition (41) is fulfilled as shown in Fig. 1 from a computational point of view independent
of the choice of the attenuation functions g. Moreover, the dual averaging preserves constant field since the
regularization operator is self-adjoint.

To analyze the possible localization of the plastic strain into a part of the bar, the structural problem given
by the relations (38) is considered assuming a linear elastic and softening behavior.

In a uniaxial tensile test the yield condition can be written in the form r� X � ro ¼ 0. From (38)3–4 it
results X ¼ �R0hRj and p ¼ �j so that the kinematic internal variable j fulfils the following integral condi-
tion at a localization point xp of the bar determined by random imperfections:
r� ro

h
¼ ðR0RjÞðxpÞ ¼

Z
B

Zðxp; nÞjðnÞdn ð48Þ
being
ðR0RjÞðxÞ ¼
Z
B

bxðzÞ
Z
B

bzðnÞjðnÞdn

� �
dz ¼

Z
B

Z
B

bxðzÞbzðnÞdz
� �

jðnÞdn ¼
Z
B

Zðx; nÞjðnÞdn
where
Zðx; nÞ ¼
Z
B

bxðzÞbzðnÞdz ð49Þ
is the symmetric double weight function. The double weight function derived from the bell-shaped attenuation
function g is plotted in Fig. 2, together with the attenuation function g itself, at the middle section of the pre-
viously introduced bar.

It is worth noting that the nonlocal averaging with the proposed double weight function (49) transforms a
uniform local variable defined in a finite domain into a nonlocal variable which is uniform, also near the
boundary. In fact it results:
Z

B

Zðx; nÞdn ¼
Z
B

Z
B

bxðzÞbzðnÞdzdn ¼
Z
B

bxðzÞ
Z
B

bzðnÞdn

� �
dz ¼

Z
B

bxðzÞdz ¼ 1:



Fig. 2. Double weight function derived from the bell-shaped attenuation function g and the attenuation function g at the middle section of
the one-dimensional bar with L = 100 cm and R = 12 cm.

Fig. 1. Plots of the symmetric weight function W ðxÞ, of the two contributions ð1� aV ðxÞ=V 1Þ and aV ðxÞ=V 1 and of the representative
volume V ðxÞ for a one-dimensional bar with l = 2 cm, R = 12 cm and a = 1 for different attenuation functions: (a) Gauss-like function; (b)
bi-exponential function; (c) bell-shaped polynomial function.
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Fig. 3. Numerical evaluation of the function
R
B

Zðx; nÞdn which turns out to be equal to 1 along the one-dimensional bar even in the
boundary layer.
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Fig. 3 shows the numerically evaluated integral above as a function of the variable x which turns out to be
equal to 1 along the one-dimensional bar. On the contrary usual approaches provide symmetric double func-
tions that do not meet the previous condition in the sense that a uniformly distributed local variable is trans-
formed into a nonlocal variable which is not uniform in the vicinity of the boundary (see e.g. Jirásek and
Rolshoven, 2003) since it is adopted a nonstandard weight function affected by scaling only in the boundary
layer.

The internal variable j fulfilling the relation (48) is then given by:
jðxÞ ¼ �pðxÞ ¼ r� ro

hZðxp; xpÞ
dðx� xpÞ ð50Þ
where xp is the localization point and d is the Dirac distribution centered at xp.
The nonlocal static internal variable X governing the degradation of the elastic domain turns then out to be:
X ðxÞ ¼ ðR0hRpÞðxÞ ¼ � r� ro

Zðxp; xpÞ

Z
B

Zðx; nÞdðn� xpÞdn ¼ � r� ro

Zðxp; xpÞ
Zðx; xpÞ ð51Þ
and it is a multiple of the double weight function centered at the localization point xp. The plastic zone is con-
centrated at the single cross section of the bar placed at x ¼ xp. Since the stress is constant, the current soft-
ening law ro þ X must reach its minimum at the localization point xp and changes not only in the plastic
region but also in its neighborhood since X is different form zero at points at which the local counterpart
X is vanishing. Accordingly the double weight function Z must attain its maximum at x ¼ xp. This is the char-
acteristic feature of the function Z so that the solutions (50) and (51) are valid.

