A characterization for $*$-isomorphisms in an indefinite inner product space

K.C. Sivakumar ${ }^{\text {a,* }}$, K. Kamaraj ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Indian Institute of Technology, Madras, Chennai 600 036, India
b Department of Mathematics, Tagore Engineering College, Rathinamangalam, Chennai 600 048, India

Received 24 March 2006
Available online 10 August 2006
Submitted by M. Milman

Abstract

Let H_{1} and H_{2} be indefinite inner product spaces. Let $L\left(H_{1}\right)$ and $L\left(H_{2}\right)$ be the sets of all linear operators on H_{1} and H_{2}, respectively. The following result is proved: If Φ is [$*$]-isomorphism from $L\left(H_{1}\right)$ onto $L\left(H_{2}\right)$ then there exists $U: H_{1} \rightarrow H_{2}$ such that $\Phi(T)=c U T U^{[*]}$ for all $T \in L\left(H_{1}\right)$ with $U U^{[*]}=c I_{2}$, $U^{[*]} U=c I_{1}$ and $c= \pm 1$. Here I_{1} and I_{2} denote the identity maps on H_{1} and H_{2}, respectively. © 2006 Elsevier Inc. All rights reserved.

Keywords: Indefinite inner product; *-Isomorphism

1. Introduction

Recently, Kulkarni et al. [2] gave an elementary proof of characterizing onto $*$-isomorphisms of the algebra $B L(H)$ of all bounded linear operators on a Hilbert space H using simple and well-known properties of operators in a Hilbert space. The classical proof of this result utilizes the theory of irreducible representations of C^{*}-algebras [1, Corollary 2, p. 20]. In this paper we prove a similar characterization theorem for $*$-isomorphisms in an indefinite inner product space. One of the main results (Corollary 3.5) also demonstrates that there is no qualitative difference in the behaviour of a $*$-isomorphism of the algebra $B L(H)$, with H being a complex Hilbert space in one instance and an indefinite inner product space in the other. In other words, completeness

[^0]of the norm and positive definiteness of the inner product are not of concern, in the representation of $*$-isomorphisms. The main results are Theorem 3.4 and Corollary 3.5.

2. Preliminary results

In this section, we prove some preliminary results which will be used in the sequel. Let $\langle.$, , \rangle denote the conventional Hilbert space inner product on a Hilbert space H and N be an invertible Hermitian operator on H. An indefinite inner product on H is defined by the equation $[x, y]=$ $\langle x, N y\rangle$, where $x, y \in H$. Such a matrix N is called a weight. A space with an indefinite inner product is called an indefinite inner product space (IIPS). A vector x is called normalized vector if $[x, x]= \pm 1$. If $[x, y]=0$ then the vectors x and y are called orthogonal vectors. Let T be an operator from H_{1} into H_{2}. We define the adjoint $T^{[*]}$ (of the operator T) by $[T(x), y]=$ $\left.{ }_{[x,} T^{[*]}(y)\right]$ for all $x, y \in H_{1} . T$ is called a projection iff $T=T^{2}$ and orthogonal projection iff T is a projection and $T=T^{[*]}$. Throughout this paper $\mathcal{R}(T)$ and $\mathcal{N}(T)$ denote the range space and the null space of T, respectively.

Lemma 2.1. If P is an orthogonal projection then $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal complementary subspaces. In this case $[x, x] \neq 0$ for all nonzero $x \in \mathcal{R}(P)$.

Lemma 2.2. If $P=P^{2}$ then $P=P^{[*]}$ iff $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal complementary subspaces of H.

Proof. Sufficiency follows from Lemma 2.1. We now prove the necessity part. Suppose $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are orthogonal subspaces. If $z \in \mathcal{N}(P)$, then $\left[P^{[*]} x, z\right]=[x, P z]=0$ for all x. Thus $\mathcal{N}(P) \subseteq \mathcal{N}\left(P^{[*]}\right)$. Similarly, $\mathcal{N}\left(P^{[*]}\right) \subseteq \mathcal{N}(P)$. Thus $\mathcal{N}\left(P^{[*]}\right)=\mathcal{N}(P)$. Since $I-P$ is an orthogonal projection whenever P is so, it follows that $\mathcal{N}\left((I-P)^{[*]}\right)=\mathcal{N}(I-P)$. Equivalently, $\mathcal{R}\left(P^{[*]}\right)=\mathcal{R}(P)$. Thus $P=P^{[*]}$.

