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Abstract

Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes
are often called Euler–Maclaurin formulas. An asymptotic Euler–Maclaurin formula, by which we mean
an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin
and Sternberg (2007) [11]. Then, the problem is to find a concrete formula for each term of the expansion.
In this paper, an asymptotic Euler–Maclaurin formula of the Riemann sums over general lattice polytopes
is given. The formula given here is an asymptotic form of the so-called local Euler–Maclaurin formula of
Berline and Vergne (2007) [3]. For Delzant polytopes, our proof given here is independent of the local
Euler–Maclaurin formula. Furthermore, a concrete description of differential operators which appear in
each term of the asymptotic expansion for Delzant lattice polytopes is given. By using this description,
when the polytopes are Delzant lattice, a concrete formula for each term of the expansion in two dimension
and a formula for the third term of the expansion in arbitrary dimension are given.
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0. Introduction

In this paper, we consider asymptotic behavior of the Riemann sums over lattice polytopes,

RN(P ;ϕ) := 1

Ndim(P )

∑
γ∈(NP )∩Zm

ϕ(γ /N), (0.1)

where P is a lattice polytope in Rm, which means that each vertex has integer coordinates, and
ϕ is a smooth function on P . Formulas for RN(P ;ϕ), which are often called Euler–Maclaurin
formulas, are extensively investigated in combinatorics and geometry of toric varieties. If we
take ϕ = 1, the Riemann sum RN(P ;1) is reduced to the so-called Ehrhart polynomial

EP (N) := �(NP ) ∩ Zm = Ndim(P )RN(P ;1),

which is closely related to the Todd class of a toric variety corresponding to the polytope P .
In this context, geometry of toric varieties is a suitable and powerful tool to analyze the func-
tion EP (N). Indeed, as in [8], one can show that EP (N) is a polynomial in N by using the
Hirzebruch–Riemann–Roch theorem. The problems concerning (exact) Euler–Maclaurin formu-
las and Ehrhart polynomials are investigated by various authors, for example [6,3,4,14]. See [16]
and references therein for various results on these topics.

Before explaining some of the results closely related to the present paper, we state one of our
theorems.

Theorem 1. Let P be a lattice polytope in Rm. For each face f of P and non-negative integer
n with dim(f ) � dim(P ) − n, there exists a homogeneous differential operator Dn(P ;f ) of
order n − dim(P ) + dim(f ) with rational constant coefficients which involves derivatives only
in directions orthogonal to the face f such that for each smooth function ϕ on P , we have the
following asymptotic Euler–Maclaurin formula:

RN(P ;ϕ) ∼
∑
n�0

N−n
∑

f ∈F (P ),dim(f )�dim(P )−n

∫
f

Dn(P ;f )ϕ (N → ∞), (0.2)

where F (P ) denotes the set of faces of P . The integration in the right-hand side is performed
with respect to the measure on the affine hull 〈f 〉 of f which is the parallel translation of the
Lebesgue measure on the subspace L(f ) parallel to 〈f 〉 defined by the lattice L(f ) ∩ Λ.

In this section, we explain some of the previous works on the Euler–Maclaurin formula closely
related to Theorem 1 and mention other results obtained in the present paper.

An exact Euler–Maclaurin formula for Delzant polytopes was originally obtained by Khovan-
skii and Pukhlikov [14], and Brion and Vergne [4] generalized it to simple polytopes without
using the theory of toric varieties. One of their results can be stated as (assuming that P is
a Delzant polytope)

RN(P ;ϕ) = Todd(P ; ∂/N∂h)

∫
ϕ(x)dx

∣∣∣∣
h=0

, (0.3)
Ph
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where ϕ is a polynomial, h = (h1, . . . , hd) ∈ Rd is a small parameter with d the number of faces
of P of codimension one, Todd(z) = z

1−e−z is an analytic function around the origin, called the
Todd function,

Todd(P ; ∂/N∂h) =
d∏

i=1

Todd(∂/N∂hi)

is a differential operator (of infinite order), and when the polytope P is given by P =
{x; 〈ui, x〉 � ci, i = 1, . . . , d}, then Ph = {x; 〈ui, x〉 � ci − hi, i = 1, . . . , d}. Note that Brion
and Vergne [4] obtained the same formula for simple polytopes with a modification of the differ-
ential operator Todd(P ; ∂/N∂h).

In [3], Berline–Vergne obtained an effective formula for RN(P ;ϕ) (still ϕ being assumed to
be polynomial), which they call a local Euler–Maclaurin formula. This formula is of the form
(setting N = 1 for simplicity)

R1(P ;ϕ) =
∑
f

∫
f

D(P,f )ϕ, (0.4)

where the sum runs over all faces f of P , D(P,f ) is a differential operator (of infinite order)
with rational constant coefficients on Rm which involves derivatives only in directions perpen-
dicular to the face f . One of remarkable points is that the formula (0.4) of Berline–Vergne holds
for any rational polytopes, which means that each vertex of the polytope has rational coordi-
nates. They constructed a meromorphic function μ(a) for any affine rational polyhedral cone
a and use a sort of inclusion-exclusion property (which is called a valuation property) of μ to
show that it is analytic near the origin, and they define the symbol of the operator D(P,f ) by
using μ.

The operators Dn(P ;f ) in our formula (0.2) is, by definition, the homogeneous parts of the
operator D(P,f ) in (0.4). Thus, one can think the formula (0.2) as an asymptotic form of the
local Euler–Maclaurin formula (0.4) due to Berline–Vergne. As we point out in Section 1.3,
one can deduce (0.2) by using one of results in [3] directly and formally. However, the method
mentioned in Section 1.3 is formal, and we use a different method to prove Theorem 1. Moreover,
any transparent formula for the homogeneous parts of D(P,f ) is, in general, not known. We will
see that, when P is a Delzant lattice polytope, the operators Dn(P ;f ) can be, to some extent,
expressible concretely (Definition 3.6, Theorem 3.9). Note that our formula (0.2) is valid for any
smooth function ϕ on P . Our construction of the operator Dn(P ;f ) makes us to obtain concrete
formula for Delzant lattice polytopes in two dimension (Corollary 5.4). A part of our construction
of these operators Dn(P ;f ) uses an induction procedure, and they are still complicated. This
complication comes from the “angles” at each face of the polytopes, and hence it would be
rather natural. The complication involving the “angles” is embodied in an integration by parts
procedure.

In this paper, by the name asymptotic Euler–Maclaurin formula, we mean formulas of asymp-
totic expansion of the Riemann sum RN(P ;ϕ). In one dimension (m = 1 and P = [0,1]), the
following asymptotic Euler–Maclaurin formula is well know.
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1

N

N∑
k=1

ϕ(k/N) = RN

([0,1];ϕ)− ϕ(0)

N
∼

1∫
0

ϕ(x)dx + 1

2N

(
ϕ(1) − ϕ(0)

)

+
∑
n�1

(−1)n−1Bn

(2n)!
(
ϕ(2n−1)(1) − ϕ(2n−1)(0)

)
N−2n, (0.5)

where ϕ is any smooth function on [0,1], and bn are the coefficients of the Taylor expansion of
the Todd function:

Todd(−z) =
∞∑

n=0

bn

n! z
n,

and Bn = (−1)n−1b2n (n � 1) are the Bernoulli numbers.
A higher dimensional analogue of (0.5) was given by Guillemin and Sternberg [11]. Namely,

Guillemin–Sternberg obtained the asymptotic Euler–Maclaurin formula of the form (assuming
that P is Delzant)

RN(P ;ϕ) ∼ Todd(P ; ∂/∂Nh)

∫
Ph

ϕ(x) dx

∣∣∣∣
h=0

. (0.6)

This formula also holds true for simple lattice polytopes under a modification. Note that this
formula is, at least its appearance, similar to the Brion–Vergne formula (0.3). The proof of (0.6)
given in [11] is different from the proof of (0.3) given in [4], and it does not use geometry of toric
varieties. There are some applications of the above formula for spectral analysis on toric Kähler
manifolds. In fact, in [12], the asymptotic Euler–Maclaurin formula obtained in [11], combined
with an asymptotic expansion of ‘twisted Mellin transform’ studied in [19], is applied to analyze
a spectral measure on Cm which is, in a GIT setting, related to the pair (X,L) where X is a toric
manifold corresponding to a Delzant polytope and L is a Hermitian line bundle on X. (See also
[5] where the same spectral measure as in [12] is discussed.)

One more asymptotic Euler–Maclaurin formula was brought to us by Zelditch [20]. The for-
mula obtained in [20] is stated as

RN(P ;ϕ) ∼
∫
P

ϕ dx + 1

2N

∫
∂P

ϕ(x) dσ +
∑
n�2

N−n

∫
P

En(P )ϕ(x) dx, (0.7)

where P is a Delzant lattice polytope, En(P ) is a differential operator (of finite order), and dσ

is the Leray measure on the boundary ∂P . In [20], Zelditch introduced the notion of Bergman–
Bernstein measures (this name is taken from [18]) and obtained its asymptotic expansion. Then,
integration (over the toric Kähler manifold corresponding to the Delzant polytope P ) of the
asymptotic expansion yields the formula (0.7). In [20], the formula (0.7) is called a ‘metric
expansion’ to distinguish it from the Euler–Maclaurin formula of the form (0.6), since the dif-
ferential operators En(P ) depend on the choice of a Hermitian metric on a line bundle over the
toric manifold. But, the Riemann sum itself does not depend on such a metric. A point is that
such a metric dependence would be disappeared after an integration by parts. Indeed, in [20], the
second term is computed by using an integration by parts identity due to Donaldson [7].
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As is mentioned in [20], comparison of asymptotic Euler–Maclaurin formula and the metric
expansion of the form (0.7) will give some further identities in the lower order terms. One of our
motivation is to give another asymptotic Euler–Maclaurin formula which is computable to some
extent. Indeed, we have a concrete formula for the third term of the expansion when the polytope
is Delzant. See Corollary 5.6 in Section 5.3. Thus, if one can compute the differential operator
E2(P ) in (0.7) in terms of curvatures, then one will obtain an integration by parts identity in the
third term in (0.7), which might be useful to geometry of toric manifolds.

An idea of proof of Theorem 1 is to reduce the problem to that for unimodular cones, which
are cones generated by a part of an integral basis, by using a subdivision of a rational cones
into unimodular cones (see [8, Section 2.6]) and a canonical decomposition of the characteris-
tic functions of polytopes (see Eqs. (5.3), (5.6) in Section 5). The asymptotic Euler–Maclaurin
formula of Riemann sums over unimodular cones can be deduced by a method in [11] (see also
[1,15,16]). However, we deduce it here by a quite different method. This method is rather similar
to the Bergman–Bernstein approach in [20]. But, we work on unimodular cones instead of poly-
topes themselves. Thus, we use the Szasz measures introduced in Section 2 instead of Bernstein
or Bergman–Bernstein measures discussed in [20] or [18]. More concretely, an asymptotic prop-
erty of the Szasz functions is used to show Proposition 3.1 in Section 3, which is an asymptotic
Euler–Maclaurin formula for unimodular cones. Proposition 3.1 can be deduced directly from
Theorem 3.2 in [11], and one can consider that the Proposition 3.1 is a starting point for the
subsequent sections. Thus, one might be able to perform similar computations in sections after
Section 3 at least for simple polytopes, by using Theorem 3.3 in [11] instead of Proposition 3.1.
However, the asymptotic behavior of Szasz functions would be a general interest in its own right.
Furthermore, there would be a possibility of using a version of Szasz functions to get asymp-
totics of the Riemann sum over general rational cones without using a subdivision of cones into
unimodular cones, if one could resolve a problem on ‘rare events’ along with the lines in [18].
(See also Remark after the proof of Theorem 5.1 on this point.) In one dimension, we compute
explicitly each term of the expansion for twisted Riemann sum by using this approach. This
computation uses the twisted version of the Szasz function, and it shows that coefficients in the
Taylor expansion of the ‘twisted’ Todd function can be represented by the Stirling numbers of the
second kind (in particular, Eq. (2.19)), which is a generalization of a well-known formula among
Bernoulli numbers, Catalan numbers and the Stirling numbers of the second kind (see (2.17)
or [10]). Thus, this approach might have some advantages also in higher dimension. These are
the reasons why we use the approach with the Szasz functions in this paper.

We here mention that an asymptotic expansion of the Szasz function was first obtained in [9].
In [9], Feng also obtained an asymptotic formula of the Riemann sum over the positive orthant
Rm+ in the same strategy as ours. However, concrete formulas for each term of the asymptotic ex-
pansion are not discussed fully in [9]. We give an explicit formula for each term of the expansion
of the Szasz function in Section 2. (The main purpose in [9] was to give a non-compact analogue
of Bergman–Bernstein approximation in [20]. Indeed the Szasz function, defined in Section 2
in the present paper, is closely related to the Bergman kernel for the Bargmann–Fock space as
explained in [9].)

We close Introduction with some comments on the organization of this paper. We collect some
of the notation used in this paper in Section 1.1, and then, we review and define the Berline–
Vergne operators Dn(P ;f ) in Section 1.2. As we mentioned above, a heuristic argument to find
a formula (0.2) is given in Section 1.3. In Section 1.4, we prove a uniqueness theorem on the ex-
pression of each term of the asymptotic expansion of the form (0.2) (Theorem 1.2). In Section 2,
we study asymptotic behavior of Szasz functions. Some computations for the twisted Riemann
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sum in one dimension is given in Section 2.1. In Sections 2.2, 2.3, we define the Szasz functions
and prove their asymptotic expansion formula by using an idea coming from [13]. Section 3 is
devoted to the study of asymptotic behavior of the Riemann sums over unimodular cones. First,
we prove an asymptotic expansion formula (Proposition 3.1) by using the asymptotic property
of the Szasz functions studied in Section 2. Asymptotic formula obtained in Proposition 3.1 uses
differential operators in direction transversal to each face of the unimodular cone. Then, one can
perform further integration by parts. This is done in Section 3.2. In Section 3.3, we define dif-
ferential operators obtained by the integration by parts procedure discussed in Section 3.2 which
is used to renormalize each term of the expansion in Proposition 3.1. The fact that the operators
so defined coincide with the Berline–Vergne operators is proved also in this subsection (Theo-
rem 3.9). In Section 4, we prove the asymptotic Euler–Maclaurin formula for general pointed
rational cones by using the Berline–Vergne operators and the subdivision of pointed rational
cones into a finite number of unimodular cones. Finally, in Section 5, we prove our main Theo-
rem 1, which is reformulated in Theorem 5.1, and a uniqueness result (Theorem 5.3), and give
some explicit computation.