The plots of the double weight function Zðxp; nÞ, as a function of n, for the considered one-dimensional
bar and for the localization point xp placed far from the boundary, right on the boundary and set in the vicin-
ity of the boundary are reported in Figs. 4–6 for different attenuation functions. In particular, the localization
point xp is assumed far from the end cross sections at xp = 51.56 cm ðxp=R ¼ 4:29Þ in Fig. 4, coincident to the
end cross section at xp = 0 in Fig. 5 and in the boundary layer at xp = 6.77 cm ðxp=R ¼ 1:77Þ in Fig. 6. It is
apparent that the maximum of the double weight function Zðxp; �Þ is always in correspondence of the consid-
ered localization point xp even if the plastic zone localizes into a cross section of the bar which is affected by the
presence of the boundary. On the contrary in the usual models, see e.g. Jirásek and Rolshoven (2003) for a
comprehensive overview, the double weight function has a maximum at a point which is different from the
localization point if it is placed at the end cross section or in the boundary layer due to the nonstandard form
of the weight function.

The double weight functions derived from the bi-exponential and Gauss-like functions provide a similar
distribution of the nonlocal static internal variable X . Such a distribution is sharper than the one correspond-
ing to the double weight functions derived from the bell-shaped function for each of the considerate localiza-
tion points of the plastic strain j ¼ �p. The peak appearing in the distribution of the nonlocal static internal
variable X derived from the Gauss-like function is due to the presence of a term containing the Dirac delta



Fig. 5. Plot of the double weight function Zðxp; nÞ for the considered one-dimensional bar at the localization point placed at the boundary
xp ¼ 0 for different attenuation functions: Gauss-like function; bi-exponential function; bell-shaped polynomial function. The maximum of
the double weight function Zðxp; nÞ is in correspondence of the localized cross section xp.

Fig. 6. Plot of the double weight function Zðxp; nÞ for the considered one-dimensional bar at the localization point xp ¼ 6:77, placed in the
boundary layer, for different attenuation functions: Gauss-like function; bi-exponential function; bell-shaped polynomial function. The
maximum of the double weight function Zðxp; nÞ is in correspondence of the localized cross section xp.

Fig. 4. Plot of the double weight function Zðxp; nÞ for the considered one-dimensional bar at the localization point xp ¼ 51:56 (far from the
boundary) for different attenuation functions: Gauss-like function; bi-exponential function; bell-shaped polynomial function.
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dðx� xpÞ in the expression (49). Further analyses on multi-dimensional examples have to be carried out and
they are the subject of ongoing researches.

The solution of the problem (48) leads to a displacement field of the form:
uðxÞ ¼ E�1rðxÞ þ HxpðxÞ
where Hxp is the Heaviside function centered at xp. The displacement jump at xp is then given by:



F. Marotti de Sciarra / International Journal of Solids and Structures 45 (2008) 2322–2354 2345
½½u��ðxpÞ ¼
r� ro

hZðxp; xpÞ

which leads to a cohesive traction-separation law:
r ¼ ro þ hZðxp; xpÞ½½u��ðxpÞ:

The stress transmitted by the cohesive zone vanishes if the displacement jump reaches the critical value

½½u��0ðxpÞ ¼ �r=ðhZðxp; xpÞÞ.
Hence the presented nonlocal formulation can be interpreted as a cohesive model where the plastic strain is

localized into a set of zero measure.
8. A convergence criterion

The elastic predictor followed by the plastic corrector is the classical scheme of computational plasticity for
the numerical solution of local and nonlocal elastoplastic finite-step structural problems, see e.g. Simo et al.
(1988) and Mühlhaus and Aifantis (1991).

In this section, the predictor-corrector scheme in term of dissipation is consistently derived by minimiz-
ing the functional X3 with respect to displacements and to internal variables alternatively. It is further
shown that the minimum principle involving the functional X3 leads to a sufficient condition for the con-
vergence of the iterative procedure and to a criterion for the choice of the material elastic stiffness in the
prediction phase.

In order to show the equivalence of the minimization of the functional X3 and the predictor-corrector
algorithm, the load path is divided in finite increments and the rth step (from r � 1 to r) of the load
history is considered. The corresponding increment of the applied load is denoted by D‘r. The increments
of the displacements and of the internal variables in the rth step are denoted by ðDur;Dar

1;
Dar

2;Dar
3;Djr;DX rÞ.

