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Abstract

In this paper, we study the problem of estimating the covariance matrix � and the precision matrix �
(the inverse of the covariance matrix) in a star-shape model with missing data. By considering a type of
Cholesky decomposition of the precision matrix �=�′�, where � is a lower triangular matrix with positive
diagonal elements, we get the MLEs of the covariance matrix and precision matrix and prove that both of
them are biased. Based on the MLEs, unbiased estimators of the covariance matrix and precision matrix
are obtained. A special group G, which is a subgroup of the group consisting all lower triangular matrices,
is introduced. By choosing the left invariant Haar measure on G as a prior, we obtain the closed forms of
the best equivariant estimates of � under any of the Stein loss, the entropy loss, and the symmetric loss.
Consequently, the MLE of the precision matrix (covariance matrix) is inadmissible under any of the above
three loss functions. Some simulation results are given for illustration.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multivariate normal distribution plays a key role in multivariate statistical analysis. There
is a large literature on estimating the covariance matrix and precision matrix in the saturated
multivariate normal population, where no additional restriction other than being positive definite is
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required. See, for example, Haff [9], Sinha and Ghosh [22], Krishnamoorthy and Gupta [14],Yang
and Berger [25], and others. However, as the number of variables p in a multivariate distribution
increases, the number of parameters p(p+1)/2 to be estimated increases fast. Unless the number
of observations, n, is very large, estimation is often inefficient, and models with many parameters
are, in general, difficult to interpret. In many practical situations, there will be some manifest
inter-relationships among several variables. One important case uses several pair variables that are
conditionally independent, giving other remaining variables. For multivariate normal distribution,
this will correspond to some zeros among the entries of the precision matrix. See Dempster [4],
Whittaker [24], or Lauritzen [16].

Assume that X ∼ Np(0, �). The vector X is partitioned into k groups, that is, X = (X′
1, X′

2, . . . ,

X′
k)

′, where Xi is pi-dimensional, and
∑k

i=1 pi = p. We assume that for giving X1, the other sub-
vectors X2, . . . , Xk are mutually conditionally independent. From Whittaker [24] and Lauritzen
[16], the precision matrix � = �−1 has the following special structure:

� =

⎛
⎜⎜⎜⎜⎝

�11 �12 �13 · · · �1k

�21 �22 0 · · · 0
�31 0 �33 · · · 0

...
...

...
. . .

...

�k1 0 0 · · · �kk

⎞
⎟⎟⎟⎟⎠ . (1)

In fact, we can easily show that (1) is equivalent to

� =

⎛
⎜⎜⎜⎜⎜⎝

�11 �12 �13 · · · �1k

�21 �22 �21�
−1
11 �13 · · · �21�

−1
11 �1k

�31 �31�
−1
11 �12 �33 · · · �31�

−1
11 �1k

...
...

...
. . .

...

�k1 �k1�
−1
11 �12 �k1�

−1
11 �13 · · · �kk

⎞
⎟⎟⎟⎟⎟⎠ . (2)

The case of k = 3 is considered in detail by Whittaker [24] and is called a “butterfly model”.
For general k, we called the model a star-shape model in [23] because the graphical shape of the
relationship among the variables described by Whittaker [24] or Lauritzen [16] is like a star.

The above model is very popular in most areas, especially in economics. For example, let X1
be the federal interest rate, which is a global variable, and X2, . . . , X51 be the house price in
each state, which are local variables. Then X2, . . . , X51 are conditionally independent given X1
because each house price Xi, i = 2, . . . , k will normally depend on its local situation if the
federal interest rate is fixed.

The above star-shape model is the special case of the lattice conditional independence model
introduced by Andersson and Perlman [2]. Although star-shaped models or general graphical
models have been used widely, as far as we know, fewer theoretic results are obtained on estimat-
ing the covariance matrix and the precision matrix in lattice conditional independence models.
Andersson and Perlman [2] gave the form of the maximum likelihood estimator (MLE) of the
covariance matrix �. Konno [13] considered the estimation of the covariance matrix under the
Stein loss

L1(�̂, �) = tr(�̂�−1) − log |�̂�−1| − p (3)

and proved that the MLE of � is inadmissible. In fact, the Stein loss for estimating the covariance
matrix is equivalent to the following loss for estimating the precision matrix � = �−1,

L∗
1(�̂, �) = tr(�̂−1�) − log |�̂−1�| − p. (4)
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Of course, the Stein loss is related to the commonly used entropy loss. See [20]. Let f (x | �) be
the density of X under �. The entropy loss is obtained as follows,

L2(�̂, �) = 2
∫

log

{
f (X | �)

f (X | �̂)

}
f (X | �) dX

= tr(�̂−1�) − log |�̂−1�| − p. (5)

The Stein loss is obtained from the entropy loss by switching the role of two arguments, �̂ and �.
The loss function L2 is typical entropy loss and has been studied by many authors such as Sinha
and Ghosh [22], Krishnamoorthy and Gupta [14], and others.