1. Berline–Vergne operators and heuristic argument

In this section, we review the symbol of differential operators defined in [3]. Then, we
give a heuristic argument to obtain an asymptotic Euler–Maclaurin formula of the form (0.2).
Furthermore, we deduce a uniqueness theorem on expression of coefficients in asymptotic Euler–
Maclaurin formula of the form (0.2).

1.1. Notation

Let X be a finite dimensional vector space over R, and let Λ be a lattice in X. Such a pair
(X,Λ) is called a rational vector space. The dual space X∗ of a rational space (X,Λ) is a rational
space with the dual lattice Λ∗ of Λ. A point x ∈ X is said to be rational if qx ∈ Λ for some
q ∈ Z \ {0}. The set of rational points in X is denoted by XQ. A basis of Λ over Z is called
an integral basis of Λ. For each rational vector space (X,Λ), we fix a Lebesgue measure on X

normalized so that the measure of the fundamental domain of the action of Λ on X has measure 1.
A subspace L in X is said to be rational if L ∩ Λ is a lattice in L. We fix a Lebesgue measure
on a rational subspace (L,L ∩ Λ) as above. An affine subspace A is said to be rational if A is a
parallel translation of a rational subspace. (Note that a rational affine subspace A is allowed to be
a translation of a rational subspace by a point which is not rational.) For a rational affine subspace
A, we fix a Lebesgue measure on A which is a translation of the fixed Lebesgue measure on
the rational subspace parallel to A. Any integration on a subset in a rational affine subspace is
performed by using the Lebesgue measure normalized in this way. For each vector u ∈ X, let ∇u

denote the derivative in the direction u.
For each non-empty subset S in X, let L(S) be the subspace spanned by the vectors y − x

with x, y ∈ S, which is parallel to the affine hull, denoted by 〈S〉, of S. If S ⊂ XQ, then L(S)

is a rational subspace in X. Let L be a rational subspace in a rational space (X,Λ). The natural
projection from X onto X/L is denoted by πL : X → X/L. If L is a subspace in X, let L⊥ ⊂ X∗
denote the annihilator of L. The quotient space X/L of X by a rational subspace L is again a
rational space with the lattice πL(Λ).

An inner product Q on a rational space (X,Λ) is said to be rational if Q(x,y) ∈ Q for each
x, y ∈ XQ. Let Q be a rational inner product on (X,Λ). The rational inner product on (X∗,Λ∗)
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induced by the inner product Q on X is also denoted by Q. Let L be a subspace in X. The
orthogonal complement of L in X is denoted by L⊥Q . Note that we have a natural identification
(X/L)∗ ∼= L⊥. The orthogonal projection from X∗ onto (X/L)∗ ∼= L⊥ is denoted by pL : X∗ →
(X/L)∗. When L is rational, the rational space X/L is equipped with the rational inner product
obtained by identifying X/L with L⊥Q . Note that, with this identification, the lattice πL(Λ) of
X/L is identified with the orthogonal projection pL(Λ) of Λ, where the orthogonal projection
from X onto L⊥Q is also denoted by pL : X → L⊥Q , which is different from the lattice L⊥Q ∩Λ

in L⊥Q .
A subset P in a rational space (X,Λ) is called a rational polyhedron if P is an intersection of

a finite number of half spaces each of which is bounded by a rational affine hyperplane. Let P

be a rational polyhedron. Then the set of faces of P is denoted by F (P ), and, for non-negative
integer k, the set of faces of P of dimension k is denoted by F (P )k . We set V (P ) = F (P )0,
the set of vertices of P . A face of codimension one is called a facet. For each f ∈ F (P ), we
set πf = πL(f ), the natural projection from X onto X/L(f ). When, a rational inner product on
X is fixed, we set pf = pL(f ), the orthogonal projection from X∗ onto (X/L(f ))∗. A rational
polyhedron C in X is called a rational cone if C is a cone generated by a finite number of elements
in Λ. Note that a rational cone C might contain straight lines. The largest subspace contained in
the rational cone C is C ∩ (−C), which is a rational subspace in X. If C ∩ (−C) = {0}, then the
rational cone C is said to be pointed. If a rational cone C is generated by a subset of an integral
basis of Λ, then C is said to be unimodular. A subset a of X is called a rational affine cone if a

is of the form a = s + C where s ∈ XQ and C is a rational cone. If C is pointed, then a is also
said to be pointed.

1.2. The Berline–Vergne operators

In this subsection, we recall the construction of operators given in [3]. Let (X,Λ) be a rational
space with a rational inner product Q. For each rational polyhedron P in X, we set

S(P )(ξ) =
∑

γ∈P∩Λ

e〈ξ,γ 〉, I (P ) =
∫
P

e〈ξ,x〉 (1.1)

if the sum and the integral converge absolutely, where ξ ∈ X∗. These functions are defined as
meromorphic functions on X∗. Let f be a face of a rational polyhedron P in X. Let CP (f )

be the cone generated by the vectors of the form y − x with y ∈ P , x ∈ f . This is actually a
rational cone in X with CP (f ) ∩ (−CP (f )) = L(f ). Then, the pointed affine cone t(P,f ) :=
πf (〈f 〉 + CP (f )) in X/L(f ) is called the transverse cone of P along f .

For any rational quotient W = X/L of X by a rational subspace L, let C(W) denote the set
of all rational affine cones in W . Let H(W ∗) denote the ring of analytic functions with rational
Taylor coefficients defined in a neighborhood of 0 in W ∗ with respect to an (and hence all)
integral basis of the dual lattice of the lattice πL(Λ) in W = X/L.

Then, it is shown in Theorem 20 in [3] that there is a unique family of maps μW , indexed by
rational quotient spaces W of X, from C(W) to H(W ∗) such that the following conditions hold:

(1) If W = {0}, then μW({0}) = 1.
(2) If the affine cone a ∈ C(W) contains a straight line, then μW(a) = 0.
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(3) For any a ∈ C(W), one has

S(a)(ξ) =
∑

F∈F (a)

μW/L(F)

(
t(a,F )

)
(ξ)I (F )(ξ), ξ ∈ W ∗. (1.2)

Moreover, one of main theorems in [3] is that, for each rational polyhedron P in W = X/L, one
has

S(P )(ξ) =
∑

f ∈F (P )

μX/L(f )

(
t(P,f )

)
(ξ)I (f )(ξ), ξ ∈ W ∗. (1.3)

(See Theorem 21 in [3].) Note that the functions μX/L(f ) in (1.3) (and also in (1.2)) is the
lift to W ∗ of functions defined on (W/L(f ))∗ through the orthogonal projection pf : W ∗ →
(W/L(f ))∗. Let a be a pointed rational affine cone in the rational quotient X/L of X. For any
non-negative integer k, let μk

X/L(a) denote the homogeneous polynomial of degree k on (X/L)∗
which is the homogeneous part of the Taylor expansion of the analytic function μX/L(a) near
0 ∈ (X/L)∗. We set μk

X(a) = p∗
Lμk

X/L(a), which is a homogeneous polynomial of degree k

on X∗.

Definition 1.1. Let (X,Λ) be a rational space with a rational inner product Q. For any
rational polyhedron P in X, any face f of P and any non-negative integer n such that
n − dim(P ) + dim(f ) � 0, we define the homogeneous differential operator DX

n (P ;f ) on X

with rational constant coefficients of order n − dim(P ) + dim(f ), which involves derivatives
only in directions perpendicular to the subspace L(f ), as the differential operator whose symbol
is given by μ

n−dim(P )+dim(f )
X (t(P,f )) = p∗

f μ
n−dim(P )+dim(f )

X/L(f ) (t(P,f )). We call the operators

DX
n (P ;f ) the Berline–Vergne operators.

We note that, when C is a pointed rational cone in X and F is a face of C, then t(C,F ) =
πF (C), and hence we have DX

n (C;F) = DX
n (πF (C);0). Let P be a lattice polytope in X,

which means that each vertex is an element in Λ, and let f ∈ F (P ). Then, we have t(P,f ) =
πf (v) + πf (CP (f )) where v ∈ f ∩ Λ. Since the function μX/L(f ) is invariant under translation
by elements in the lattice (Theorem 21 in [3]), we have DX

n (P ;f ) = DX
n (πf (CP (f ));0).

1.3. Heuristic arguments

In this subsection, we give a heuristic argument to find the formula (0.2) by using the result
(1.3) in [3]. Let (X,Λ) be a rational space. Let P be a lattice polytope in X. For simplicity, as-
sume that m := dim(P ) = dim(X). For each f ∈ F (P ), we set μ(P,f ) := p∗

f μX/L(f )(t(P,f ))

which is a meromorphic function on X∗ analytic in a neighborhood of the origin. Now let us
compute the Riemann sum RN(P ;ϕ) by using (1.3). Let ϕ be a smooth function on P . Since P

is compact, one may assume that ϕ ∈ C∞
0 (X). Normalize the Lebesgue measure dξ on X∗ so

that it satisfy the Fourier inversion formula

ϕ(x) = (2π)−m

∫
∗

ei〈ξ,x〉ϕ̂(ξ) dξ, ϕ̂(ξ) =
∫

e−i〈ξ,x〉ϕ(x).
X X
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Inserting the above for x = γ /N with γ ∈ NP ∩ Λ into the definition of RN(P ;ϕ) and using
the formula (1.3), we have

RN(P ;ϕ) = 1

(2πN)m

∑
f

∫
X∗

μ(NP,Nf )(iξ/N)I (Nf )(iξ/N)ϕ̂(ξ) dξ,

But, since P is a lattice polytope, we have μ(NP,Nf ) = μ(P,f ) (see [3, Remark 29]). Chang-
ing the variable x → x/N , we have I (Nf )(iξ/N) = Ndim(f )I (f )(iξ). Thus we have

RN(P ;ϕ) = 1

(2πN)m

∑
f

Ndim(f )

∫
X∗

μ(P,f )(iξ/N)I (f )(iξ)ϕ̂(ξ) dξ.

Formally, substituting the Taylor expansion

μ(P,f )(iξ/N) =
∑
k�0

μk
(
t(P,f )

)
(iξ)N−k

into the above formula, we could have

RN(P ;ϕ) “∼”
∑
n�0

N−n
∑

f ∈F (P );dim(f )�m−n

∫
f

DX
n (P ;f )ϕ, (1.4)

where DX
n (P ;f ) is defined in Definition 1.1. However, the above computation is formal because

we do not know much about global properties of the functions μ(P,f ). Even if we could prove
the formula (1.4) along with the method explained above, we do not know much about homo-
geneous parts of its Taylor expansion. One of our purposes in this paper is to give an effective
formula for the operator DX

n (P ;f ) given in Definition 1.1, at least for Delzant lattice polytopes,
by a method different from the above strategy.

1.4. A uniqueness property

In this subsection, we discuss a uniqueness property of an expression of each term of the
asymptotic expansion of RN(C;ϕ) for unimodular cones C. Let C be a unimodular cone in a
rational space (X,Λ) with a rational inner product Q. Then, note that, for each face F of C, we
have t(C,F ) = πF (C). Note also that, we give a rational inner product in each rational quotient
space X/L by identifying X/L with L⊥Q .

Theorem 1.2. Suppose that, for any rational space (X,Λ) with a rational inner product Q,
any rational subspace L of X, any unimodular cone C in X/L and any non-negative integer n

such that n � dim(C), there exists a homogeneous differential operator DX
n (C) on X of order

n − dim(C) with symbol νX
n (C) such that

(1) If C ⊂ X/L, then νX
n (C) = p∗

Lν
X/L
n (C) where pL : X → L⊥Q ∼= (X/L)∗ denote the orthog-

onal projection.
(2) If C ⊂ X with dim(C) < dim(X), then νX

n (C) = t ι∗Cν
L(C)
n (C), where t ιC : X∗ → L(C)∗ is

the transpose of the inclusion ιC : L(C) ↪→ X.
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(3) When dim(X) = 0, we have DX
0 ({0}) = 1, DX

n ({0}) = 0 (n � 1). When dim(X) = 1 and

C = R+u with a generator u of Λ, we have DX
n (C) = − bn

n! ∇n−1
u (n � 1).

(4) For any unimodular cone C ⊂ X, any F ∈ F (C), any n ∈ Z+ with dim(F ) � dim(C) − n

and any Schwartz function ϕ ∈ S(X) on X, the following holds:

RN(C;ϕ) ∼
∑
n�0

N−n
∑

F∈F (C);dim(F )�dim(C)−n

∫
F

DX
n

(
πF (C)

)
ϕ (N → ∞). (1.5)

Then, we have

νX
n (C) = μ

n−dim(C)
X (C) (1.6)

for any such X, C and n satisfying n − dim(C) � 0.

Proof. First, we note that, the symbols of the Berline–Vergne operators satisfy the assumption
(2) in the statement (Proposition 13 in [3]).

We prove the assertion by induction on the dimension of X. Consider the case where
dimX = 1. Take a generator u of the lattice Λ and identify u with 1 in Z. Let C = R+u. Then,
as is computed in [3], we have

μX(C)(ξ) = 1

〈ξ,u〉 + 1

1 − e〈ξ,u〉 = −
∞∑

n=1

bn

n! 〈ξ,u〉n−1, ξ ∈ X∗.

