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Abstract 

Various separation properties, from normality to monotone normality to proto-metrizability, are 
presented on the common framework of neighbourhood assignments. Two hybrid separation prop- 
erties, incorporating features from all of them, but in weak concentrations, are defined and shown 
to be equivalent to metrizability and stratifiability for squares of Hausdorff spaces with embeddings 
of w + 1. 0 1998 Elsevier Science B.V. 
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RespectjUy dedicated to the memory of Professor K. Morita 

The classical theorem of KatEtov [ 131, asserting that, for compact (Hausdorff) cubes, 

met&ability is no more than hereditary normality, is a result that has not ceased to 

fascinate in the half century since its publication in 1948 (see Introduction of [12] and 

[15, p. 241, for example). Hereditary normality lacking even a suggestion of first count- 

ability in its constitution, one wonders how it can be equivalent to metrizability. The 

answer lies of course in the structure, and in the compactness, of the cube. Specifically, 

hereditary normality on a compact cube ensures a G&-diagonal on the square and thus 

metrizability on the space itself, according to &eider [16]. Zenor [17] pointed out that 

hereditary countable paracompactness can also play the role that hereditary normality 

plays. More recently, Gruenhage showed that, for compact (Hausdorff) squares, metriz- 

ability is no more than hereditary paracompactness [5, Theorem 2.61, it being that, on 

compact squares, hereditary paracompactness ensures a Gs-diagonal. This result was 

later extended to squares of completely regular p-spaces by Gruenhage and Pelant [6]. 
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In all these theorems, metrizability is equated with some hereditary separation ax- 

ioms ’ in the presence of compactness. 2 Compactness being a very strong property, any 

contribution on the part of the (peculiarity of the) structure of cubes and squares in the 

bringing about of metrizability is obscured. It is therefore of considerable interest to do 

away with the compactness assumption as much as possible and see, on squares, what 

part of metrizability determines the whole. 

We are thus going to study the metrizability of squares of topological spaces, each with 

at least one copy of w + 1 embedded in it (spaces where no accumulation is possible and 

spaces where capacity to accumulate is limited to subsets of uncountable cardinality being 

either trivially metrizable or obviously otherwise). We are to use the common framework 

of neighbourhood assignments for the description of various established separation prop- 

erties, from normality to proto-metrizability (Section 1.4), providing the backdrop against 

which we can see the relative strength, in various directions, of the separation property 

which we define (Section 1.5) and which on squares is enough to account for metrizabil- 

ity. There is a parallel treatment of stratifiability on squares, and we have a sharpening 

of the theorem of Zenor [7], [4, Theorem 5.221, and its corollaries. These results, both 

the one on metrizability and the one on stratifiability, can, of course, be formulated on 

the countable power, X”, in the manner of Zenor. 

No separation axioms are assumed. We write g for the family {Cl U: U E U}. 

1. Preliminaries 

(1) Given an open subset B on a topological space 2. If, for every z E B, we have a 

neighbourhood (X)B c B assigned to x, we say we have a neighbourhood assignment 

{(x)~: x E B} on B. 

(9 
(ii) 

(iii) 

(iv) 

(v) 

If all these neighbourhoods are open, we say the assignment is open. 

If, for every x E B, (x)Tj c {y E B: x E (Y)B} is also a neighbourhood of x, 

we say the assignment is topologically symmetric and speak of a dual assignment. 
If, for all x, y E B, x E (y)~ ti y E (CE)B, we say the assignment is symmetric. 
If there is a family U of open subsets such that UU = B and, for every x E B, 
we have (x)~ = St (x, U), we say the assignment is stellar. Clearly, a stellar 

assignment is both open and symmetric. 
If, for each n E w, we have a neighbourhood assignment {(x)~,~: x E B}, we 

say we have a countable family of assignments for the open subset B. 