Note that because neither L1 nor L2 is symmetric, we could consider a symmetric version by
adding the Stein loss and entropy loss

L3(�̂, �) = L1(�̂, �) + L2(�̂, �) = tr(�̂�−1) + tr(�̂−1�) − 2p. (6)

The symmetric loss L3 was introduced by Kubokawa and Konno [15] and Gupta and Ofori-Nyarko
[8]. It can be seen as estimating the covariance matrix and the precision matrix simultaneously.

For estimating the precision matrix �, the entropy loss and the symmetric loss will be

L∗
2(�̂, �) = L2(�̂, �) = tr(�̂�−1) − log |�̂�−1| − p (7)

and

L∗
3(�̂, �) = L3(�̂, �) = tr(�̂�−1) + tr(�̂−1�) − 2p. (8)

For convenience, we will still name L∗
1, L

∗
2, L

∗
3 as the Stein loss, the entropy loss, and the sym-

metric loss for estimating the precision matrix �.
Sun and Sun [23] considered the estimating problems of the precision matrix under the entropy

loss L∗
2 and the symmetric loss L∗

3 in the star-shape with complete observations. They obtained
the closed forms of Bayesian estimators with respect to a class of priors of �. Consequently, the
MLE of the precision matrix is inadmissible under either the entropy loss L∗

2 or the symmetric
loss L∗

3.
Considering that missing data problems occur frequently in practice and their analysis can be

challenging, we will study the problem of estimating the covariance matrix and the precision matrix
in a star-shape model with missing data. For estimating the covariance matrix without restriction,
Anderson [1] listed several general cases, where the MLEs of the parameters can be obtained in
closed form. Among these cases, the monotone missing-data pattern is most important. One also
can see the related references by Little and Rubin [17, §1.3], Konno [12], Liu [18], Domonici
et al. [5] and so on. However, because there are some restrictions on the covariance matrix in our
model, we will see a lot of differences.

In this paper, we will consider the estimation of the covariance matrix and the precision matrix
in a star-shape model with missing data, which generalizes some results in [23]. In Section 2, we
first introduce the sample observations. By introducing a type of Cholesky decomposition of the
precision matrix � = �′�, where � is a lower triangular matrix with positive diagonal elements,
the MLEs of the covariance matrix and the precision matrix are obtained, and it is proved that
both of them are not unbiased. Based on the MLEs, unbiased estimates of the covariance matrix
and the precision matrix are given. Considering that the parameter � plays an important role in
estimating the covariance matrix and the precision matrix, the special group G, which is related
to the decomposition, is introduced in Section 3. The invariant Haar measures of this group are
given and the posterior properties of � are discussed when choosing the left Haar measure as a
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prior. In Section 4, the closed form of the best equivariant estimator of the precision matrix is
obtained under the Stein loss by using Bayesian method introduced by Eaton [6]. Consequently,
the MLE of � is inadmissible under the Stein loss. Results on the entropy loss and symmetric loss
are shown in Sections 5 and 6. The results on estimating covariance matrix are given in Section
7. Some simulation results are given in Section 8. Finally, we give some concluding remarks.

2. MLEs and unbiased estimators

2.1. Sample observations

Now suppose that � = �−1 has the structure (1) and we got the following observations:

Z01, Z02, . . . , Z0n ∼ Np(0, �),

Z11, Z12, . . . , Z1n1 ∼ Np1(0, �11),

Zi1, Zi2, . . . , Zini
∼ Np1+pi

(
0,

(
�11 �1i

�i1 �ii

))
, i = 2, . . . , k. (9)

All Zij s are independent. Let

V0 =
n∑

i=1

Z0iZ′
0i and Vi =

ni∑
j=1

Zij Z′
ij , i = 1, . . . , k. (10)

Then V0, V1, . . . , Vk are mutually independent and are sufficient statistics of � or �. Now write
V0 = (V0ij ), where V0ij is a pi × pj submatrix and