To fix the ideas, let us focus the attention in correspondence of the ith iteration (from i� 1 to i) of the rth
load step. Denoting by D�i�1 the known increment of the state variable � at the end of the iteration i� 1 (or
equivalently at the beginning of the iteration i) and by d�i the relevant unknown increment in the iteration ith,
the increments of the state variables can be written as:
Dui ¼ Dui�1 þ dui; Dai
1 ¼ Dai�1

1 þ dai
1; Dai

2 ¼ Dai�1
2 þ dai

2;

Dai
3 ¼ Dai�1

3 þ dai
3; Dji ¼ Dji�1 þ dji; DX i ¼ DX i�1 þ dX i:
In the case of nonlinear elastic and hardening/softening behavior and external frictionless bilateral con-
strains, the variational formulation associated with the potential X3 can then be modified to get:

Proposition 11. The set ðdui; dai
1; dai

2; dai
3; dji; dX iÞ is a solution of the convex optimization problem
min
ðdui ;dai

1
;dai

2
;dai

3
;dji;dX iÞ

bX3ðdui; dai
1; dai

2; dai
3; dji; dX iÞ
where
bX3ðdui; dai
1; dai

2; dai
3; dji; dX iÞ ¼ W�ðBðDui�1 þ duiÞ;Dai�1

1 þ dai
1;Dai�1

2 þ dai
2;Dai�1

3 þ dai
3;DX i�1 þ dX iÞ

� ððDX i�1 þ dX i;Dji�1 þ djiÞÞ þ Dðdai
1;�dai

2;�dai
3; djiÞ

� hD‘r;Dui�1 þ duii;
with ðDui�1 þ duiÞ 2 L, if and only if it is a solution of the finite-step nonlocal elastoplastic problem in terms of
increments of the state variables in the ith iteration.

The relations governing the finite-step nonlocal structural problem in terms of increments of the state vari-
ables within the ith iteration can then be recovered by performing the stationarity of the potential bX3. Hence it
turns out to be:
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ð0; 0; 0; 0; 0; 0Þ 2 o bX3 dui; dai
1; dai

2; dai
3; dji; dX i

� 	
()

B0dBduiW� ¼ D‘r

�ddai
1
W�;�ddai

2
W�;�ddai

3
W�;DX i�1 þ dX i


 �
2 o dai

1
;dai

2
;dai

3
;djið ÞD dai

1;�dai
2;�dai

3; dji
� 	

Dji�1 þ dji ¼ ddX iW�

8>><>>: ð52Þ
where the arguments of the functional W� have been dropped for simplicity. Recalling (21)4, the nonlocal
structural problem in the ith iteration (52) is given in the following explicit form:
Bdui ¼ dei

Dri�1 þ dri ¼ dBduiW�

B0ðDri�1 þ driÞ ¼ D‘r

�Dvi�1
1 � dvi

1 ¼ ddai
1
W�

D�vi�1
2 þ d�vi

2 ¼ ddai
2
W�

Dvi�1
3 þ dvi

3 ¼ ddai
3
W�

Dvi�1
1 þ dvi

1;D�vi�1
2 þ d�vi

2;Dvi�1
3 þ dvi

3;DX i�1 þ dX i
� 	

2 oD dai
1;�dai

2;�dai
3; dji

� 	
Dji�1 þ dji ¼ ddX iW�

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð53Þ
where ðDui�1 þ duiÞ 2 L.
The increments of the displacements and of the kinematic and static internal variables in the ith iteration

can be determined by a sequence of alternated minimization of the functional bX3 with respect to displacements
and to kinematic and static internal variables.

– The prediction phase consists in the minimization of bX3 with respect to dui in which the increments of the
kinematic and static internal variables are held constant to the initial values ðDai�1

1 ;Dai�1
2 ;Dai�1

3 ;Dji�1;DX i�1Þ:

min
dui

bX3ðdui; 0; 0; 0; 0; 0Þ:
The relevant stationary condition is provided by the relation (52)1 in the form:
B0dBduiW� BðDui�1 þ duiÞ;Dai�1
1 ;Dai�1

2 ;Dai�1
3 ;DX i�1

� 	
¼ D‘r ð54Þ
with ðDui�1 þ duiÞ 2 L, which amounts to solving an elastic problem for the given increment of the external
load in the ith iteration. In fact, being
Dri�1 þ dri ¼ dBduiW� BðDui�1 þ duiÞ;Dai�1
1 ;Dai�1

2 ;Dai�1
3 ;DX i�1

� 	

the condition (54) can be rewritten in the form:
B0dri ¼ D‘r � B0Dri�1:
The difference D‘r � B0Dri�1 represents the residual load in the ith iteration, that is the difference between
the applied load and the fictitious load associated with the increment of the stress at the end of the iteration
i� 1.