Lemma 2.3. Let P, Q be orthogonal projections. Then
(i) $\mathcal{R}(P) \subseteq \mathcal{R}(Q) \Leftrightarrow P Q=P=Q P$;
(ii) $\mathcal{R}(P)[\perp] \mathcal{R}(Q) \Leftrightarrow P Q=\mathbf{0}=Q P$.

Definition 2.4. Let H be a indefinite inner product space. For $x, y \in H$, define the operator $T_{x, y}$ on H by $T_{x, y}(u)=[u, y] x, u \in H$ and $P_{x}=\operatorname{sgn}(x) T_{x, x}$, where

$$
\operatorname{sgn}(x)= \begin{cases}1, & \text { if }[x, x] \geqslant 0 \\ -1, & \text { otherwise }\end{cases}
$$

Next we list some properties of $T_{x, y}$. Let $x, y, z \in H$.
Lemma 2.5. $T_{x, y}$ is a linear and a rank one operator.
Lemma 2.6. $T_{\alpha x, \beta y}=\alpha \bar{\beta} T_{x, y}$, where α, β are scalars.
Lemma 2.7. $T_{x, y}^{[*]}=T_{y, x}$.

Lemma 2.8. If $[x, x]= \pm 1$, then P_{x} is an orthogonal projection.
Proof. We have for all $u \in H$,

$$
P_{x}(u)=\operatorname{sgn}(x)[u, x] x=\operatorname{sgn}(x)[u, x] P_{x}(x)=P_{x}^{2}(u) .
$$

It is easy to verify that $\mathcal{R}\left(P_{x}\right)$ and $\mathcal{N}\left(P_{x}\right)$ are orthogonal. Thus by Lemma 2.2, $P_{x}=P_{x}^{[*]}$.
Lemma 2.9. If P is an orthogonal projection of rank 1 , then there exists $x \in H$ with $[x, x]= \pm 1$ such that $P=P_{x}$.

Proof. If P is an orthogonal projection of rank 1, then there exists nonzero $x \in H$ such that $\mathcal{R}(P)=\operatorname{span}(\{x\})$. By Lemma 2.1, $[x, x] \neq 0$. So x can be normalized. Let $u \in H$. Then $P(u)=\alpha x$ where $\alpha=\operatorname{sgn}(x)[P(u), x]$. Thus

$$
P(u)=\operatorname{sgn}(x)[P(u), x] x=\operatorname{sgn}(x)[u, P(x)] x=\operatorname{sgn}(x)[u, x] x=P_{x}(u) .
$$

Thus $P=P_{x}$. This completes the proof.
Lemma 2.10. Let $[x, x]= \pm 1$ and $[y, y]= \pm 1$. Then

$$
x \text { and } y \text { are orthogonal } \Leftrightarrow P_{x} P_{y}=P_{y} P_{x}=\mathbf{0} .
$$

Proof. Follows from Lemmas 2.3 and 2.8.

Lemma 2.11.

(i) If $[x, x]= \pm 1$ then $T_{x, z} T_{y, x}=\operatorname{sgn}(x)[y, z] P_{x}$.
(ii) If $[z, z]= \pm 1$ then $T_{x, z} T_{z, y}=\operatorname{sgn}(z) T_{x, y}$. If in addition $[x, x]= \pm 1$ then $T_{x, z} T_{z, x}=$ $\operatorname{sgn}(x) \operatorname{sgn}(z) P_{x}$.

Proof. Let $u \in H$. Then

$$
T_{x, z} T_{y, x}(u)=[u, x][y, z] x=[y, z] T_{x, x}(u)=\operatorname{sgn}(x)[y, z] P_{x},
$$

proving (i). Next, we have

$$
\begin{aligned}
T_{x, z} T_{z, y}(u) & =[u, y] T_{x, z}(z) \\
& =[u, y][z, z] x \\
& =\operatorname{sgn}(z)[u, y] x \\
& =\operatorname{sgn}(z) T_{x, y}(u) .
\end{aligned}
$$

If in addition, $[x, x]= \pm 1$ then substituting $y=x$ in the above, we get $T_{x, z} T_{z, x}=\operatorname{sgn}(z) T_{x, x}=$ $\operatorname{sgn}(x) \operatorname{sgn}(z) P_{x}$.