We also have μ{0}({0}) = 1. From this, we have μn−1
X (C)(ξ) = − bn

n! 〈ξ,u〉n−1 (n � 1),
μ0

X({0}) = 1, μn
X({0}) = 0 (n � 1). By the assumption (3), this shows the assertion when

dim(X) = 1.
Next, assume that, for any rational space (X,Λ) with dim(X) � m − 1, any unimodular cone

C in a rational quotient X/L and any non-negative integer n such that n � dim(C), Eq. (1.6)
holds. Let X be an m-dimensional rational space, and let C ⊂ X be a unimodular cone. If
dim(C) < m, then by the assumption (2) and the induction hypothesis, we have (1.6). Thus,
we assume that dim(C) = m. Let F ∈ F (C). If dim(F ) > 0, then, by the assumption (1), we
have νX

n (πF (C)) = p∗
F ν

X/L(F)
n (πF (C)). Since dim(X/L(F)) � m−1 and πF (C) is a unimodu-

lar cone in X/L(F), we can use the induction hypothesis, and hence the latter function coincides
with p∗

F μ
n−m+dim(F )
X/L(F ) (πF (C)) = μ

n−m+dim(F )
X (πF (C)). To prove νX

n (C) = μn−m
X (C) for n � m,

take ξ ∈ X∗ such that 〈ξ, x〉 < 0 for each x ∈ C. Then, for any N > 0, we have

S(C)(ξ/N) = NmRN(C; eξ ), eξ (x) = e〈ξ,x〉.

Note that there is a ϕ ∈ S(X) such that ϕ(x) = eξ (x) for x ∈ C. Thus, by the assumption (4), we
have

S(C)(ξ/N) ∼
∑

Nm−n
∑

νX
n

(
πF (C)

)
(ξ)I (F )(ξ) (1.7)
n�0 F∈F (C);dim(F )�m−n
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as N → ∞. By (1.2) and the identity I (F )(ξ/N) = Ndim(F )I (F )(ξ), we have

S(C)(ξ/N) =
∑
n�0

Nm−n
∑

F∈F (C);dim(F )�m−n

μ
n−m+dim(F )
X

(
πF (C)

)
(ξ)I (F )(ξ)

for every sufficiently large N . Let n � m. By using the induction hypothesis, the coefficient of
Nm−n in the above can be written as

μn−m
X (C)(ξ) +

∑
F∈F (C);0�=dim(F )�m−n

νX
n

(
πF (C)

)
(ξ)I (F )(ξ). (1.8)

Equating (1.8) with the coefficient of Nm−n in (1.7) shows μn−m
X (C) = νX

n (C). �
2. Szasz functions and their asymptotic behavior

In this section, we define Szasz functions over unimodular cones and investigate their asymp-
totic behavior. First of all, let us compute in one dimension, which illustrate the general case.

2.1. Computation in one dimension

The Szasz function associated with a function ϕ on R, originally introduced and discussed
in [17], is defined by

SN(ϕ)(x) =
∞∑

k=0

k(Nx)ϕ(k/N), k(x) = xk

k! e−x, x ∈ R. (2.1)

Szasz introduced the function SN(ϕ) as an analogue of the Bernstein polynomial

BN(ϕ)(x) =
N∑

k=0

mk
N(x)ϕ(k/N), mk

N(x) =
(

N

k

)
xk(1 − x)N−k.

Indeed, these two functions are related through Poisson’s law of rare events

lim
N→∞mk

N(x/N) = k(x).

For us, an important property of the Szasz function SN(ϕ) is the following:

∞∫
0

SN(ϕ)(x) dx = 1

N

∞∑
k=0

ϕ(k/N) =: RN

([0,+∞);ϕ)
for any ϕ ∈ S(R). We put

RN

(
(−∞,0];ϕ) := 1

N

∞∑
ϕ(−k/N).
k=0
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Then, once we obtain the asymptotic expansion of SN(ϕ) as N → ∞ with a suitable reminder
estimate, then integrating it on [0,∞) will give the asymptotic expansion of RN([0,+∞);ϕ).
But then we have the formula

RN

([0,1];ϕ)= RN

([0,+∞);ϕ)+ RN

(
(−∞,0];T1ϕ

)− RN(R;ϕ), (2.2)

where we set T1ϕ(x) = ϕ(1 + x). In this formula, note that we have RN(R;ϕ) = ∫
R ϕ(x)dx +

O(N−∞) (see [11] or see Lemma 3.2). We also have RN((−∞,0];T1ϕ) = RN([0,+∞);ψ),
where we set ψ(x) = ϕ(1 − x), and hence the asymptotics of RN([0,+∞);ϕ) will give the
classical asymptotic Euler–Maclaurin formula (0.5). Thus, to obtain (0.5), it is enough to consider
RN([0,+∞);ϕ). In one dimension, we can consider a bit more general situation. We choose
a positive integer q � 1 and a qth root of unity ω. We consider the twisted Riemann sum

Rω
N(ϕ) := 1

N

∞∑
k=0

ωkϕ(k/N), (2.3)

where ϕ ∈ C∞
0 (R). The twisted Riemann sum Rω

N(ϕ) is discussed in [11] and the asymptotic
formula

Rω
N(ϕ) ∼

∑
n�1

(−1)n−1bω
n

ϕ(n−1)(0)

Nn
(2.4)

was obtained, where the coefficients bω
n is defined by the Taylor expansion of the function

τω(s) := s

1 − ωe−s
=
∑
n�1

bω
n sn, bω

1 = 1

1 − ω
. (2.5)

The formula (2.4) is used in [11] to obtain asymptotic Euler–Maclaurin formula for simple poly-
topes. Now, to obtain the asymptotic expansion of the twisted Riemann sum Rω

N(ϕ) along with
our strategy, we use the twisted version of the Szasz function, which is defined by

Sω
N(ϕ)(x) =

∞∑
k=0

ωkk(Nx)ϕ(k/N). (2.6)

From the definition, we have

∞∫
0

Sω
N(ϕ)(x) dx = Rω

N(ϕ). (2.7)

To state a result on asymptotic expansion of the twisted Szasz function Sω
N(ϕ), we need to prepare

some properties of the Stirling numbers of the second kind and related polynomials.
The Stirling numbers of the second kind, denoted by S(n, k) where n, k are integers satisfying

0 � k � n, are defined by the following recursion formula:
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S(0,0) = 1, S(n,0) = 0, S(n,n) = 1 (n � 1),

S(n + 1, k) = kS(n, k) + S(n, k − 1) (1 � k � n). (2.8)

For example, we have S(n,1) = 1 (n � 1) and S(n,n − 1) = (
n
2

)
(n � 2). For convenience, we

set S(n, k) = 0 for 0 � n < k. For any integer n, k with 0 � k � n, we define the polynomial
p(n, k; z) in z ∈ C of degree k by

p(n, k; z) :=
k∑

t=0

(
n

t

)
(−1)tS(n − t, k − t)zk−t . (2.9)

Some of p(n, k; z) are computed as follows.

p(0,0; z) = 1, p(n,0; z) = 0, p(n,n; z) = (z − 1)n (n � 1),

p(n,1; z) = z, p(n,n − 1; z) =
(

n

2

)
z(z − 1)n−2 (n � 2). (2.10)

Lemma 2.1.

(1) For any non-negative integer n, we have

ez
n∑

k=0

S(n, k)zk =
∞∑

k=0

kn

k! z
k.

(2) The polynomials p(n, k; z) satisfy the following recursion formula:

p(n + 1, k; z) = (z − 1)p(n, k − 1; z) + kp(n, k; z) + np(n − 1, k − 1; z), 1 � k � n.

(3) For [n/2] + 1 � k � n, the polynomial p(n, k; z) is divisible by (z − 1)2k−n. In particular,
we have p(n, k;1) = 0 for [n/2] + 1 � k � n.

Proof. (1) is proved easily by using induction on n and the recurrence formula for the Stirling
numbers S(n, k) of the second kind. To prove (2), let 1 � k � n. By using the relation

(
n+1

t

) =(
n
t

)+ (
n

t−1

)
for 1 � t � n, we have

p(n + 1, k; z) =
k∑

t=0

(
n

t

)
(−1)tS(n + 1 − t, k − t)zk−t − p(n, k − 1; z).

Denote S the sum above. Then, by the recursion formula (2.8), we have

S =
k∑

t=0

(
n

t

)
(−1)t (k − t)S(n − t, k − t)zk−t +

k−1∑
t=0

(
n

t

)
(−1)tS(n − t, k − 1 − t)zk−t

= kp(n, k; z) − n

k∑
t=1

(
n − 1

t − 1

)
(−1)tS(n − t, k − t)zk−t + zp(n, k − 1; z).

Minus the sum in the middle of the above equals np(n − 1, k − 1; z), and hence (2) is proved.
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Let us prove (3). Since the statement is obvious from (2.10) for n = 1,2, we assume that,
for some n � 2, p(m,k; z) is divisible by (z − 1)2k−m for each 1 � m � n and [m/2] + 1 �
k � m, and use the induction on n. So, we take l with [(n + 1)/2] + 1 � l � n + 1. If
l = n + 1, p(n + 1, n + 1; z) = (z − 1)n+1 and hence (3) is clear. Thus, we assume that
[(n + 1)/2] + 1 � l � n. By the induction hypothesis, p(n, l; z) is divisible by (z − 1)2l−n.
We have [(n − 1)/2] + 1 = [(n + 1)/2] and hence, by induction hypothesis, p(n − 1, l − 1; z) is
divisible by (z − 1)2l−n−1. If [n/2] = l − 1, then n is even and 2l − n − 1 = 1, and hence, by the
recurrence relation (2), p(n+1, l; z) is divisible by (z−1). Otherwise, we have [n/2]+1 � l−1,
and hence p(n, l−1; z) is divisible by (z−1)2l−n−2. Then, again by (2), p(n+1, l; z) is divisible
by (z − 1)2l−n−1. �

Now, we can state the asymptotic expansion of the twisted Szasz functions Sω
N(ϕ) by using

the polynomials p(n, k; z) as follows.

Proposition 2.2. Let ϕ ∈ S(R). Let ω be a qth root of unity. Then, for any positive integer n and
positive number K such that n < K < 2n, there exists a constant CK,n > 0 such that we have

Sω
N(ϕ)(x) =

2n−1∑
μ=0

ϕ(μ)(x)

μ! N−μJω
μ (Nx) + Sω

2n,N (x), x > 0, (2.11)

where the function Sω
2n,N (x) satisfies the following estimate:∣∣Sω

2n,N (x)
∣∣� CK,nN

−n(1 + x)n−K, x > 0, N > 0. (2.12)

The function Jω
μ (x) is given by

Jω
μ (x) = e−(1−ω)x

μ∑
k=0

p(μ, k;ω)xk. (2.13)

When ω = 1, the function J 1
μ(x) is a polynomial in x of degree at most [μ/2].

Proof. Let x > 0. Substituting the Taylor expansion

ϕ(k/N) =
∑

0�μ�2n−1

ϕ(μ)(x)

μ! (k/N − x)μ + (k/N − x)2n

(2n − 1)! R2n(k/N,x),

R2n(k/N,x) =
1∫

0

(1 − t)2n−1ϕ(2n)
(
x + t (k/N − x)

)
dt,

we have

Sω
N(ϕ)(x) =

2n−1∑ ϕ(μ)(x)

μ!Nμ
Jω

μ (Nx) + Sω
2n,N (x),
μ=0
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where Jω
μ (x) and S2n,N (x) are given by

Jω
μ (x) =

∞∑
k=0

ωkk(x)(k − x)μ,

Sω
2n,N (x) = 1

(2n − 1)!N2n

∞∑
k=0

ωkk(Nx)(k − Nx)2nR2n(k/N,x).

By using Lemma 2.1, (1) and the definition (2.1) of the function k(x), it is easy to show
the formula (2.13) for Jω

μ (x). We set Sω
2n,N (x) = 1

(2n−1)!N2n S2n,N (x). Take K as in the state-

ment, and choose C > 0 so that |ϕ(2n)(y)| � C(1 + |y|)−K for any y ∈ R. Then, we have
|x + t (k/N − x)| � (1 − t)x for any t ∈ [0,1], x � 0, k � 0, and hence |R2n(k/N,x)| �
CK,nx

−K , x > 1, k � 0. When 0 � x � 1, |R2n(k/N,x)| is bounded uniformly in N . Thus,
we have |S2n,N (x)| � Cx−KJ 1

2n(Nx) for x > 1. When 0 � x � 1, we have |S2n,N (x)| �
CN−2nJ 1

2n(Nx). But, by Lemma 2.1, (3) and the formula (2.13), J 1
2n(x) is a polynomial in x

of degree at most n. Therefore, we obtain (2.12). �
In general, for any τ ∈ C with Re(τ ) > 0 and any n > 0, we have

∞∫
0

e−τNxϕ(x) dx =
n−1∑
j=1

ϕ(j−1)(0)

(τN)j
+ O

(
N−n

)
.

Taking K > 0 in Proposition 2.2 so that n + 1 < K < 2n and integrating (2.11), we conclude the
following.

Proposition 2.3. When ω �= 1 is the qth root of unity, we have

Rω
N(ϕ) ∼

∑
n�1

cω
n

ϕ(n−1)(0)

Nn
,

cω
n =

n−1∑
α=0

α∑
k=0

(n − k − 1)!
α!(n − α − 1)!

p(α,α − k;ω)

(1 − ω)n−k
. (2.14)

When ω = 1, we have

RN

([0,∞);ϕ) ∼
∞∫

0

ϕ(x)dx +
∑
n�1

cn

ϕ(n−1)(0)

Nn
,

cn =
2n∑ (α − n)!