– The correction phase can be obtained by minimizing the potential bX3 with respect to the internal
variables:
min
dai

1
;dai

2
;dai

3
;dji ;dX ið Þ

bX3 dui; dai
1; dai

2; dai
3; dji; dX i

� 	

where dui is the solution of the prediction phase.

The relevant stationary conditions:
ð0; 0; 0; 0; 0Þ 2 o dai
1
;dai

2
;dai

3
;dji ;dX ið Þ bX3 dui; dai

1; dai
2; dai

3; dji; dX i
� 	
yield the relations (52)2–3 which are equivalent to the relations (53)4–8.
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A convergence criterion can now be presented in order to extend to the present nonlocal variational frame-
work an analogous criterion derived by Comi and Maier (1990) in the context of finite elements for local
elastoplasticity.

Let us assume a linear elastic and hardening/softening behavior. The expression of the potential bX3

becomes:
bX3 dui;dai
1;dai

2;dai
3;dji;dX i

� 	
¼ 1

2
E BðDui�1þ duiÞ�A Dai�1

1 þ dai
1

� 	� 	
;BðDui�1þ duiÞ�A Dai�1

1 þ dai
1

� 	� 	� 	
þ 1

2
H1 Dai�1

1 þ dai
1

� 	
;Dai�1

1 þ dai
1

� 	� 	
þ 1

2
h2RðDai�1

2 þ dai
2Þ;R Dai�1

2 þ dai
2

� 	� 	� 	
þ 1

2
h3 Dai�1

3 þ dai
3

� 	
;Dai�1

3 þ dai
3

� 	� 	
� 1

2
ðR0hRÞ�1 DX i�1þ dX i

� 	
; DX iþ dX iþ1
� 	
 �
 �

� DX i�1þ dX i;Dji�1þ dji
� 	� 	

þD dai
1;�dai

2;�dai
3;dji

� 	
�hD‘r;Dui�1þ duii:
The above minimum principle associated with the potential bX3 is used hereafter to prove a theorem that
establishes a sufficient condition for the convergence of the iterative procedure elastic predictor-plastic correc-
tor and a criterion for the choice of the material elastic stiffness in the elastic prediction phase.

The theorem is based on a global convergence proposition reported in Luenberger (1973) for iterative des-
cent algorithms. By iterative one means that the algorithm generates a series of points, each point being cal-
culated on the basis of the points preceding it. By descent one means that as each new point is generated by the
algorithm, the corresponding value of some function, evaluated at the most recent point, decreases in value.
The global convergence theorem ensures that the sequence of points generated by the algorithm in this way
converges to a solution of the original problem.

In order to ensure the convergence of the iterative elastic predictor-plastic corrector algorithm, it is neces-
sary to show that the elastic prediction followed by the plastic correction is a descent algorithm. The next
statement is devoted to this issue.

Theorem 12. The potential bX3 is monotonously decreasing in the ith iteration:
bX3ð0; 0; 0; 0; 0; 0Þ � bX3 dui; dai
1; dai

2; dai
3; dji; dX i

� 	
P 0 ð55Þ
if the material elastic stiffness is chosen as follows:
Ei ¼ E if i ¼ 0

Ei ¼ cE if i > 0 such that Ei is symmetric and positive definite

�

with c > 1=2.

Proof. Let us show that both the prediction and the correction phases are monotonously decreasing.

• Prediction phase: The difference (55) in the prediction phase can be rewritten, after some algebra, in the
form:
bX3ð0; 0; 0; 0; 0; 0Þ � bX3ðdui; 0; 0; 0; 0; 0Þ ¼ 1

2
ððEðBDui�1 � ADai�1

1 Þ;BDui�1 � ADai�1
1 ÞÞ

� hD‘r;Dui�1i � 1

2
ððEðBðDui�1 þ duiÞ � ADai�1

1 Þ;BðDui�1

þ duiÞ � ADai�1
1 ÞÞ þ hD‘

r;Dui�1 þ duii ¼

� ððB0EBDui�1; duiÞÞ � 1

2
ððB0EBdui; duiÞÞ þ ððEBdui;ADai�1

1 ÞÞ
þ hD‘r; duii: ð56Þ
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Denoting by Ki ¼ B0EiB the elastic stiffness operator adopted in the prediction phase of the ith iteration, the
stationarity of (56) with respect to dui yields:
D‘r ¼ Kidui þ B0EBDui�1 � B0EADai�1 ¼ Kidui þ B0EðBDui�1 � ADai�1Þ: ð57Þ
1 1
Hence, substituting (57) in the relation (56), it turns out to be after some algebra:
bX3ð0; 0; 0; 0; 0; 0Þ � bX3ðdui; 0; 0; 0; 0; 0Þ ¼ � 1 ððKdui; duiÞÞ þ ððKidui; duiÞÞ ¼ ðððKi � 1
KÞdui; duiÞÞ:
2 2

being K ¼ B0EB the elastic stiffness operator.