Lemma 2.12. Let T be a linear operator of rank 1 . Then there exist nonzero $x, y \in H$ such that $T=T_{x, y}$.

Proof. Since T is a linear operator of rank 1, then $\mathcal{R}(T)=\operatorname{span}(\{x\})$ for some nonzero x. If $[x, x]= \pm 1$, choose $y=\operatorname{sgn}(x) T^{[*]}(x)$. Then for any $u, T(u)=\operatorname{sgn}(x)[T(u), x] x=[u, y] x=$ $T_{x, y}(u)$. Suppose $[x, x]=0$. For any $u, T(u)=\alpha x$ for some scalar α. Choose y such that $[u, y]=\alpha$. Then $T(u)=[u, y] x=T_{x, y}(u)$.

3. Main results

In this section we define a $[*]$-isomorphism in an indefinite inner product space and prove the main result (Corollary 3.5) which characterizes all [*]-isomorphisms in an IIPS. Let $L(H)$ denote the space of all linear operators on the indefinite inner product space H.

Definition 3.1. Let H_{1}, H_{2} be indefinite inner product spaces over \mathbb{R} or \mathbb{C}. A linear map Φ between vector spaces $L\left(H_{1}\right)$ and $L\left(H_{2}\right)$ is called an isomorphism if it is one-one and $\Phi(T S)=$ $\Phi(T) \Phi(S)$ for all $T, S \in L\left(H_{1}\right)$. An isomorphism Φ on $L\left(H_{1}\right)$ is called a [*]-isomorphism if $\Phi\left(T^{[*]}\right)=(\Phi(T))^{[*]}$ for all $T \in L\left(H_{1}\right)$.

Lemma 3.2. Let Φ be a $[*]$-isomorphism from $L\left(H_{1}\right)$ onto $L\left(H_{2}\right)$ and $x \in H_{1}$. If $[x, x]= \pm 1$ then $\Phi\left(P_{x}\right)$ is an orthogonal projection of rank 1 .

Proof. Since $[x, x]= \pm 1, P_{x}$ is an orthogonal projection, by Lemma 2.8. It is easy to prove that $\Phi\left(P_{x}\right)$ is an orthogonal projection. By Lemma 2.1, $[x, x] \neq 0$ for all nonzero $x \in \mathcal{R}\left(\Phi\left(P_{x}\right)\right)$. The rest of the proof is similar to the Euclidean case [2, Step 1].

Lemma 3.3. For each $x \in H_{1}$ with $[x, x]= \pm 1$, there exists $\tilde{x} \in H_{2}$ with $[\tilde{x}, \tilde{x}]= \pm 1$ such that $\Phi\left(P_{x}\right)=P_{\tilde{x}}$.

Proof. By Lemma 3.2, $\Phi\left(P_{x}\right)$ is an orthogonal projection of rank 1. By Lemma 2.9, there exists $\tilde{x} \in H_{2}$ with $[\tilde{x}, \tilde{x}]= \pm 1$ such that $\Phi\left(P_{x}\right)=P_{\tilde{x}}$.

Theorem 3.4. Let H_{1} and H_{2} be indefinite inner product spaces. If Φ is a [*]-isomorphism from $L\left(H_{1}\right)$ onto $L\left(H_{2}\right)$ then there exists a linear operator $U: H_{1} \rightarrow H_{2}$ such that $\Phi(T)=c U T U^{[*]}$ for all rank 1 operators $T \in L\left(H_{1}\right)$, with $U U^{[*]}=c I_{2}$ and $U^{[*]} U=c I_{1}$, where $c= \pm 1$. Here I_{1}, I_{2} denote the identity maps on H_{1}, H_{2}, respectively.