α! (−1)α−n+1p(α,α − n), (2.15)

α=n
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where we set

p(n, k) := p(n, k;1) =
k∑

t=0

(
n

t

)
(−1)tS(n − t, k − t), 0 � k � n. (2.16)

Note that a direct computation and the well-known formula for the relation among the
Bernoulli numbers, Catalan numbers 1

n+1

(2n
n

)
, and the Stirling numbers [10] shows

cn = − (n + 1)

n!
(

2n

n

)−1 n∑
l=0

(−1)l

l + 1

(
2n

n + l

)
S(n + l, l) = −bn

n! , (2.17)

which shows that, for ω = 1, we have

RN

([0,∞);ϕ)∼
∞∫

0

ϕ(x)dx −
∑
n�1

bn

n! ϕ
(n−1)(0)N−n, (2.18)

from which we have (0.5). For ω �= 1, we compare each term of the asymptotics (2.4), (2.14) to
get

bω
n = (−1)n−1cω

n =
n−1∑
α=0

α∑
k=0

(−1)k+1 (n − k − 1)!
α!(n − α − 1)!

p(α,α − k;ω)

(ω − 1)n−k
. (2.19)

2.2. Definition of Szasz functions

Let C be a unimodular cone in X. Since the Riemann sum RN(C;ϕ) depends only on the
restriction of ϕ to L(C), replacing (X,Λ) by (L(C),L(C) ∩ Λ) if necessary, we assume, for a
moment, that dim(C) = dim(X). Then, C is written in the form

C =
∑
e∈E

R+e,

where E is an integral basis of Λ, and R+ denotes the set of non-negative real numbers. For
abstract two sets S and T , let ST be the set of all functions from T to S. The whole space X is
identified with RE . Since E is an integral basis, Λ is identified with ZE . Note that, C and C ∩ Λ

are identified with RE+ and ZE+, respectively, where Z+ denotes the set of non-negative integers.
For any α ∈ ZE+ and x ∈ X, we set

α! =
∏
e∈E

α(e)!, xα =
∏
e∈E

x(e)α(e),

where x(e) is the value of x at e ∈ E when we identify X = RE . For each γ ∈ ZE+, we define the
function γ on X by

γ (x) = xγ

e−∑
e∈E x(e). (2.20)
γ !
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Then, the function γ is non-negative, integrable on C and satisfies∫
C

γ (x) dx = 1
(
γ ∈ ZE+

)
,

∑
γ∈ZE+

γ (x) = 1 (x ∈ X). (2.21)

Definition 2.4. We define the Szasz measure S(x) = dSx on X = RE , parametrized by x ∈ X,
by

S(x) = dSx :=
∑

γ∈ZE+

γ (x)δγ .

By the second property of (2.21), the measure dSx is a probability measure on C. For each
N ∈ N, the N th dilated convolution powers, denoted by dS N

x , of dSx is given by

dS N
x := (D1/N)∗

(
S(x) ∗ · · · ∗ S(x)

)=
∑

γ∈ZE+

γ (Nx)δγ/N ,

where D1/N : X → X is the dilation D1/N (x) = x/N , x ∈ X.

Definition 2.5. We define the Szasz function SN(ϕ) associated to a function ϕ on X, by

SN(ϕ)(x) :=
∫
C

ϕ(z) dS N
x (z) =

∑
γ∈ZE+

γ (Nx)ϕ(γ /N) (2.22)

if the sum in the right-hand side converges absolutely.

By (2.21), the Szasz function SN(ϕ) satisfies that

RN(C;ϕ) := 1

Ndim(C)

∑
γ∈C∩Λ

ϕ(γ /N) =
∫
C

SN(ϕ)(x) dx (2.23)

if the sum converges absolutely.

2.3. Asymptotics of Szasz functions

For each μ,ν ∈ ZE+ with μ � ν, we define

pE(μ,ν) =
∏
e∈E

p
(
μ(e), ν(e)

)
, (2.24)

where p(n, k) is an integer defined by (2.16). For each μ ∈ ZE+, we set ∇μ = ∏
e∈E ∇μ(e)

e and
|μ| =∑

e∈E μ(e). Then, a relevant asymptotic formula for the Szasz function SN(ϕ) is given as
follows.



518 T. Tate / Journal of Functional Analysis 260 (2011) 501–540
Proposition 2.6. For each positive integer r and positive number K with r < K < 2r , there exists
a positive constant Cr,K such that we have

SN(ϕ)(x) =
∑

μ∈ZE+; |μ|�2r−1

∇μϕ(x)

μ!N |μ| Jμ(Nx) + S2r,N (x), (2.25)

where the function S2r,N (x) satisfies the following estimate;∣∣S2r,N (x)
∣∣� Cr,KN−r

(
1 + |x|)r−K

, x ∈ C, (2.26)

where the norm |x| of x ∈ X is defined by |x|2 =∑
e∈E x(e)2, and the function Jμ(x) is a poly-

nomial in x of degree at most [|μ|/2] given by

Jμ(x) =
∑

ν∈ZE+;ν�[μ/2]
pE(μ,ν)xν, (2.27)

where [μ/2] ∈ ZE+ is defined by [μ/2](e) = [μ(e)/2].

Proof. The proof is the same as that for Proposition 2.2. Inserting the Taylor expansion

ϕ(z) =
∑

μ∈ZE+; |μ|�2r−1

∇μϕ(x)

μ! (z − x)μ +
∑

|μ|=2r

1

μ!R2r,μ(z, x)(z − x)μ,

R2r,μ(z, x) = 2r

1∫
0

(1 − t)2r−1∇μϕ
(
x + t (z − x)

)
dt

with z = γ /N into the definition (2.22) of the Szasz function SN(ϕ), we have

SN(ϕ)(x) =
∑

μ∈ZE+; |μ|�2r−1

∇μϕ(x)

μ!N |μ| Jμ(Nx) + S2r,N (x),

where the functions Jμ(x), S2r,μ(x) are given by

Jμ(x) =
∑

γ∈ZE+

γ (Nx)(γ − x)μ,

S2r,N (x) =
∑

|μ|=2r

1

μ!N |μ|
∑

γ∈ZE+

γ (Nx)R2r,μ(γ /N,x)(γ − Nx)μ.

The formula (2.27) is easily obtained by the relation

∑
γ∈ZE

γ ν

γ ! x
γ = e

∑
e∈E x(e)

∑
α�ν

SE(ν,α)xα,
+
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which follows from Lemma 2.1(1), where SE(ν,α) is given by

SE(ν,α) =
∏
e∈E

S
(
ν(e),α(e)

)
. (2.28)

Next, we estimate the term S2r,N (x). Note that x and γ /N are in C. Thus, we have |x + t (γ /

N −x)| � (1− t)|x| for each 0 � t � 1. We choose a positive constant Cr,K such that |∇μϕ(x)| �
Cr,K(1 + |x|)−K for each μ ∈ ZE+ with |μ| = 2r . Hence, if |x| � 1 and |μ| = 2r , we have∣∣∇μϕ

(
x + t (γ /N − x)

)∣∣� Cr,K

(
1 + ∣∣x + t (γ /N − x)

∣∣)−K � Cr,K(1 − t)−K |x|−K. (2.29)

Thus, for |x| � 1, we have |R2r,μ(γ /N,x)| � Cr,K |x|−K � Cr,K(1 + |x|)−K , where Cr,K is a
constant. Therefore, we obtain

∣∣S2r,N (x)
∣∣� Cr,K

N2r

(
1 + |x|)−K

∑
γ∈ZE+

γ (Nx)
∑

|μ|=2r

1

μ!
∣∣(γ − Nx)μ

∣∣
� Cr,K

N2r

(
1 + |x|)−K

∑
|μ|=r

J2μ(Nx).

As is mentioned above, the function J2μ(x) with |μ| = r is a polynomial in x of degree at most r .
Thus, we have |Jμ(x)| � Cμ|x|r where Cμ does not depend on x. Therefore, we obtain the
estimate (2.26). When |x| � 1, we estimate R2r,μ(γ /N,x) as |R2r,μ(γ /N,x)| � Cr,K , and hence
S2r,N (x) is bounded by Cr,KN−r � Cr,KN−r (1 + |x|)r−K , which completes the proof. �
3. Asymptotic Euler–Maclaurin formula over unimodular cones

In this section, we deduce asymptotic Euler–Maclaurin formula of the Riemann sum over
unimodular cones in a rational space (X,Λ). At first, we deduce it by using Proposition 2.6. The
result coincide a well-known result due to Guillemin and Sternberg [11]. We don’t need to use
a rational inner product on X so far. Then, we renormalize each term of the expansion using
an integration by parts procedure to find explicit form of Berline–Vergne operators. This step
involves a rational inner product.

3.1. An Euler–Maclaurin formula for unimodular cones

As before, let C be a unimodular cone in X with dim(C) = dim(X) and let E be the integral
basis of Λ generating C. For each I ⊂ E, let |I | be the number of elements in I . For such I ,
we regard ZI+ as a subset of ZE+ consisting of α ∈ ZE+ with the property that α(e) = 0 for each
e ∈ E \ I . Clearly we have ZI+ ⊂ ZJ+ if I ⊂ J . For any e ∈ E, we define λe ∈ ZE+ by λe(e) = 1,
λe(v) = 0, v ∈ E \ {e}. Then, we obviously have α = ∑

e∈E α(e)λe for each α ∈ ZE+. For ∅ �=
I ⊂ E, we set ZI

>0 = {α ∈ ZI+; α(e) �= 0, e ∈ I }. For I = ∅, we set Z∅
>0 = {0}. Each I ⊂ E

corresponds to a face C(I) of C defined by

C(I) :=
∑

R+e, C(E) := {0}, (3.1)

e∈E\I
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and for each face F of C, there is a unique IF ⊂ E such that F = C(IF ). Thus, we identify
subsets in E and faces of C. Note that F ⊂ G if and only if IG ⊂ IF . For each μ,ν ∈ ZE+ with
ν � μ and ∅ �= I ⊂ E, we set

pI (μ, ν) :=
∏
e∈I

p
(
μ(e), ν(e)

)
. (3.2)

If μ,ν ∈ ZI+, we clearly have pJ (μ, ν) = pI (μ, ν) for each J with I ⊂ J because p(0,0) = 1.
For each ν ∈ ZI+, we set

pI (ν) =
∑

μ∈ZI+;ν�μ�2ν

(−1)|μ| (μ − ν)!
μ! pI (μ,μ − ν). (3.3)

Then, we have pJ (ν) = pI (ν) if ν ∈ ZI+ and I ⊂ J . Note that pI (ν) =∏
e∈I p(ν(e)), where we

have p(n) = (−1)n−1cn = (−1)nbn/n! as in (2.15), (2.17).
For each non-negative integer n and a subset I of E with |I | � n, we define a homogeneous

differential operator Ln(C; I ) of order n − |I | on X with constant coefficients by

Ln(C; I ) = (−1)n
∑

ν∈ZI
>0; |ν|=n

pI (ν)∇ν−e(I ), e(I ) =
∑
e∈I

λe (n � 1), (3.4)

and L0(C; ∅) = 1. When n � 1 we set Ln(C; I ) = 0 for |I | > n or I = ∅.

Proposition 3.1. For each ϕ ∈ S(X), we have

RN(C;ϕ) ∼
∑
n�0

N−n
∑

I⊂E; |I |�n

(−1)|I |
∫

C(I)

Ln(C; I )ϕ. (3.5)

Proof. We use Proposition 2.6. We take r ∈ N and K > 0 so that r + dim(X) < K < 2r . By the
estimate (2.26), one can integrate the asymptotic expansion (2.25) over C. Then, by (2.23) and
(2.25), we have

RN(C;ϕ) =
∑

μ,ν; |μ|�2r−1, ν�[μ/2]

1

μ!N
−|μ−ν|pE(μ,ν)

∫
C

xν∇μϕ + O
(
N−r

)
.

Integrating by parts, we have
∫
C

xν∇μϕ = (−1)|ν|ν! ∫
C

∇μ−νϕ, and hence, substituting this into
the formula for RN(C;ϕ) above, we obtain

RN(C;ϕ) =
r−1∑
k=0

N−k

∫
C

Lk(C)ϕ + O
(
N−r

)
,
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Lk(C) = (−1)k
∑

ν∈ZE+, |ν|=k

pE(ν)∇ν

=
∑

ν,μ, |ν|=k, ν�μ�2ν

(−1)|μ|+k (μ − ν)!
μ! pE(μ,μ − ν)∇ν . (3.6)

To integrate by parts further in the right-hand side, note that we have ZE+ =⋃
I⊂E ZI

>0, which is
a disjoint union. For ν ∈ ZI

>0, we have∫
C

∇νϕ = (−1)|I |
∫

C(I)

∇ν−e(I )ϕ.

From this, we obtain ∫
C

Lk(C)ϕ =
∑

I⊂E; |I |�k

(−1)|I |
∫

C(I)

Lk(C; I )ϕ,

which shows the assertion. �
Next, we consider cones containing straight lines. Let E be an integral basis of Λ, and let

I ⊂ E. Consider the cone C in X of the form

C =
∑
e∈I

R+e + L, (3.7)

where L is a subspace in X spanned by vectors e ∈ E \ I . If I = E, then L = {0} and in this case
C is a unimodular cone discussed above. When I = ∅, we set C = X.

Lemma 3.2. Let E be an integral basis of Λ, and let C be a cone of the form (3.7) with I ⊂ E.
Then, for each ϕ ∈ C∞

0 (X), we have

RN(C;ϕ) = RN

(
πL(C); (πL)∗ϕ

)+ O
(
N−∞)

, (3.8)

where (πL)∗ϕ is a compactly supported smooth function on X/L defined by

(πL)∗ϕ(x) =
∫

π−1
L (x)

ϕ, x ∈ X/L.

Proof. For simplicity, we write π = πL : X → X/L for the natural projection. Take ϕ ∈ C∞
0 (X).