Noting that the operator

Ki � 1

2
K ¼ B0 Ei � 1

2
E

� �
B

is positive by assumption, it results:bX3ð0; 0; 0; 0; 0; 0Þ � bX3ðdui; 0; 0; 0; 0; 0ÞP 0

for any conforming displacement, i.e. ðDui�1 þ duiÞ 2 L, and the equality holds if and only if dui ¼ 0.
• Correction phase: The difference bX3ðdui; 0; 0; 0; 0; 0Þ � bX3ðdui, dai

1, dai
2, dai

3, dji; dX iÞ turns out to be non-
negative since the potential bX3 attains its minimum at the solution point ðdui; dai

1; dai
2; dai

3; dji; dX iÞ, so that
it results:
bX3ðdui; 0; 0; 0; 0; 0Þ � bX3 dui; dai

1; dai
2; dai

3; dji; dX i
� 	

P 0:

The proof is thus complete since the difference reported in (55) turns out to be nonnegative.h

Hence the elastic prediction-plastic correction generates a sequence of points ðdui; dai
1; dai

2; dai
3; dji; dX iÞ

which converges to a solution of the structural problem.

9. Stability

In local plasticity, the property of nonexpansivity as a suitable measure of nonlinear stability of the evolu-
tion equations was introduced in Nguyen (1977). Then it is shown in Simo and Govindjee (1991) that the evo-
lution equations in both local hardening plasticity and viscoplasticity exhibit the property of nonexpansivity
and, further, it is proved that the return mapping algorithm obeys the so-called property of B-stability which is
the discrete counterpart of nonexpansivity. The same issue is addressed in Reddy and Martin (1991) for local
elastoplasticity in the framework of internal variables coupled with the use of the evolution law in terms of
dissipation.

The property of nonexpansivity is now examined with reference to the finite-step nonlocal elastoplastic
problem addressed in this paper following the approach proposed in Reddy and Martin (1991) for local
plasticity.

Given a function f : t! f ðtÞ ¼ ft 2 X , the flow ft is said to be nonexpansive with respect to the scalar
product generated by a positive-definite symmetric operator M if the following inequality holds:
kf ðtÞ � f ðtÞkM 6 kf ð0Þ � f ð0ÞkM for all t P 0; ð58Þ
where f ðtÞ and f ðtÞ are flows corresponding to distinct initial conditions f ð0Þ and f ð0Þ, respectively. The non-
expansivity condition (58) ensures that two flows generated by two nearby sets of initial conditions will be, at
any time t, at least as near to each other as they were at the initial time. It is worth noting that the condition
(58) is a nonlinear stability condition and no linearization will be carried out in the sequel in order to assess its
validity.

A sufficient condition for (58) to hold is given by the inequality:
d

dt
kf ðtÞ � f ðtÞk2

M 6 0 for all t P 0
or, equivalently, by the condition:
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ððf ðtÞ � f ðtÞ; _f ðtÞ � _f ðtÞÞÞM 6 0 for all t P 0: ð59Þ
For a given strain history eðtÞ, the nonexpansivity of the nonlocal finite-step elastoplastic model is analyzed
for linear elasticity and hardening/softening behavior. For simplicity, the relations (19) and (33)2 pertaining to
the nonlocal finite-step model are rewritten hereafter:
r ¼ Eðe� Aa1Þ
v1 ¼ A0r�H1a1 ¼ A0Ee� ðA0EAþH1Þa1