Proof. Fix $x_{0} \in H_{1}$ with $\left[x_{0}, x_{0}\right]= \pm 1$. Then by Lemma 3.3, there exists $\tilde{x}_{0} \in H_{2}$ such that $\Phi\left(P_{x_{0}}\right)=P_{\tilde{x}_{0}}$ and $\left[\tilde{x}_{0}, \tilde{x}_{0}\right]= \pm 1$. Define $U: H_{1} \rightarrow H_{2}$ by

$$
U(y)=\Phi\left(T_{y, x_{0}}\right)\left(\tilde{x}_{0}\right) .
$$

It is easy to check that U is linear and

$$
\begin{equation*}
U\left(\alpha x_{0}\right)=\alpha \operatorname{sgn}\left(x_{0}\right) \tilde{x}_{0}, \tag{3.1}
\end{equation*}
$$

for every scalar α. Also,

$$
\begin{aligned}
{[U(y), U(z)] } & =\left[\Phi\left(T_{y, x_{0}}\right) \tilde{x}_{0}, \Phi\left(T_{z, x_{0}}\right) \tilde{x}_{0}\right] \\
& =\left[\left(\Phi\left(T_{z, x_{0}}\right)\right)^{[*]} \Phi\left(T_{y, x_{0}}\right) \tilde{x}_{0}, \tilde{x}_{0}\right] \\
& =\left[\Phi\left(T_{z}^{[*]} x_{0}\right) \Phi\left(T_{y, x_{0}}\right) \tilde{x}_{0}, \tilde{x}_{0}\right] \\
& =\left[\Phi\left(T_{x_{0}, z} T_{y, x_{0}}\right) \tilde{x}_{0}, \tilde{x}_{0}\right] \\
& =\operatorname{sgn}\left(x_{0}\right)[y, z]\left[\Phi\left(P_{x_{0}}\right) \tilde{x}_{0}, \tilde{x}_{0}\right] \\
& =\operatorname{sgn}\left(x_{0}\right)[y, z]\left[\tilde{x}_{0}, \tilde{x}_{0}\right] \\
& =\operatorname{sgn}\left(x_{0}\right) \operatorname{sgn}\left(\tilde{x}_{0}\right)[y, z] .
\end{aligned}
$$

Thus $U^{[*]} U=c I_{1}$ and $U U^{[*]}=c I_{2}$, where $c=\operatorname{sgn}\left(x_{0}\right) \operatorname{sgn}\left(\tilde{x}_{0}\right)$. It follows that

$$
U^{[*]} U\left(\alpha \operatorname{sgn}\left(x_{0}\right) x_{0}\right)=c \alpha \operatorname{sgn}\left(x_{0}\right) x_{0} .
$$

Substituting the expression for $U\left(\alpha x_{0}\right)$ from Eq. (3.1), we obtain

$$
\begin{equation*}
U^{[*]}\left(\alpha x_{0}\right)=c \alpha \operatorname{sgn}\left(x_{0}\right) x_{0} \tag{3.2}
\end{equation*}
$$

Next we prove $\Phi(T)=c U T U^{[*]}$ for all rank 1 linear operators T on H_{1}. First we prove this for $T=T_{x_{0}, y}$ for $y \in H_{1}$. Let $u, y \in H_{1}$. Then

$$
\begin{aligned}
\Phi\left(T_{x_{0}, y}\right) U(u) & =\Phi\left(T_{x_{0}, y}\right) \Phi\left(T_{u, x_{0}}\right) \tilde{x}_{0} \\
& =\Phi\left(T_{x_{0}, y} T_{u, x_{0}}\right) \tilde{x}_{0} \\
& =\operatorname{sgn}\left(x_{0}\right)[u, y] \Phi\left(P_{x_{0}}\right)\left(\tilde{x}_{0}\right) \\
& =\operatorname{sgn}\left(x_{0}\right)[u, y] \tilde{x}_{0} .
\end{aligned}
$$

Now, $T_{x_{0}, y}(u)=[u, y] x_{0}$ implies

$$
\begin{aligned}
U\left(T_{x_{0}, y}\right)(u) & =\Phi\left([u, y] T_{x_{0}, x_{0}}\right) \tilde{x}_{0} \\
& =[u, y] \operatorname{sgn}\left(x_{0}\right) \Phi\left(P_{x_{0}}\right)\left(\tilde{x}_{0}\right) \\
& =\operatorname{sgn}\left(x_{0}\right)[u, y] \tilde{x}_{0} .
\end{aligned}
$$