For any v ∈ X, we set Tvϕ(x) := ϕ(x + v). Let M be the subspace spanned by I so that X =
M ⊕L. We identify L with RE\I and M with RI in a natural way. Then, we can choose v ∈ ZE\I
so that supp(Tvϕ) ⊂ M +R

E\I
>0 . Clearly we have RN(C;ϕ) = RN(RE+;Tvϕ), where we note that

RE+ is a unimodular cone in X. Therefore, by (3.6), we have

RN(C;ϕ) ∼
∑
n�0

N−n

∫
RE

Ln

(
RE+

)
Tvϕ,
+
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where the differential operator Ln(R
E+) is given in (3.6). Note that π(C) is a unimodular cone

in X/L with respect to the lattice π(Λ) generated by the integral basis π(I) of π(Λ). Since
v ∈ ZE\I , we have π∗Tvϕ = π∗ϕ. Therefore, according to Proposition 3.1, we only need to show
that ∫

RE+

Ln

(
RE+

)
ψ dx =

∫
π(C)

Ln

(
π(C)

)
π∗ψ dx (3.9)

for any ψ ∈ C∞
0 (X) with supp(ψ) ⊂ M +R

E\I
>0 . If ν ∈ ZE+ has some e ∈ E \I such that ν(e) � 1,

then, since supp(ψ) ∩ R
E\{e}
+ = ∅, we have

∫
RE+

∇νψ = 0 and hence

∫
RE+

Ln

(
RE+

)
ψ dx =

∫
RE+

L̃nψ, L̃n = (−1)n
∑

ν∈ZI+; |ν|=n

pI (ν)∇ν .

If we denote ∇ν
π = ∏

e∈I ∇ν(e)
π(e) for each ν ∈ I , then, by the definition of the function π∗ψ on

X/L, we have ∇ν
ππ∗ψ = π∗∇νψ for each ν ∈ ZI+. Since supp(ψ) ⊂ M + R

E\I
+ , we obtain, for

ν ∈ ZI+, ∫
π(C)

∇ν
ππ∗ψ =

∫
π(C)

π∗∇νψ =
∫

RE+

∇νψ.

From this and the definition of Ln(π(C)), we obtain (3.9). �
Remark. As is mentioned in Introduction, Proposition 3.1 is deduced directly from Theorem 3.2
in [11]. Lemma 3.2 is also obtained in [11].

3.2. Integration by parts

In Proposition 3.1 and Lemma 3.2 in the previous subsection, we have derived an asymptotic
formula for the Riemann sums over unimodular cones and their variants. In each term in these
asymptotic formulas, integration over faces of homogeneous differential operators Ln(C; I ) de-
fined in (3.6) appears. The differential operators Ln(C; I ) involve derivatives only in directions
transversal to the face C(I). However, these derivatives are not ‘perpendicular’ to the face C(I),
and hence we can perform further integration by parts. If one performs integration by parts
in (3.5), then one will find the differential operators which involves derivatives only in directions
perpendicular to faces. However, we need to perform this procedure systematically to define the
operators all at once. This step is one of the main points which makes the final formula compli-
cated.

In the rest of this paper, we fix a rational inner product Q on the rational space (X,Λ). Let E

be an integral basis of Λ. For each I ⊂ E, we set

X(I) =
⊕

Re ∼= RE\I , X(E) = {0}. (3.10)

e∈E\I
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Note that X = X(∅), and if I ⊂ J , then X(J ) ⊂ X(I) and hence X(I)⊥Q ⊂ X(J )⊥Q . As before,
for each I ⊂ E, we define the unimodular cone C(I) in X by (3.1). For each α ∈ ZE+, we set

∇α =∏
e∈E ∇α(e)

e .

Proposition 3.3. There exists a family

{
L(E; I, J ;α); ∅ �= I ⊂ J ⊂ E, α ∈ ZI+, |J | � |α| + |I |}

of homogeneous differential operators L(E; I, J ;α) of order |α| − |J | + |I | on X with rational
constant coefficients which involves derivatives only in directions perpendicular to the rational
subspace X(J ) such that for each (I,α) with ∅ �= I ⊂ E, α ∈ ZI+, we have

∫
C(I)

∇αϕ =
∑

J ;I⊂J, |J |�|α|+|I |
(−1)|J |−|I |

∫
C(J )

L(E; I, J ;α)ϕ (3.11)

for any ϕ ∈ S(X). Furthermore, fix α and ∅ �= I ⊂ E with α ∈ ZI+. Suppose that a family
{L(J ); I ⊂ J ⊂ E, |J | � |α| + |I |} of homogeneous differential operators with constant co-
efficients of order |α| − |J | + |I | which involves derivatives only in directions perpendicular to
X(J ) satisfy Eq. (3.11) for any ϕ ∈ S(X). Then, we have L(J ) = L(E; I, J ;α).

Note that a differential operator on X is said to have rational coefficients if it has rational
coefficients with respect to an (and hence all) integral basis of Λ. We first prove the existence of
such family of differential operators.

Proof of the existence in Proposition 3.3. For a given ∅ �= I ⊂ E and e ∈ I , we decompose e

along with the orthogonal decomposition X = X(I)⊥Q ⊕ X(I), which is denoted by

e = u(I ; e) +
∑

v∈E\I
c(I ; e, v)v, u(I ; e) ∈ X(I)⊥Q ∩ XQ,

c(I ; e, v) ∈ Q, e ∈ I. (3.12)

We set u(E; e) = e for each e ∈ E. We construct the operators L(E; I, J ;α) inductively as
follows.

(0) When |α| = 0, then |J | = |I | and I ⊂ J implies I = J . In this case, we set

L(E; I, I ;0) = 1. (3.13)

(1) We take ∅ �= I ⊂ J ⊂ E and α ∈ ZI+ with |α| = 1 and |J | � |α| + |I |. In this case, J = I or
J = I ∪ {v} with v ∈ E \ I and α = λe with e ∈ I . We then define L(E; I, J ;λe) by

{
L(E; I, I ;λe) = ∇u(I ;e) (when I = J ),

L
(
E; I, I ∪ {v};λ )= c(I ; e, v)

(
when J = I ∪ {v} with v ∈ E \ I

)
.

(3.14)

e
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Then, by the identity ∫
C(I)

∇vϕ = −
∫

C(I∪{v})
ϕ, v ∈ E \ I, ϕ ∈ C∞

0 (X),

it is easy to show that the operators L(E; I, I ∪ {v};λe) satisfy∫
C(I)

∇eϕ =
∫

C(I)

L(E; I, I ;λe)ϕ +
∑

v∈E\I
(−1)

∫
C(I∪{v})

L
(
E; I, I ∪ {v};λe

)
ϕ. (3.15)

(2) Suppose that, for a positive integer n � 2, we have defined differential operators L(E; I, J ;β)

satisfying the formula (3.11) for any ϕ ∈ C∞
0 (X) for each I , J , β with ∅ �= I ⊂ J ⊂ E, β ∈ ZI+

satisfying |β| � n − 1, |J | � |β| + |I |.
(3) For ∅ �= I ⊂ J ⊂ E and α ∈ ZI+ satisfying |α| = n and |J | � n + |I |, we take e ∈ I such that
α(e) � 1. Then, we can decompose α as

α = λe + β, β ∈ ZI+, |β| = n − 1. (3.16)

We define L(E; I, J ;α) by the formula

L(E; I, J ;α) =

⎧⎪⎪⎨⎪⎪⎩
L(E; I, I ;β)∇u(I ;e) (when J = I ),

L(E; I, J ;β)∇u(I ;e) +∑
v∈J\I c(I ; e, v)L(E; I ∪ {v}, J ;β)

(when |I | + 1 � |J | � |I | + |α| − 1),∑
v∈J\I c(I ; e, v)L(E; I ∪ {v}, J ;β) (when |J | = |I | + |α|).

(3.17)

A direct computation shows that the differential operators L(E; I, J ;α) satisfy (3.11). �
Next, we proceed to prove the uniqueness of such family {L(E; I, J ;α)}. Fix α and ∅ �=

I ⊂ E such that α ∈ ZI+. If α = 0, then clearly the operator L(E; I, I ;0) satisfying (3.11) is just
the constant 1. If I = E, then for any α ∈ ZE+, the operator L(E;E,E;α) is uniquely determined
as L(E;E,E;α) = ∇α . Thus, in the following, we assume α �= 0 and ∅ �= I � E.

If the homogeneous differential operators {L(J )}I⊂J⊂E;|J |�|α|+|I | with constant coefficients
of order |α| − |J | + |I | which involves derivatives only in directions perpendicular to X(J )

satisfy Eq. (3.11) for any ϕ ∈ S(X), then their symbols σ(L(J )) must satisfy the equation

ξα =
∑

J ;I⊂J,|J |�|α|+|I |
σ
(
L(J )

)
(ξ)

∏
e∈J\I

〈ξ, e〉, ξα =
∏
e∈E

〈ξ, e〉α(e),

σ
(
L(J )

)
(ξ) = σ

(
L(J )

)(
pJ (ξ)

)
, ξ ∈ X∗, (3.18)

where the symbol σ(D) of a differential operator D on X (with constant coefficients) is a poly-
nomial function on X∗ characterized by σ(D)(ξ) = e−ξDeξ , eξ (x) = e〈ξ,x〉, x ∈ X, ξ ∈ X∗.
In (3.18), pJ denotes the orthogonal projection from X∗ onto the annihilator X(J )⊥ of X(J ).
Therefore, to prove the uniqueness in the statement of Proposition 3.3, it is enough to show the
uniqueness of the family of homogeneous polynomials {σ(L(J ))} satisfying (3.18). First of all,
consider the following expression.
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σ(I, I ;α)(ξ) = pI (ξ)α, (3.19)

σ(I, J ;α)(ξ) = pJ (ξ)α −∑k−1
i=0 σi(I ;α)(pJ (ξ))∏

e∈J\I 〈pJ (ξ), e〉 , I ⊂ J, |J | = k + |I |,

σi(I ;α)(ξ) =
∑

J ;I⊂J,|J |=|I |+i

σ (I, J ;α)(ξ)
∏

e∈J\I
〈ξ, e〉, (3.20)

where k is an integer satisfying 1 � k � |α|. Note that σ0(I ;α) = σ(I, I ;α) = pI (ξ)α is a well-
defined homogeneous polynomial of degree |α| on X∗. Thus, the above Eqs. (3.19), (3.20) define
rational functions σ(I, J ;α), σi(I ;α) for ∅ �= I ⊂ J ⊂ E, α ∈ ZI+, |J | � |α| + |I |, 0 � i � |α|,
which are homogeneous of degree |α| − |J | + |I |, |α|, respectively. Note also that the functions
σ(I, J ;α) satisfy the second line of (3.18).

Lemma 3.4. The functions defined by (3.19), (3.20) are homogeneous polynomials.

Proof. First of all, let us examine the function σ(I, J ;α) with I ⊂ J , |J | = 1 + |I |. In this case,
we can write J = I ∪ {u} with some u ∈ E \ I . By (3.20), we have

σ
(
I, I ∪ {u};α)(ξ) = pI∪{u}(ξ)α − pI (ξ)α

〈pI∪{u}(ξ), u〉 .

Take ξ ∈ X(I ∪{u})⊥, which means that 〈ξ, e〉 = 0 for each e ∈ E \I , e �= u. Thus, there exists an
η ∈ X(I ∪{u})⊥ perpendicular to X(I)⊥ with respect to the inner product Q such that Q(η,η) =
1. Note that 〈η,u〉 �= 0. Let q(ξ) = Q(ξ,η)η denote the orthogonal projection onto the one-
dimensional subspace Rη. Then, we have pI∪{u} = pI + q , and hence

σ
(
I, I ∪ {u};α)(ξ) = (pI (ξ) + q(ξ))α − pI (ξ)α

〈q(ξ), u〉 ,

which is a homogeneous polynomial of degree |α| − 1. Next, to use the induction, suppose
that the functions σ(I, J ;α) with I ⊂ J , |J | � k + |I | (1 � k � |α| − 1) are homogeneous
polynomials of degree |α| − |J | + |I |. By (3.20), the functions σi(I ;α) (i = 0, . . . , k) are ho-
mogeneous polynomials of degree |α|. Take J0 ⊂ E such that I ⊂ J0, |J0| = k + 1 + |I |. Set
f (ξ) = pJ0(ξ)α −∑k

i=1 σi(I ;α)(pJ0(ξ)). Note that the polynomial f is determined on X(J0)
⊥.

So, let ξ ∈ X(J0)
⊥. Assume that 〈ξ, e〉 = 0 for some e ∈ J0 \ I , which means that ξ ∈ X(K)⊥

with K = J0 \ {u}. Note that I ⊂ K � J , |K| = k + |I |. Since ξ ∈ X(K)⊥ ⊂ X(J0)
⊥, we have

pJ0(ξ) = ξ , and hence by (3.20),

σk(I ;α)(ξ) = σ(I,K;α)(ξ)
∏

e∈K\I
〈ξ, e〉 = ξα −

k−1∑
i=0

σi(I ;α)(ξ).

This shows that f (ξ) = 0 for ξ ∈ X(K)⊥. Thus, the homogeneous polynomial f (ξ) is divisible
by the linear function 〈pJ0(ξ), e〉 for each e ∈ J0 \ I . Note that the elements in J0 \ I are linearly
independent. Therefore, the homogeneous polynomial f (ξ) is divisible by

∏
e∈J0\I 〈pJ0(ξ), e〉,

and hence σ(I, J0;α) is a homogeneous polynomial. This completes the proof. �
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Proof of the uniqueness in Proposition 3.3. Fix α, I such that 0 �= α ∈ ZI+, ∅ �= I � E. Sup-
pose that the set of functions {s(J )}I⊂J⊂E,|J |�|α|+|I |, where each s(J ) is a homogeneous func-
tion on X∗ of degree |α| − |J | + |I |, satisfy Eq. (3.18). Let σ(I, J ;α) denote the homogeneous
polynomials defined by (3.19), (3.20). We need to prove s(J ) = σ(I, J ;α). Let ξ ∈ X(I)⊥.
Then, we have 〈ξ, e〉 = 0 for each e ∈ E \ I . Thus, by (3.18), we have s(I )(ξ) = σ(I, I ;α)(ξ)

for each ξ ∈ X(I)⊥. Since s(I ) satisfies the second equation of (3.18), we have s(I ) = σ(I, I ;α)

on X∗. Next, take J0 ⊂ E such that I ⊂ J0, |J0| = 1 + |I | � |α| + |I |. We write J0 = I ∪ {u}.
Take ξ ∈ X(J0)

⊥. Then 〈ξ, e〉 = 0 for each e ∈ E \ J0, and hence the function s(J0) must satisfy

ξα = σ0(I ;α)(ξ) + s(J0)(ξ)〈ξ,u〉, ξ ∈ X(J0)
⊥.