�v2 ¼ R0h2Ra2

v3 ¼ h3a3

X ¼ �R0hRj

ðv1; �v2; v3;X Þ 2 oDðDa1;�Da2;�Da3;DjÞ

8>>>>>>>><>>>>>>>>:
ð60Þ
in which all the state variables are functions of time.
By virtue of the relations between convex and saddle functional, the dissipation D can be expressed in terms

of a saddle functional B : Y1 � Y2 � Y3 � Y 0 ! R, convex with respect to ðDa1;�Da2;�Da3Þ and concave with
respect to X , in the form:
DðDa1;�Da2;�Da3;DjÞ ¼ � inf
Y
fððY ;�DjÞÞ � BðDa1;�Da2;�Da3; Y Þg
so that the finite-step flow rule (33)2 can be equivalently rewritten as follows:
ðv1; �v2; v3;X Þ 2 oDðDa1;�Da2;�Da3;DjÞ () ðv1; �v2; v3;�DjÞ 2 oBðDa1;�Da2;�Da3;X Þ: ð61Þ

The subdifferential relation (61)2 is then equivalent to state:
ðv1; �v2; v3Þ 2 o1BðDa1;�Da2;�Da3;X Þ � Dj 2 o2BðDa1;�Da2;�Da3;X Þ ð62Þ

where o1B denotes the subdifferential of B with respect to the variables ðDa1;�Da2;�Da3Þ and o2B denotes the
superdifferential of B with respect to the variable X . As a consequence, the multi-valued maps o1B and �o2B
are cyclically monotone and hence monotone.

Let us now consider two nonlocal finite-step elastoplastic problems arising from two distinct initial condi-
tions. The relevant state variables, following from the two distinct initial conditions, are denoted by unbarred
and underbarred symbols, respectively. Then the relations (62) and the monotonicity (see Appendix A) of o1B
and �o2B yield:
ððv1 � v1;Da1 � Da1ÞÞ þ ðð�v2 � �v2;�Da2 þ Da2ÞÞ þ ððv3 � v3;�Da3 þ Da3ÞÞP 0

ððX � X ;Dj� DjÞÞ 6 0:

(
ð63Þ
Substitution of the static internal variables (60)2–4 in (63)1 gives, after some algebra, the inequality:
ððDða1 � a1Þ;Da1 � Da1ÞÞ þ ððR0h2Rða2 � a2Þ;Da2 � Da2ÞÞ þ ððh3ða3 � a3Þ;Da3 � Da3ÞÞ 6 0 ð64Þ

where D ¼ A0EAþH1. If the operators A, H1 and R0h2R are definite positive, the relations (64) can be rewrit-
ten in the form:
a1 � a1

a2 � a2

a3 � a3

264
375; Da1 � Da1

Da2 � Da2

Da3 � Da3

264
375

0B@
1CA

0B@
1CA

M

6 0
where M ¼ diag½D;R0h2R; h3�. Hence the evolution of the kinematic internal variables ða1; a2; a3Þ is nonexpan-
sive with respect to the scalar product induced by M.

The nonexpansivity in terms of static internal variables follows from the inequality (64) which can be
rewritten in terms of static internal variables by means of the constitutive relations (60)2–4 to get:
ððv1 � v1;D
�1ðDv1 � Dv1ÞÞÞ þ ðð�v2 � �v2; ðR0h2RÞ�1ðD�v2 � D�v2ÞÞÞ þ ððv3 � v3; h

�1
3 ðDv3 � Dv3ÞÞÞ 6 0 ð65Þ
or equivalently:
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v1 � v1

�v2 � �v2

v3 � v3

264
375; Dv1 � Dv1

D�v2 � D�v2

Dv3 � Dv3

264
375

0B@
1CA

0B@
1CA

M�1

6 0
which ensures the nonexpansivity of the static internal variables ðv1; �v2; v3Þ with respect to the scalar product
induced by M�1.

In order to investigate the nonexpansivity of the evolution of the stress, the constitutive relations (60)1–2

yield:
r� r ¼ EAD�1ðv1 � v1Þ: ð66Þ
Substituting the difference v1 � v1 recovered from the equality (66) into the inequality (65), it results:
ððr� r;E�1A0�1DA�1E�1ðDr� DrÞÞÞ þ ðð�v2 � �v2; ðR0h2RÞ�1ðD�v2 � D�v2ÞÞÞ
þ ððv3 � v3; h

�1
3 ðDv3 � Dv3ÞÞÞ 6 0
or equivalently:
r� r

�v2 � �v2

v3 � v3

264
375; Dr� Dr

D�v2 � D�v2

Dv3 � Dv3

264
375

0B@
1CA

0B@
1CA

N�1

6 0
being N ¼diag ½EAD�1A0E;R0h2R; h3�, which ensures the nonexpansivity of the stress r and of the static inter-
nal variables ð�v2; v3Þ with respect to the scalar product induced by N�1. Note that the operators appearing in
N�1 which act on the variables �v2 and v3 coincide to the relevant ones of M�1.