Thus $\Phi\left(T_{x_{0}, y}\right) U=U T_{x_{0}, y}$. So we have

$$
\Phi\left(T_{x_{0}, y}\right)=c U T_{x_{0}, y} U^{[*]} .
$$

If T is a rank one linear operator, then by Lemma 2.12, there exist x and y such that $T=T_{x, y}$. Then

$$
\begin{aligned}
\Phi(T) & =\Phi\left(T_{x, y}\right) \\
& =\Phi\left(\operatorname{sgn}\left(x_{0}\right) T_{x, x_{0}} T_{x_{0}, y}\right) \\
& =\operatorname{sgn}\left(x_{0}\right) \Phi\left(T_{x_{0}, x}^{[*]}\right) \Phi\left(T_{x_{0}, y}\right) \\
& =\operatorname{sgn}\left(x_{0}\right)\left\{\Phi\left(T_{x_{0}, x}\right)\right\}^{[*]} \Phi\left(T_{x_{0}, y}\right) \\
& =c \operatorname{sgn}\left(x_{0}\right)\left\{U T_{x_{0}, x} U^{[*]}\right\}^{[*]}\left\{U c T_{x_{0}, y} U^{[*]}\right\} \\
& =c \operatorname{sgn}\left(x_{0}\right) U T_{x_{0}, x}^{[*]} T_{x_{0}, y} U^{[*]} \\
& =c \operatorname{sgn}\left(x_{0}\right) U T_{x, x_{0}} T_{x_{0}, y} U^{[*]} \\
& =c U T_{x, y} U^{[*]} \\
& =c U T U^{[*]} .
\end{aligned}
$$

In the above, the second equation follows from Lemma 2.11. Thus

$$
\Phi(T)=c U T U^{[*]}
$$

for all rank one operators T. This completes the proof.
Corollary 3.5. Let H_{1} and H_{2} be indefinite inner product spaces. If Φ is a [*]-isomorphism from $L\left(H_{1}\right)$ onto $L\left(H_{2}\right)$ then there exists a linear operator $U: H_{1} \rightarrow H_{2}$ such that $\Phi(T)=c U T U^{[*]}$ for all $T \in L\left(H_{1}\right)$ with $U U^{[*]}=c I_{2}$ and $U^{[*]} U=c I_{1}$, where $c= \pm 1$. Moreover, U is unique up to a scalar multiple of absolute value 1 .

Proof. Let $x_{0} \in H_{1}$ such that $\left[x_{0}, x_{0}\right]= \pm 1$. It is clear that $T T_{v, x_{0}}$ is a rank 1 operator for any $v \in H_{1}$. Then by Theorem 3.4, there exists U such that $U U^{[*]}=c I_{2}, U^{[*]} U=c I_{1}$ and

$$
\Phi\left(T T_{v, x_{0}}\right)=c U T T_{v, x_{0}} U^{[*]}
$$

Then

$$
\begin{aligned}
\Phi(T) U(v) & =\Phi(T) \Phi\left(T_{v, x_{0}}\right) \tilde{x}_{0} \\
& =\Phi\left(T T_{v, x_{0}}\right)\left(\tilde{x}_{0}\right) \\
& =c U T T_{v, x_{0}} U^{[*]}\left(\tilde{x}_{0}\right) \\
& =c U T T_{v, x_{0}}\left(c \operatorname{sgn}\left(x_{0}\right) x_{0}\right) \\
& =U T(v),
\end{aligned}
$$

where the fourth equation follows from Eq. (3.2). Thus $\Phi(T)=c U T U^{[*]}$ (for all $T \in L\left(H_{1}\right)$). Uniqueness is similar to the Euclidean case.

Acknowledgment

The authors thank a referee for suggestions that helped to improve the readability of the article.

References

[1] W. Arveson, An Invitation to C*-Algebra, Springer, 1976.
[2] S.H. Kulkarni, M.T. Nair, M.N.N. Namboodiri, An elementary proof for a characterization of $*$-isomorphisms, Proc. Amer. Math. Soc. 134 (2006) 229-234.

[^0]: * Corresponding author.

 E-mail address: kcskumar@iitm.ac.in (K.C. Sivakumar).