Since the function s(J0) satisfies the second line of (3.18), we have

s(J0)(ξ) = (pI (ξ) + q(ξ))α − pI (ξ)α

〈q(ξ), u〉 , J0 = I ∪ {u},

where q is the orthogonal projection onto the one-dimensional subspace of X(J0)
⊥ perpendicular

to X(I)⊥. This equation shows s(J0) = σ(I, J0;α) for J0 = I ∪ {u}. Now, suppose that for any
J ⊂ E with I � J , |J | � k + |I |, k + 1 � |α|, we have s(J ) = σ(I, J ;α). Take J0 ⊂ E with
I ⊂ J0, |J0| = k + 1 + |I | � |α| + |I |. Take ξ ∈ X(J0)

⊥. Since 〈ξ, e〉 = 0 for each e ∈ E \ J0,
Eq. (3.18) shows

ξα = sk(ξ) + s(J0)(ξ)
∏

e∈J0\I
〈ξ, e〉,

sk(ξ) =
∑

I⊂J�J0, |J |�k+|I |
σ(I, J ;α)(ξ)

∏
e∈J\I

〈ξ, e〉, (3.21)

for each ξ ∈ X(J0)
⊥. If J ⊂ E with I ⊂ J satisfy J \ J0 �= ∅, then we have

∏
e∈J\I 〈ξ, e〉 = 0

and hence sk(ξ) = ∑k
i=0 σi(I ;α)(ξ). Since s(J0) satisfies the second line of (3.18), we have

s(J0) = σ(I, J0;α). �
Remark. One can prove directly that the polynomials σ(I, J ;α) defined by (3.19), (3.20) actu-
ally a solution to (3.18). However, its proof is similar to the proof of the existence in Proposi-
tion 3.3, and hence we omit it.

In the above, we have defined the differential operators L(E; I, J ;α) for each ∅ �= I ⊂ J ⊂ E

and α ∈ ZI+ satisfying |J | � |α| + |I |. But we need to work on the quotient space X/L and the
unimodular cone π(C) which is the image of a unimodular cone C under the natural projection
π : X → X/L where L is a subspace spanned by a subset of E. To state the next lemma, we
need to fix some notation. Let E be an integral basis of Λ. For ∅ �= K ⊂ E, we set, as before,
X(K) =⊕

v∈E\K Rv. Let πK : X → X/X(K) be the natural projection. For each e ∈ E, we set
e = πK(e). Then, we have πK(E) = πK(K) = {e; e ∈ K}, and the set πK(K) is an integral basis
of the lattice πK(Λ) in X/X(K). Note that πK is a bijective map from K onto π(E). For each
∅ �= I ⊂ K and α ∈ ZI+, denote πK(α) ∈ Z

π(I)
+ the Z+-valued function on πK(I) defined by

πK(α)(e) := α(e), e ∈ I. (3.22)

We note that, for each α ∈ Z
π(I)
+ , there is a unique α ∈ ZI with the property that πK(α) = α.
+
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Lemma 3.5. In the notation as above, we identify X/X(K) with X(K)⊥Q to give X/X(K) the
inner product induced by the inner product Q on X. Then, for each ∅ �= I ⊂ J ⊂ K and α ∈ ZI+
with |J | � |α| + |I |, we have

L(E; I, J ;α) = L
(
πK(K);πK(I),πK(J );πK(α)

)
(3.23)

where the operator L(πK(K);πK(I),πK(J );πK(α)) is regarded as an operator on X by the
identification X/X(K) ∼= X(K)⊥Q .

Proof. For simplicity, we set π = πK . Let σK(I, J ;α) denote the symbol of the differential oper-
ator L(π(K);π(I),π(J );π(α)) which is a homogeneous polynomial on (X/X(K))∗, and note
that we have the identification (X/X(K))∗ ∼= X(K)⊥ under the transpose tπ : (X/X(K))∗ →
X∗ of π . Then, the symbol of the lift of the differential operator L(π(K);π(I),π(J );π(α)) is
given by σK(I, J ;α)(pK(ξ)), ξ ∈ X∗. The symbols of the operators L(E; I, J ;α) for J ⊂ K ,
which are as above denoted by σ(I, J ;α), are determined on X(K)⊥. By (3.18), we have

ξα =
∑

J ;I⊂J⊂K
|J |�|α|+|I |

σ(I, J ;α)(ξ)
∏

e∈J\I
〈ξ, e〉, ξ ∈ X(K)⊥. (3.24)

In Proposition 3.3, we can replace X by X(E \ K) which is identified, as a rational space, with
X/X(K). With this identification, the symbols σK(I, J ;α) also satisfy Eq. (3.24). Noting that
Eq. (3.24) is nothing but Eq. (3.18) on X(E \ K), and using the uniqueness in Proposition 3.3,
we conclude the assertion. �
3.3. Berline–Vergne operators over unimodular cones

We use the results obtained in the previous subsections and Theorem 1.2 to find an explicit
expression of Berline–Vergne operators for unimodular cones.

Definition 3.6. (1) Let C be a unimodular cone in a rational space (X,Λ) with a rational inner
product Q. Assume that dim(C) = dim(X). Let E be the integral basis of Λ generating C. For
each F ∈ F (C), we take, as before, a unique IF ⊂ E such that F = C(IF ). Then, for each F ∈
F (C) and n ∈ Z+ with dim(F ) � dim(C) − n, we define a homogeneous differential operator
DX

n (C;F) of order n − dim(C) + dim(F ) with rational constant coefficients which involves
derivatives only in directions perpendicular to the face F by

DX
n (C;F) := (−1)n−dim(C)+dim(F )

∑
I⊂IF

∑
ν∈ZI

>0, |ν|=n

pI (ν)L
(
E; I, IF ;ν − e(I )

)
, (3.25)

and DX
0 (C;C) := 1, DX

n (C;C) := 0 (n � 1).
(2) Let C ⊂ X be a unimodular cone. For any F ∈ F (C) and n ∈ Z+ with n − dim(C) +

dim(F ), let DX
n (C;F) be the differential operator DL(C)

n (C;F) regarded as an operator on X

through the inclusion ιC : L(C) ↪→ X, where the operator DL(C)
n (C;F) is defined as in (1) re-

placing (X,Λ) by (L(C),L(C) ∩ Λ).
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For unimodular cones C in X with dim(C) < dim(X), the differential operator DX
n (C;F) is

characterized by the identity ι∗C DX
n (C;F)ϕ = DL(C)

n (C;F)ι∗Cϕ for ϕ ∈ C∞(X). Thus, a direct
computation using Definition 3.6, (3.11), (3.4) combined with Proposition 3.1 (replacing (X,Λ)

by (L(C),L(C) ∩ Λ) if necessary) shows the following.

Theorem 3.7. Let C be a unimodular cone in the rational space (X,Λ) with a rational inner
product. Then, for any ϕ ∈ S(X), we have

RN(C;ϕ) ∼
∑
n�0

N−n
∑

F∈F (C),dim(F )�dim(C)−n

∫
F

DX
n (C;F)ϕ.

Let C be a unimodular cone in the rational space (X,Λ), and let F ∈ F (C). The order of the
differential operator DX

n (C;F) is n− (dim(C)− dim(F )), and which is equal to the order of the

differential operator DX/L(F)
n (πF (C);0). Moreover, we have the following.

Lemma 3.8. Let C be a unimodular cone in (X,Λ), and let F ∈ F (C). Then, the operator
DX

n (C;F) coincides with the lift of the operator DX/L(F)
n (πF (C);0) on X through the identifi-

cation X/L(F) ∼= L(F)⊥Q .

Proof. Let K be the integral basis of L(C) ∩ Λ generating C, and let F = C(IF ) with a subset
IF of K . Then, the cone πF (C) in the rational space (X/L(F),πF (Λ)) is a unimodular cone
with the generator IF = {e; e = πF (e), e ∈ IF }. Thus, by Definition 3.6, we have

DX/L(F)
n

(
πF (C);0

)= (−1)n−dim(πF (C))
∑
I⊂IF

∑
ν∈ZI

>0;|ν|=n

pI (ν)L
(
IF ; I , IF ;ν − e(I )

)
.

The subsets I of K correspond to the subsets I of IF by the projection πF , and the elements ν

in ZI+ corresponds to the elements ν in ZI+. Therefore, Lemma 3.5 shows

L
(
IF ; I , IF ;ν − e(I )

)= L
(
πF (IF );πF (I),πF (IF );πF

(
ν − e(I )

))= L
(
K; I, IF ;ν − e(I )

)
as an operator on X. From this, the assertion follows. �
Example. In one dimension, it is easy to compute the differential operators DX

n (C;F). Let X be
a 1-dimensional vector space with the lattice Λ. Let u ∈ Λ be a generator and set C = R+u. The
faces of C are 0 and C itself. Then, E = {u}. By definition, we have DX

0 (C;C) = 1, DX
n (C;C) =

0 (n � 1). By (3.17), we have L(E; {u}, {u}; k) = ∇k
u for k ∈ Z+. Thus, by Definition 3.6, we

have

DX
n (C;0) = (−1)n−1p(n)∇n−1

u = −bn

n! ∇
n−1
u , n � 1, (3.26)

and its symbol is given by − bn

n! 〈ξ,u〉n−1, and we have RN(C;ϕ) ∼ ∫
C

ϕ −∑
n�1

bn

n! ∇n−1
u ϕ(0).
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Theorem 3.9. For each unimodular cone C in a rational space (X,Λ), each face F ∈ F (C) and
each non-negative integer n such that dim(F ) � dim(C) − n, we have

DX
n (C;F) = DX

n (C;F),

where DX
n (C;F) is the differential operator defined in Definition 3.6 and DX

n (C;F) is the
Berline–Vergne operator defined in Definition 1.1.

Proof. For any rational space (X,Λ), any rational subspace L in X, any unimodular cone C in
X/L and any non-negative integer n satisfying n � dim(C), define the operator DX

n (C) on X by

the lift of DX/L
n (C;0) to X under the identification X/L ∼= L⊥Q . We need to check that these

operators satisfy the conditions in Theorem 1.2. The condition (1) in Theorem 1.2 follows from
this definition. The condition (4) in Theorem 1.2 follows from Theorem 3.7 and Lemma 3.8.
The condition (3) follows from Example above. The condition (2) follows from Definition 3.6.
Therefore, the assertion follows from Theorem 1.2. �
4. Asymptotic Euler–Maclaurin formula over rational cones

In this section, we derive an asymptotic Euler–Maclaurin formula of RN(C;ϕ) for general
rational cone C. To discuss asymptotic expansion of RN(C;ϕ) for pointed rational cones C, we
define, for such a cone C and non-negative integer n, the distribution An(C; ·) ∈ S ′(X) by

An(C;ϕ) :=
∑

F∈F (C),dim(F )�dim(C)−n

∫
F

DX
n (C;F)ϕ, (4.1)

where DX
n (C;F) is the Berline–Vergne operator defined in Definition 1.1.

Lemma 4.1. Let {Ci}di=1 be a family of pointed rational cones in a rational space (X,Λ) satisfy-
ing

∑
i riχ(Ci) = 0, where, for each subset S ⊂ X, χ(S) denotes the characteristic function of S.

We set m = maxi dim(Ci). Suppose further that there exists a vector η ∈ X∗ such that 〈η,x〉 < 0
for each 0 �= x ∈ ∪iCi . Then, for each ϕ ∈ S(X), we have∑

i,dim(Ci)�m−n

riAn−m+dim(Ci)(Ci;ϕ) = 0. (4.2)

Proof. Since Ak(Ci; ·) are distributions and C∞
0 (X) is dense in S(X), it is enough to prove

(4.2) for each ϕ ∈ C∞
0 (X). Note that the function S(C) defined in (1.1) have a valuation property

(see [2]). By this and Eq. (1.2), we have∑
i

∑
G∈F (Ci)

riμ
(
πG(Ci)

)
I (G) = 0,

where the subscript X/L(G) in μX/L(G) is dropped since these functions are lift to X∗. Substi-
tuting tξ (t ∈ R, ξ ∈ X∗) in these functions and taking the Taylor expansion of each function, we
have ∑ ∑

tkμdim(G)+k
(
πG(Ci)

)
(ξ)I (G)(ξ) = 0.
k�−m i,G∈F (Ci),dim(G)+k�0
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Thus, each coefficient of tk in the above vanishes, and hence we have∑
i,G∈F (Ci),dim(G)�m−n

riμ
n−m+dim(G)

(
πG(Ci)

)
(iξ + η)I (G)(iξ + η) = 0 (4.3)

for each n � 0, where, η ∈ X∗ is as in the statement of the lemma and ξ ∈ X∗ is arbitrary. Let
ϕ ∈ C∞

0 (X). We have

Dn−m+dim(Ci)(Ci;G)ϕ(x)

= 1

(2π)m

∫
X∗

eiξ+η(x)μn−m+dim(G)
(
πG(Ci)

)
(iξ + η)ϕ̂(ξ − iη) dξ, (4.4)

where the Lebesgue measure dξ on X∗ is normalized as in Section 1.3. Taking the integral
over G, we have∫

G

Dn−m+dim(Ci)(Ci;G)ϕ

= (2π)−m

∫
X∗

I (G)(iξ + η)μn−m+dim(G)
(
πG(Ci)

)
(iξ + η)ϕ̂(ξ − iη) dξ, (4.5)

where we have used the fact that eiξ+η is integrable on G for each i and G ∈ F (Ci). Thus,
multiplying (4.5) by ri , taking the sum over all i and G ∈ F (Ci) with dim(G) � m−n and using
Eq. (4.3), we have (4.2). �
Theorem 4.2. Let C be a pointed rational cone in a rational space (X,Λ) with a rational inner
product Q. Then, for any ϕ ∈ S(X), we have

RN(C;ϕ) ∼
∑
n�0

N−nAn(C;ϕ),

where An(C;ϕ) is defined in (4.1). Furthermore, the uniqueness statement of Theorem 1.2 still
true if we replace the unimodular cones in the statement of Theorem 1.2 with the pointed rational
cones.