Finally there arises the question of whether the evolution of the kinematic internal variable j is nonexpan-
sive and if so with respect to which scalar product. By virtue of the relations between convex and saddle func-
tional, the dissipation D can be expressed in terms of a saddle functional C : Y1 � Y 02 � Y 03 � Y ! R, convex
with respect to ðDa1;DjÞ and concave with respect to ð�v2; v3Þ, in the form:
DðDa1;�Da2;�Da3;DjÞ ¼ � inf
ðY 2;Y 3Þ

fððY 2;Da2ÞÞ þ ððY 3;Da3ÞÞ � CðDa1; Y 2; Y 3;DjÞg
so that the finite-step flow rule (33)2 can be equivalently rewritten as follows:
ðv1; �v2; v3;X Þ 2 oDðDa1;�Da2;�Da3;DjÞ () ðv1;Da2;Da3;X Þ 2 oCðDa1; �v2; v3;DjÞ: ð67Þ
Hence the subdifferential relation (67)2 is equivalent to state:
ðv1;X Þ 2 o1CðDa1; �v2; v3;DjÞ ðDa2;Da3Þ 2 o2CðDa1; �v2; v3;DjÞ ð68Þ
where o1C denotes the subdifferential of C with respect to the variables ðDa1;DjÞ and o2C denotes the super-
differential of C with respect to ð�v2; v3Þ. The monotonicity of the multi-valued map �o2C implies:
ððv2 � v2;Da2 � Da2ÞÞ þ ððv3 � v3;Da3 � Da3ÞÞ 6 0: ð69Þ
Such an inequality can, also, be assessed starting from (63)1 by considering two nonlocal finite-step elasto-
plastic problems such that v1 ¼ v1.

Recalling the relations (60)3–4 and the equalities a2 ¼ a3 ¼ �j, the inequality (69) yields:
ðððR0h2Rþ h3Þðj� jÞ;Dj� DjÞÞ 6 0 ð70Þ
so that, for any symmetric operator Q : Y ! Y 0, it turns out to be:
ððQðj� jÞ;Dj� DjÞÞ 6 0; ð71Þ
provided that Q ¼ R0h2Rþ h3 using (70). Accordingly a sufficient condition for the nonexpansivity of the kine-
matic internal variable j is that there exists an operator Q such that:
Q ¼ R0h2Rþ h3:
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Then the kinematic internal variable j is nonexpansive with respect to the scalar product induced by Q.
The nonexpansivity in terms of the static internal variable X follows from the inequality (71) and the rela-

tion (60)5:
ðððR0hRÞ�1QðR0hRÞ�1ðX � X Þ;DX � DX ÞÞ 6 0
which ensures that the nonexpansivity of the static internal variable �X with respect to the scalar product in-
duced by ðR0hRÞ�1QðR0hRÞ�1.

10. Closure

The response of a structural nonlocal elastoplastic problem under assigned loads is provided. A family of
mixed variational principles with different combinations of state variables is addressed and a comparison
between the mixed variational formulations presented in this paper, which differs for the type of independent
fields, is summarized in Table 1 where the potentials are reported on the left side and, for each of them, the
variables appearing in the related variational formulations are listed. The symbols%, ^ or _ mean that the
potential is linear, convex or concave in the corresponding variable. It is worth noting that many other var-
iational formulations can be obtained following the procedure outlined in this paper.

The nonlocal elastic predictor-plastic corrector procedure is developed with reference to the evolution law
expressed in terms of dissipation. A convergence criterion for the elastic prediction-plastic correction is pro-
posed and a discussion on the uniqueness of the solution is provided. Finally the stability analysis of the non-
local problem is analyzed.

A one-dimensional example is carried out to show the effectiveness of a recently proposed spatial weight
function which allows one to treat the plastic zone close or far from the boundary in a unitary framework
without the recourse to nonstandard weight functions. Multi-dimensional examples will be the subject of sub-
sequent research works.

The proposed treatment of nonlocal plasticity can provide a basis for further developments, to be achieved
elsewhere, as numerical analyses to validate the theory and computational comparisons with existing models.