(2) Let a family 23 of open subsets be given. If, for every B E 23, we have a neighbour- 

hood assignment { (x) B : x E B} on B, we say we have a neighbourhood assignment 
{{ (x)~: x E B}: B E B} on 23 and speak of countable families of open, topologically 

symmetric, symmetric or stellar assignments OIZ the family B. 

’ Countable paracompactness and the like can be viewed as separation axioms (see [l, Section 2.31). Gg- 

diagonal can also be so viewed (see Section 1.6). 
’ Completely regular p-spaces, in the presence of paracompactness, are perfect preimages of metrizable spaces, 

where the preimages of points are all compact ([4, Corollary 3.71, [14, Corollary 2 to Theorem VI.291). 
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(3) A neighbourhood assignment on 23 is said to be symmetrically Tz-separating if, 

given A,B E I?, 2 E A\B, y E B\A, we have (Z)A n (V)B = 8; T2-separating 

(respectively, weakly Tz-separating) if, given < E 2, any neighbourhood E of [ and any 

A c t3 such that 5 $ U A (respectively, < $ U x), there is a neighbourhood T of < such 

that (b)~ n LT = 0 when 13 E B\Z for some B E A. 
(4) In the terminology of the above, we see that, if symmetrically Tz-separating neigh- 

bourhood assignments are imposed on 

(i) all3 the binary open covers C, 

(ii) all the pairs P of open subsets, and 

(iii) the family B of all open sets, 

we have, in turn, normality, hereditary normality and monotone normality. 

If, in the case of monotone normality, the assignments are stellar, we have proto- 

metrizability [9]. If, on the other hand, the assignments are only topologically symmetric 

and TI-separating, we have metrical normality [lo]. It is well known that monotone 

normality does not imply paracompactness (see, e.g., [2]) while proto-metrizability does. 

It is interesting to note that, if, in the case of metrical normality, the assignments are 

further required to be open, we also have paracompactness. 

(5) The concept of metrical normality can be weakened by breaking up the compre- 

hensive family of all open sets and by a restriction on the extent of the pieces and 

by a relaxation of the T2-separation (required of the assignments) to beyond the weak 

T2-separation and of the requirements on the assignments themselves. We have thus the 

property of Weak Assigned Separation (WAS): 

On every countable family f? of pairwise disjoint open subsets, there is a countable 

family of topologically symmetric neighbourhood assignments 

({{(bb,n: b E B}: B E B}), 

to be called a Weak Separation Assignment (WSA), so that, for any [ $ UE and any 

neighbourhood E of <, there are 

(i) a neighbourhood Z- of I, 

(ii) an infinite subfamily C c B, and 

(iii) an n(B) E w for every B E C, 

so that (b)B,n(B) n T = 8 whenever b E B\Z for some B E C. 

Clearly, the P-spaces of Gillman and Henriksen [3] (where the Gb’s are open) have 

the property of WAS. If, in the above, the requirement of topological symmetry on the 

neighbourhood assignments is absent, we speak, instead, of a WSA- and of the property 

WAS-. 

(6) In the above, separation is demanded of points only if they are to some degree 

separated already (see, e.g., (3) above where z E A\B, g E B\A + (2)~ n (y)B = 8). 

Thus we are really looking at some intensi$cation of separation. If, on the other hand, 

we forgo the initial requirement of separation, we can account for the Gg-diagonal and 

3 Even if Ct E Cl and Cl E C2 for two distinct binary open covers Cl and C2 are equal, it is not required that 

the assignments on them be identical. 
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metrizability (among others) with the same framework of neighbourhood assignments. 

Thus, the existence of a G6-diagonal on (the square of) X is equivalent to the existence 

on (the open set) X of a countable family of stellar assignments ({(x),: II: E X}) such 

that, given z # y, there exists such an n E w that y $! (z)~. 