Proof. By replacing X with L(C), we may assume that m := dim(C) = dim(X). It is well known
that, for any pointed rational cone C, one can find a finite set of unimodular cones C = {σi}di=1
such that C is a subdivision of the pointed cone C, namely, the collection C satisfies the following.

(1) C =
⋃
σ∈C

F (σ ) (2) σ, τ ∈ C �⇒ σ ∩ τ ∈ F (σ ) ∩ F (τ ) (3) C =
⋃
σ∈C

σ.

(For a proof of this fact, see [8, Section 2.6].) By the inclusion-exclusion principle, there is
a relation χ(C) =∑

σ∈C rσ χ(σ ) with some rσ ∈ Z. Then, we have

RN(C;ϕ) = 1

Nm

∑∑
rσ χ(σ )(γ )ϕ(γ /N) =

∑
N−m+dim(σ )rσ RN(σ ;ϕ).
σ∈C γ∈Λ σ∈C
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Each cone σ ∈ C is a unimodular cone in X, and hence we can apply Theorem 3.7 to RN(σ ;ϕ)

for each σ ∈ C . By a direct computation, we have

RN(C;ϕ) ∼
∑
n�0

N−n
∑

σ∈C,dim(σ )�m−n

rσ An−m+dim(σ )(σ ;ϕ),

and hence Lemma 4.1 shows the first part of the assertion. The last assertion on the uniqueness
follows from the same discussion as in Theorem 1.2, and hence we omit the proof. �

In the next section, we need the following lemma, which generalizes Lemma 3.2.

Lemma 4.3. Let C be a rational cone in a rational space (X,Λ). Let L = C ∩ (−C). Then, for
any ϕ ∈ C∞

0 (X), we have

RN(C;ϕ) = RN

(
πL(C); (πL)∗ϕ

)+ O
(
N−∞)

.

Proof. If L = {0}, we have the conclusion without the term O(N−∞). So, we assume that
L �= {0}. For simplicity, we write π = πL : X → X/L, the natural projection. Take ϕ ∈ C∞

0 (X).
Since L is rational, one can take a complementary rational subspace W to L such that X = L⊕W

and Λ = (L ∩ Λ) ⊕ (W ∩ Λ). Set G = C ∩ W , which is a pointed rational cone in W . We have
C = L+G. Take a subdivision C of G into unimodular cone in W . The set {Cσ = L+σ ;σ ∈ C}
is a subdivision of C into rational cones. Then, there is a relation χ(C) = ∑

σ∈C rσ χ(Cσ ), and
hence

RN(C;ϕ) =
∑
σ∈C

N−m+dim(Cσ )rσ RN(Cσ ;ϕ).

Note that the cones Cσ is of the form discussed in Lemma 3.2. By Lemma 3.2, we have
RN(Cσ ;ϕ) = RN(π(σ );π∗ϕ) + O(N−∞), and hence

RN(C;ϕ) =
∑
σ∈C

N−m+dim(σ )+dim(L)rσ RN

(
π(σ);π∗ϕ

)+ O
(
N−∞)

.

The set {π(σ);σ ∈ C} is a subdivision of the pointed rational cone π(C) in X/L into unimodu-
lar cones. Furthermore, since χ(C) =∑

σ∈C rσ χ(Cσ ) we have χ(π(C)) = ∑
σ∈C rσ χ(π(Cσ )).

(π defines a valuation. See [2].) Thus, the sum in the right-hand side of the last equation is
RN(π(C);π∗ϕ), which proves the assertion. �
5. Results and their proofs

In this section, we restate Theorem 1 on the asymptotic Euler–Maclaurin formula of the Rie-
mann sum

RN(P ;ϕ) := 1

Ndim(P )

∑
γ∈(NP )∩Λ

ϕ(γ /N),

for a lattice polytope P in a rational space (X,Λ) and a smooth function ϕ on P in the abstract
notation we used as before and give its proof. We also state and give proofs of its corollaries.
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5.1. Main theorems and their proofs

Theorem 5.1. Let P be a lattice polytope in a rational space (X,Λ) with a rational inner prod-
uct. For each f ∈ F (P ) and n ∈ Z+ satisfying dim(f ) � dim(P ) − n, let DX

n (P ;f ) be the
differential operator defined in Definition 1.1. Then, for each ϕ ∈ C∞(P ), we have the following
asymptotic expansion:

RN(P ;ϕ) ∼
∑
n�0

An(P ;ϕ)N−n,

An(P ;ϕ) =
∑

f ∈F (P );dim(f )�dim(P )−n

∫
f

DX
n (P ;f )ϕ. (5.1)

To prove Theorem 5.1, we need the following lemma.

Lemma 5.2. Let f ∈ F (P ) and let n ∈ Z+ satisfy dim(f ) � dim(P )−n. Then, for any g ∈ F (P )

such that g ⊂ f , we have

DX
n (P ;f ) = DX

n

(
πg

(
CP (g)

);πg

(
Cf (g)

))
. (5.2)

Proof. First of all, as in Section 1.2, note that we have DX
n (P ;f ) = DX

n (πf (CP (f ));0).
We set C = πg(CP (g)) and G = πg(Cf (g)). Then, C is a pointed rational cone in X/L(g)

and G ∈ F (C). Furthermore, we have DX
n (πg(CP (g));πg(Cf (g))) = DX

n (πG(C);0), where
πG : X/L(g) → (X/L(g))/L(G) = X/L(f ) is the natural projection. Since πG◦πg = πf : X →
X/L(f ) and CP (f ) = L(f ) + CP (g), we have πG(C) = πf (CP (g)) = πf (CP (f )), and hence
Eq. (5.2) follows. �
Proof of Theorem 5.1. For any g ∈ F (P ) and v ∈ g, we set C+

P (g) = CP (g) + v which does
not depend on the choice of v ∈ g. Then, we use the following version of Euler’s formula [4,
Proposition 3.2(1)]:

δ
(
(NP ) ∩ Λ

)=
∑

g∈F (P )

(−1)dim(g)δ
(
C+

NP (Ng) ∩ Λ
)
, (5.3)

where, N is a positive integer and, for any subset S of Λ, δ(S) is a distribution defined by〈
δ(S),ϕ

〉=∑
s∈S

ϕ(s), ϕ ∈ C∞
0 (X).

For each N ∈ Z>0 and ϕ ∈ C∞(X), we set (D∗
1/Nϕ)(x) = ϕ(x/N). For each g ∈ F (P ), we fix

vg ∈ g ∩ Λ. Clearly we have〈
δ(NP ∩ Λ),D∗

1/Nϕ
〉= Ndim(P )RN(P ;ϕ),〈

δ
(
C+

NP (Nf ) ∩ Λ
)
, D∗

1/Nϕ
〉= Ndim(P )RN

(
CP (g);Tvgϕ

)
,

where, for v ∈ X, we set Tvϕ(x) = ϕ(v + x). Take ϕ ∈ C∞(P ) and extend ϕ as a compactly
supported smooth function on X. Then, by (5.3) and Lemma 4.3, we have
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RN(P ;ϕ) =
∑

g∈F (P )

(−1)dim(g)RN

(
CP (g);Tvgϕ

)
∼

∑
g∈F (P )

(−1)dim(g)RN

(
πg

(
CP (g)

); (πg)∗Tvgϕ
)
. (5.4)

Since πg(CP (g)) is a pointed rational cone in X/L(g) with respect to the lattice πg(Λ), we can
use Theorem 4.2 for RN(πg(CP (g)); (πg)∗Tvgϕ)) and hence

RN(P ;ϕ) ∼
∑
n�0

An(P ;ϕ)N−n,

An(P ;ϕ) =
∑

g∈F (P )

∑
G∈F (πg(CP (g))),

dim(G)�dim(P )−n−dim(g)

(−1)dim(g)

×
∫
G

DX
n

(
πg

(
CP (g)

);G)
(πg)∗Tvgϕ. (5.5)

Each faces G ∈ F (πg(CP (g))) with dim(G) � dim(P ) − n − dim(g) can be written as G =
πg(Cf (g)) with a face f ∈ F (P ) such that g ⊂ f and dim(f ) � dim(P ) − n. Furthermore, the
correspondence {

f ∈ F (P ); g ⊂ f
} � f → πg

(
Cf (g)

) ∈ F
(
πg

(
CP (g)

))
defines a bijective correspondence between the above two sets. Thus, by Lemma 5.2 and the
definition of the function (πg)∗Tvf

ϕ, we can write

An(P ;ϕ) =
∑

g∈F (P )

∑
f ∈F (P ), g⊂f

dim(f )�dim(P )−n

(−1)dim(g)

∫
πg(Cf (g))

DX
n (P ;f )(πg)∗Tvgϕ

=
∑

g∈F (P )

∑
f ∈F (P ), g⊂f

dim(f )�dim(P )−n

(−1)dim(g)

∫
C+

f (g)

DX
n (P ;f )ϕ

=
∑

f ∈F (P ),dim(f )�dim(P )−n

∑
g∈F (f )

(−1)dim(g)

∫
〈f 〉

χf
(
C+

f (g)
)
DX

n (P ;f )ϕ,

where 〈f 〉 is the affine hull of f , and for each S ⊂ 〈f 〉, we denote χf (S) the characteristic
function of S on 〈f 〉. In the first line above, we used an obvious identity DX

n (P ;f )(πg)∗ψ =
(πg)∗DX

n (P,f )ψ for ψ ∈ C∞
0 (X). To simplify the above, we use the formula (Proposition 3.1(1)

in [4]) ∑
(−1)dim(g)χ

(
C+

P (g)
)= χ(P ). (5.6)
g∈F (P )
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Note that in [4], the above formula is proved for P with non-empty interior. Replacing P by
f ∈ F (P ), which is regarded as a polytope in the affine subspace 〈f 〉 with non-empty relative
interior, we have ∑

g∈F (f )

(−1)dim(g)χf
(
C+

f (g)
)= χf (f ).

Therefore, we obtain the formula (5.1) for An(P ;ϕ), which complete the proof of Theo-
rem 5.1. �
Remark. In the proof above, we used Theorem 4.2. However, if the lattice polytope P is Delzant,
then the cone πf (CP (f )) for each f ∈ F (P ) is a unimodular cone in X/L(f ). Therefore, we
only need to use Theorem 3.7. Hence, for Delzant lattice polytopes, it turns out that our proof
of Theorem 5.1 is independent of [3]. However, for general lattice polytopes, it does not seem
to be easy to construct the operator DX

n (P ;f ) in such a way given in Definition 3.6. Indeed,
Definition 3.6 is based on Proposition 3.1. This means that if we could obtain a result like Propo-
sition 3.1 for general rational cones, then one might be able to find such an expression as in
Definition 3.6. Hence, it might be better to prove a result like Proposition 3.1 for rational cones
without using a subdivision of rational cones into unimodular cones. However, to do this, it seems
that one need to find a different method.

Next, we show that, under some assumptions, the asymptotic expansion of RN(P ;ϕ) of the
form (5.1) is unique.

Theorem 5.3. Suppose that, for any rational space (X,Λ) with a rational inner product, ra-
tional subspace L of X, pointed rational cone C in X/L and non-negative integer n such that
n � dim(C), there exists a homogeneous differential operator DX

n (C) of order n − dim(C) with
symbol νX

n (C) such that they satisfy the conditions (1), (2) and (3) in Theorem 1.2. Furthermore,
suppose that, for any lattice polytope P in X and ϕ ∈ C∞(P ), the following holds:

RN(P ;ϕ) ∼
∑
n�0

N−n
∑

f ∈F (P );dim(f )�dim(P )−n

∫
f

DX
n

(
πf

(
CP (f )

))
ϕ. (5.7)

Then, we have DX
n (C) = DX

n (C;0) for any pointed rational cone C in X and non-negative
integer n with n � dim(C), where the operator DX

n (C;0) is defined in Definition 1.1.

Proof. Let us prove the assertion by the induction on dim(X). For dim(X) = 0,1, the assertion
is true by the condition (3) in Theorem 1.2. Suppose that for each (X,Λ) with dim(X) � m − 1,
the assertion holds. Let dim(X) = m. Take a pointed rational cone C in X. We may assume that
dim(C) = m. Take a vector ξ ∈ Λ∗ such that 〈ξ, x〉 > 0 for any x ∈ C. Set P1 = C ∩ {x; 〈ξ, x〉 �
1}, which is a rational polytope in X. Hence, each vertex of P1 is a rational point in X. We
take a positive integer q such that P = qP1 is a lattice polytope. Let U be a small open ball
around the origin such that U ∩ V (P ) = {0} and U ⊂ {x; 〈ξ, x〉 < q}. Then, by the assumption,
for each ϕ ∈ C∞

0 (U), the Riemann sum RN(P ;ϕ) admits the asymptotic expansion (5.7). In
(5.7), if dim(f ) > 0, then since dim(πf (CP (f ))) = m − dim(f ) < m, the differential operators
DX(πf (CP (f ))) coincide with DX(P,f ) = DX(πf (CP (f )),0) by the induction hypothesis.
n n n
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Take a vertex v of P . Suppose v �= 0. Since ϕ is zero near v, the contribution from the vertex v

to the expansion (5.7) vanishes. Thus, by Theorem 5.1, we have[
DX

n

(
π0
(
CP (0)

))
ϕ
]
(0) = [

DX
n (P ;0)ϕ

]
(0) (n � m). (5.8)

Take ρ ∈ C∞
0 (U) such that ρ = 1 near 0. For any ψ ∈ C∞(X), we have (5.8) for ϕ = ρψ .