The nonlocal model turns out to be rather versatile due to its thermodynamic basis and can be used to
model different material behaviors such as nonlocal elasticity, nonlocal elasticity with damage, nonlocal elas-
toplasticity with damage and, in general, any material behavior which cast in the framework of the internal
variable theories.
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Appendix A

Some basic definitions and properties of convex analysis which are referred to in the paper are briefly
recalled here. A comprehensive treatment of the subject can be found in Hiriart-Urruty and Lemarechal
(1993).

Let ðX ;X 0Þ be a pair of locally convex topological vector spaces placed in separating duality by a bilinear
form ðð�; �ÞÞ. The subdifferential of the convex functional f : X ! R [ fþ1g is the set of 
 X 0 given by
x� 2 of ðxoÞ () f ðyÞ � f ðxoÞP ððx�; y � xoÞÞ 8 y 2 X :
In particular, if the functional f is differentiable at xo 2 X , the subdifferential is a singleton and reduces to
the usual differential.

A graph G is a nonempty subset of the product space X � X 0. A graph G 
 X � X 0 is said to be monotone
if:
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ððx�2 � x�1; x2 � x1ÞÞP 0 8 ðxi; x�i Þ 2 G; i ¼ 1; 2:
Moreover, a graph G 
 X � X 0 is cyclically monotone if it results:
Xn

i¼0

ððx�i ; xiþ1 � xiÞÞ 6 0()
Xn

i¼0

ððx�iþ1 � x�i ; xiþ1ÞÞP 0
for every ðxi; x�i Þ 2 G with i ¼ 0; . . . ; n; nþ 1 � 0. It is apparent that a cyclically monotone graph is also mono-
tone. It can be proved that the subdifferential of a proper convex function is cyclically monotone and, hence,
monotone.

The following rules holds for subdifferentiability.
Chain rule: Given a differentiable operator A : X ! Y and a convex functional f : Y ! R [ fþ1g which

turns out to be subdifferentiable at y ¼ AðxÞ, it results:
oðf � AÞðxÞ ¼ ½dAðxÞ�0of ðAðxÞÞ;
where dAðxÞ is the derivative of the operator A at the point x and ½dAðxÞ�0 is the dual operator;
Additivity: Given two convex functional f1 : X ! R [ fþ1g and f2 : X ! R [ fþ1g which are subdiffer-

entiable at x 2 X , it results:
oðf1 þ f2ÞðxÞ ¼ of1ðxÞ þ of2ðxÞ:
The conjugate of a convex functional f is the convex functional f � : X 0 ! R [ fþ1g defined by:
f �ðx�Þ ¼ supfððx�; yÞÞ � f ðyÞ with y 2 Xg;
so that Fenchel’s inequality holds:
f ðyÞ þ f �ðx�ÞP ððx�; yÞÞ 8 y 2 X ; 8 x� 2 X 0:
The elements x, x� for which Fenchel’s inequality holds as an equality are said to be conjugate and the fol-
lowing relations are equivalent if f is closed:
f ðxÞ þ f �ðx�Þ ¼ ððx�; xÞÞ; x� 2 of ðxÞ; x 2 of ðx�Þ:
Analogous results holds for concave functional by interchanging the role of þ1;P and sup with those of
�1, 6 and inf. The prefix sub used in the convex case has to be replaced by super. The same symbol o is used
to denote subdifferential (superdifferential) of a convex (concave) functional when no ambiguity can arise.

A relevant case of conjugate functionals associated with a convex set C is provided by the indicator
functional:
tCðxÞ ¼
0 if x 2 C

þ1 otherwise

�

and the support functional:
Dðx�Þ ¼ supfððx�; xÞÞ with x 2 Cg:
It is worth noting that the subdifferential of the indicator of a convex set C at a point x 2 C coincides to the
normal cone to C at x:
otCðxÞ ¼ NCðxÞ ¼
fx� 2 X 0 : ððx�; y � xÞÞ 6 0 8 y 2 Xg if x 2 C

£ otherwise:

�

A functional k : X � Y ! R is said to be saddle (convex–concave) if kðx; yÞ is a convex functional of x 2 X

for each y 2 Y and a concave functional of y for each x. The subdifferential of the convex functional kð�; yÞ at x

is defined as o1kðx; yÞ or oxkðx; yÞ and the superdifferential of the concave functional kðx; �Þ at y is defined as
o2kðx; yÞ or oykðx; yÞ. The subdifferential of the saddle functional k at the point ðx; yÞ is defined as follows:
okðx; yÞ ¼ oxkðx; yÞ � oykðx; yÞ:
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