Metrizability of a To-space X is equivalent to the existence on (the open set) X of 

a countable family of topologically symmetric neighbourhood assignments ({(z),: II: E 

X}) such that, given z E X and a neighbourhood W, there are an n E w and a neigh- 

bourhood V of 2 such that (Y/)~ f? V = 0 if y $ W (see [8, part of Corollary 2.41, 

[ll, Theorem 4.191 and [15, Theorem 21). If, in the above, the requirement of topo- 

logical symmetry on the neighbourhood assignments is omitted, we have, instead, the 

stratifiability of Ti -spaces. (Conventions are that stratifiable spaces are Tl , see, e.g., [ 14, 

Definition VI.91.) 

2. Main results 

Theorem 1. Given a To-space X. On X x (w + I), metrizability is equivalent to Weak 

Assigned Separation. 

Proof. It suffices to prove the metrizability of X, given WAS on X x (w + 1). Let 

Bi 3 x x {i}, f or every i E w. Let B = {Bi: i E w}. Let there be a WSA 

({ {(bh: bEI?}: BEB}) 

on B. We are to construct the neighbourhoods [~]i,~ of z on X for all i, n E w and 

5 E X. For any i,n E w and 2 E X, let [z]+ be such that ((x,i))~,,~ = [~:]i,~ x {i}. 

Clearly, given 2 E X and an open neighbourhood W of IC, Z E W x (w + 1) is a 

neighbourhood of < = ( 2, w) such that < $! UE and there are, by hypothesis, 

(i) a neighbourhood Y of < that can be taken to be V x ((w + l)\N) for some N E w, 

(ii) a j > N, and 

(iii) an n E w, 

so that ((y, j))~,,~ n r = 0, whenever y $ W. We have therefore [~]j,~ n V = 0 
whenever y $ W. Metrizability of X follows (Section 1.6). 0 

Theorem 2. Given a Tl-space X. On X x (w + l), stratijiability is equivalent to WAS- 

(Section 1.5). 

Remarks. (1) Theorem 2 strengthens the result of Zenor [7]. Corollaries 4.4-4.6 in [7] 

are similarly strengthened via Theorem 4 below. We have therefore the result that, on 

squares of completely regularp-spaces, metrizability is equivalent to WAS- (cf. Corollary 

5 of [6] cited in the Introduction). 

(2) Even if, in the definition of a WSA-, the assignment on B is made dependent on 

the choice of z, but not on < E 5’, we already have a property on X x (w + 1) that 
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ensures countable paracompactness on X. For, given any decreasing sequence (&) of 

closed subsets of X with empty intersection, dependent on 

3 - (x x {w}) u u {(X\&) x {i}: i E w}; 
an open neighbourhood of X x {w}, there is an assignment on the B as defined in the 

proof of Theorem 1. With the [z]~,~‘s similarly defined and with 

we have in the sequence (U,) the requirement for countable paracompactness according 

to Ishikawa [14, Theorem V.61. 

Lemma 3. Given a Hausdoflspace X. If can be embedded w + 1 in X, there is such 

a family of pairwise disjoint open subsets { 17,: n E w} in X that n E Un and that w +! 

Cl U, for every n E w. 

Theorem 4. Given a Hausdorfs space X, embedded in which is a copy of w + 1. The 

property of Weak Assigned Separation on X2 is a (necessary and) su.cient condition 

for metrizability. The proper-9 of WAS- on X2 is a (necessary and) sujjkient condition 

,for strati$ability. 

Proof. To prove metrizability of X, given WAS on X2, let Bi 5 X x Vi (Vi being 

the open sets the existence of which is asserted in Lemma 3) for every i E w. Let 

t3 = {Bi: i E w}. Let there be a WSA ({{(b)~,~: b E B}: B E I?}) on B. For every 

%! n E w and 2 E X, let [z]%,~ be such that ((z, i))~,,~n(X x {i}) = [x]i,n x {I}. Clearly, 

in the same manner that the same conclusion is arrived at in the proof of Theorem 1, 

we have, given x E X and an open neighbourhood W, a neighbourhood V of x such 

that [oh n V = 0, for some j! n E w, whenever y $ W. Metrizability of X follows 

(Section 1.6). Similarly for stratifiability of X. 0 
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