But since ρ = 1 near 0, Eq. (5.8) holds for any ϕ ∈ C∞(X). Take ϕ ∈ C∞(X) and x ∈ X.
Applying (5.8) for the function Txϕ, we have[

DX
n

(
π0
(
CP (0)

))
ϕ
]
(x) = [

DX
n (P ;0)ϕ

]
(x) (n � m)

for any ϕ ∈ C∞(X). Since π0(CP (0)) = C, we conclude the assertion. �
5.2. Computation in one and two dimensions

A polytope P in a rational space (X,Λ) is said to be Delzant if for each vertex v of P , the
number of edges incident to v is dim(X) and there exists an integral basis E of Λ such that each
edge incident to v is of the form {v+ te; t � 0} with an e ∈ E. In this and the next subsection, we
give explicit computations for Delzant lattice polytopes. To compute each coefficient An(P ;ϕ)

in the asymptotic expansion of the Riemann sum RN(P ;ϕ), it is important to compute in low
dimensions. In this subsection, we perform these computation. In this and the next subsections,
we drop the superscript X in DX

n (P,g).

5.2.1. In one dimension
Let X be a 1-dimensional vector space with the lattice Λ. Let u ∈ Λ be a generator and

set C = R+u. We have computed the differential operator Dn(C;0) in Example at the end of
Section 3.3. Let P be an interval given by P = {tu ∈ X; a � t � b} with a, b ∈ Z, a < b. Since
Dn(P ;P) = 0 for n � 1, we have

An(P ;ϕ) = Dn

(
P ; {a})ϕ(a) + Dn

(
P ; {b})ϕ(b) = (−1)n−1p(n)

[∇n−1
u ϕ(a) + ∇n−1−u ϕ(b)

]
.

Identifying X = R and u = 1 so that Λ = Z, we have

An(P ;ϕ) = −bn

n!
[
ϕ(n−1)(a) − (−1)nϕ(n−1)(b)

]
.

Substituting b2m+1 = 0 (m � 1) and b2m = (−1)m−1Bm with the Bernoulli number Bm, we have

A2m+1(P ;ϕ) = 0, A2m(P ;ϕ) = (−1)m−1 Bm

(2m)!
[
ϕ(2m−1)(b) − ϕ(2m−1)(a)

]
,

which shows the classical asymptotic Euler–Maclaurin formula.

5.2.2. In two dimension
Next, we compute in two dimension. Let (X,Λ) be a two-dimensional rational vector space

with a rational inner product Q. Let E = {e1, e2} be an integral basis of the lattice Λ, and set
C = R+e1 + R+e2. Set

e1 = u1 + c1e2, e2 = u2 + c2e1,
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where the non-zero vectors u1, u2 ∈ X satisfy Q(u1, e2) = Q(u2, e1) = 0, and c1, c2 ∈ Q are
given by

c1 = Q(e1, e2)

Q(e2, e2)
, c2 = Q(e1, e2)

Q(e1, e1)
. (5.9)

Define λ1, λ2 ∈ ZE by λi(ej ) = δi,j . A straightforward computation shows

L(C;E,E; kλ1 + lλ2) = ∇k
e1

∇ l
e2

,

L
(
C; {e1}, {e1}; kλ1

)= ∇k
u1

, L
(
C; {e2}, {e2}; lλ2

)= ∇ l
u2

,

L
(
C; {e1},E; kλ1

)= c1

k−1∑
s=0

∇s
u1

∇k−1−s
e1

, L
(
C; {e2},E; lλ2

)= c2

l−1∑
s=0

∇s
u2

∇ l−1−s
e2

.

Set F1 = R+e2, F2 = R+e1. Then, we have

Dn(C;F1) = (−1)n−1p(n)∇n−1
u1

, Dn(C;F2) = (−1)n−1p(n)∇n−1
u2

(n � 1),

Dn(C;0) = (−1)n
n−1∑
k=1

p(k)p(n − k)∇k−1
e1

∇n−1−k
e2

+ (−1)np(n)

(
c1

n−2∑
s=0

∇s
u1

∇n−2−s
e1

+ c2

n−2∑
s=0

∇s
u2

∇n−2−s
e2

)
(n � 2).

Let P be a Delzant lattice polytope in (X,Λ). For each facet f of P , Dn(P ;f ) is the lift
of Dn(πf (CP (f ));0). Let αf ∈ Λ be the inward primitive normal of f . (Such a vector αf

exists because the dual basis of an integral basis of Λ with respect to Q is rational.) We identify
πf (CP (f )) with R+αf by the map

ϕf : X/L(f ) � x + L(f ) → Q(x,αf )

Q(αf ,αf )
αf ∈ Rαf .

Let e1 ∈ Λ be a generator of L(f ) ∩ Λ. Since P is Delzant, we can find e2 ∈ CP (f ) ∩ Λ such
that {e1, e2} forms an integral basis of Λ. Then, the vector

uf := Q(e2, αf )

Q(αf ,αf )
αf (5.10)

is a generator of ϕf (πf (Λ)) such that ϕf (πf (CP (f ))) = R+uf . Note that the definition of uf

does not depend on the choice of e2 ∈ CP (f ) ∩ Λ whenever e1, e2 forms an integral basis of Λ.
Hence, by (3.26), the differential operator Dn(P ;f ) is given by

Dn(P ;f ) = (−1)n−1p(n)∇n−1
uf

= −bn

n! ∇
n−1
uf

(n � 1).

Therefore, we have the following.
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Corollary 5.4. Let (X,Λ) be a two-dimensional rational vector space with a rational inner
product Q. Let P be a Delzant lattice polytope in (X,Λ). Then, the coefficients An(P ;ϕ) (n � 2)

in the asymptotic expansion (5.1) of the Riemann sum RN(P ;ϕ) is given by

An(P ;ϕ) =
∑

f ∈F (P )1

∫
f

Dn(P ;f )ϕ +
∑

v∈V (P )

Dn(P ;v)ϕ(v).

In the above, the differential operators Dn(P ;f ) and Dn(P ;v) are given by

Dn(P ;f ) = −bn

n! ∇
n−1
uf

,

Dn(P ;v) =
n−1∑
k=1

bkbn−k

k!(n − k)!∇
k−1
e1(v)∇n−1−k

e2(v)

+ bn

n!

(
c1(v)

n−2∑
s=0

∇s
u1(v)∇n−2−s

e1(v) + c2(v)

n−2∑
s=0

∇s
u2(v)∇n−2−s

e2(v)

)
,

where, for a face f ∈ F (P )1, uf ∈ XQ denotes the inward normal defined in (5.10), and for a
vertex v ∈ V (P ), the vectors e1(v), e2(v) ∈ Λ denote the integral basis of Λ such that two facets
meeting at v lie on the half lines v + tei(v), t � 0, i = 1,2, and u1(v), u2(v) ∈ X satisfy

e1(v) = u1(v) + c1(v)e2, Q
(
u1(v), e2(v)

)= 0, c1(v) = Q(e1(v), e2(v))

Q(e2(v), e2(v))
,

e2(v) = u2(v) + c2(v)e1, Q
(
u2(v), e1(v)

)= 0, c2(v) = Q(e1(v), e2(v))

Q(e1(v), e1(v))
.

Note that, in the following, we use D2(C;0) for two-dimensional unimodular cone C. The
explicit formula for D2(C;0) is given by

D2(C;0) = p(1)2 + (c1 + c2)p(2) = 1

4
+ (c1 + c2)

1

12
, (5.11)

where c1, c2 are given in (5.9).

5.3. Computation of the coefficient in the third term

Our main Theorem 5.1, or rather the construction of the operators Dn(P ;f ), allows us to
compute the coefficient A2(P ;ϕ) in the third term of the asymptotic expansion (5.1). Before
computing the third term, let us compute the first and second terms.

Corollary 5.5. For any Delzant lattice polytope P in a rational space (X,Λ) with a rational
inner product Q, we have

A0(P ;ϕ) =
∫

ϕ dx, A1(P ;ϕ) = 1

2

∑
g∈F (P )

∫
ϕ,
P m−1 g
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where the integration on facets g ∈ F (P )m−1 is performed with respect to the measure on g

induced by the lattice Λ.

Proof. The first term is obvious. For the second term A1(P ;ϕ), note that the dimension of faces
which contribute to A1(P ;ϕ) is m − 1 and m. But the operator D1(P ;P) is the lift of D1(0;0)

(see Definition 3.6) which is zero. Thus, the contribution to A1(P ;ϕ) comes from facets. Let
g ∈ F (P )m−1. Then the operator D1(P ;g) is the lift of D1(πg(CP (g));0), which is a rational
constant. Let αg ∈ Λ be inward primitive normal of the facet g. As in the computation in two
dimension, let ϕg : X/L(g) → L(g)⊥Q be the isomorphism defined by

ϕg

(
x + L(g)

)= Q(x,αg)

Q(αg,αg)
αg.

We take an integral basis e1, . . . , em−1 of L(g)∩Λ. Since P is Delzant, one can take em ∈ CP (g)

such that e1, . . . , em form an integral basis of Λ. We set

ug = Q(em,αg)

Q(αg,αg)
αg ∈ L(g)⊥Q. (5.12)

As before, the definition of ug above does not depend on the choice of em above. By (3.26), we
have D1(πg(CP (g));0) = − b1

1! = 1
2 . Hence, we have

A1(P ;ϕ) = 1

2

∑
g∈F (P )m−1

∫
g

ϕ,

which completes the proof. �
Note that the above formula for the second term A1(P ;ϕ) coincides with that in (0.7). In-

deed, if X = Rm, Λ = Zm and Q is the standard Euclidean inner product, the primitive inward
primitive normal αg for each facet g of a Delzant polytope P is a part of an integral basis of Zm.

Next, we compute the third term, which does not seem to have been obtained before. For
simplicity, we work in the Euclidean space X = Rm with the standard lattice Zm and the standard
inner product.

Corollary 5.6. Let P be a Delzant lattice polytope in the Euclidean space (Rm,Zm) with the
standard inner product Q. Then, we have the following:

A2(P ;ϕ) = − 1

12

∑
g∈F (P )m−1

1

Q(αg,αg)

∫
g

∇αgϕ

+
∑

g∈F (P )m−2

[
1

4
− 1

12

(
Q(α1(g),α2(g))

Q(α1(g),α1(g))
+ Q(α1(g),α2(g))

Q(α2(g),α2(g))

)]∫
g

ϕ,

where, for g ∈ F (P )m−1, the vector αg is the inward primitive normal to g, and for g ∈
F (P )m−2, the vectors α1(g),α2(g) are the inward primitive normal to the facets g1, g2 ∈
F (P )m−1 such that g = g1 ∩ g2.
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Proof. By (5.1), the faces which contribute to A2(P ;ϕ) is of m − 1 or m − 2 dimension. Let g

be a facet of P . Then, Dn(P ;g) is the lift of Dn(πg(CP (g));0). Hence, as before, we have

Dn(P ;g) = (−1)n−1p(n)∇n−1
ug

= −bn

n! ∇
n−1
ug

(n � 1),

where the rational vector ug ∈ L(g)⊥Q is given in (5.12). But, we are working in the stan-
dard Euclidean space with the integral lattice Zm and the standard inner product. Since P is
Delzant, we can take an integral basis e1, . . . , em of Zm such that e1, . . . , em−1 is an integral
basis of L(g) ∩ Zm and if we denote the dual basis of e1, . . . , em by α1, . . . , αm, then αm = αg .
Thus, we have ug = αg/Q(αg,αg) and hence

D2(P ;g) = −b2

2! ∇αg/Q(αg,αg) = − 1

12Q(αg,αg)
∇αg .

Next, suppose that g is a face of dimension m − 2. Take two facets g1, g2 such that g = g1 ∩ g2.
Denote αi(g) ∈ Λ the primitive inward normal to gi (i = 1,2). Let v be a vertex in g, and take
g3, . . . , gm ∈ F (P )m−1 such that {v} = g1 ∩ · · · ∩ gm. Let E = {e1, . . . , em} be an integral basis
of Zm such that each vector v + ej defines an edge incident to v and v + ej /∈ gj . We have

CP (g) = R+e1 + R+e2 + L(g),

and e3, . . . , em is an integral basis of L(g) ∩ Zm. Let α1, . . . , αm be the dual basis of e1, . . . , em.
Then αi = αi(g) for i = 1,2, and α1, α2 form a basis of L(g)⊥. We write

e1 = u1 + v1, e2 = u2 + v2, u1, u2 ∈ L(g)⊥, v1, v2 ∈ L(g).

Under the identification

X/L(g) � x + L(g) → Q(x,α1)u1 + Q(x,α2)u2 ∈ L(g)⊥,

the cone πg(CP (g)) is identified with R+u1 + R+u2 and the generator of πg(Z
m) is identified

with u1, u2. Thus, by (5.11), we have

D2(P ;g) = D2
(
πg

(
CP (g)

);0
)= 1

4
+ 1

12

(
Q(u1, u2)

Q(u1, u1)
+ Q(u1, u2)

Q(u2, u2)

)
. (5.13)

But then it is straight forward to show that

Q(u1, u1) = Q(α2, α2)

D
, Q(u2, u2) = Q(α1, α1)

D
, Q(u1, u2) = −Q(α1, α2)

D
,

D = Q(u1, u1)Q(u2, u2) − Q(u1, u2)
2.

From this and (5.13), we conclude the assertion. �
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