Vi =
(

Vi11 Vi12
Vi21 Vi22

)
, i = 2, . . . , k, (11)

where Vi11 is a p1 × p1 submatrix. Also let V1 = V111 for convenience. Assume that n > p,
n1 > p1 and ni > p1 + pi, i = 2, . . . , k. Then, V0, V1, . . . , Vk are all positive definite with
probability one and

V0 ∼ Wp(n, �), V1 ∼ Wp1(n1, �11),

Vi ∼ Wp1+pi

(
ni,

(
�11 �1i

�i1 �ii

))
, i = 2, . . . , k, (12)

where Wq(k, A) denotes a Wishart distribution with scale matrix A and degrees of freedom
parameter k. We will estimate � and � based on the sufficient statistics V0, V1, V2, . . . , Vk .

2.2. Cholesky decomposition

Usually, it is difficult to get appropriate estimators of the covariance matrix or the precision
matrix with some restrictions. For example, if you want to estimate � in (1) directly, you have
to estimate �11, �22, . . . ,�kk , �12, . . . ,�1k first. However, this will not guarantee that the
estimate of � obtained in this way is positive definite. Now we will introduce the following
Cholesky decomposition method to get MLEs of � and � in a star-shape model. This method
will guarantee the estimate of � obtained is positive definite. In addition, we will see that this
decomposition is still useful in getting the best equivariant estimates of � or � under different
loss functions later.
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Let

� = �′� or � = ��′, (13)

where both � and � are p by p lower-triangular matrices with positive diagonal entries. Thus,
� = �−1. For convenience, � will be viewed as Cholesky decomposition of �. From the structure
of � given by (1), it is easy to show that � has the following block structure:

� =

⎛
⎜⎜⎜⎜⎝

�11 0 0 · · · 0
�21 �22 0 · · · 0
�31 0 �33 · · · 0

...
...

...
. . .

...

�k1 0 0 · · · �kk

⎞
⎟⎟⎟⎟⎠ , (14)

and thus

� = �−1 =

⎛
⎜⎜⎜⎜⎜⎝

�−1
11 0 0 · · · 0

−�−1
22 �21�

−1
11 �−1

22 0 · · · 0
−�−1

33 �31�
−1
11 0 �−1

33 · · · 0
...

...
...

. . .
...

−�−1
kk �k1�

−1
11 0 0 · · · �−1

kk

⎞
⎟⎟⎟⎟⎟⎠ , (15)

with �ii being pi by pi lower-triangular matrix, i = 1, . . . , k. Note that there is no restriction
on �ij (i�j) except requiring that all diagonal elements of �ii are positive. This good property
enables us to estimate �ij first; then we can get the estimates of � and � directly from the
relationship between � (or �) and �. This method will ensure that the estimate of � (or �)
obtained is positive definite if the estimates of the diagonal elements in each �ii are positive.
Other properties of this decomposition will be discussed in the next section.

2.3. The maximum likelihood estimates

Whittaker [24] gives the expression of MLE of the covariance matrix � for k = 3 with complete
observations. Sun and Sun [23] get the corresponding result for general k. We will generalize them
to the star-shape model with missing observations. Let

W11 =
k∑

i=0

Vi11,

Wi11 = V011 + Vi11,

Wi1 = W′
1i = V0i1 + Vi21,

Wi22 = V0ii + Vi22,

Wii·1 = Wi22 − Wi1W−1
i11W1i , i = 2, . . . , k, (16)

and let m1 = n + ∑k
t=1 nt and mi = n + ni , i = 2, . . . , k throughout this paper. Also, let

W11·1 = W11 for convenience.
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Proposition 1. Based on the incomplete data (V0, V1, . . . , Vk) in the star-shape model, the MLE
�̂M of � is given as follows:

�̂M
11 = W11

m1
,

�̂M
i1 = (�̂M

1i )
′ = Wi1W−1

i11W11

m1
,

�̂M
ii = 1

mi

Wii·1 + 1

m1
Wi1W−1

i11W11W−1
i11W1i , i = 2, . . . , k,

�̂M
ij = 1

m1
Wi1W−1

i11W11W−1
j11W1j , 1 < i < j �k. (17)

Proof. The likelihood function f (V0, V1, . . . , Vk | �) is proportional to

|V0| n−p−1
2 |�|− n

2 etr

{
−1

2
�−1V0

}
|V1|

n1−p1−1
2 |�11|−

n1
2 etr

{
−1

2
�−1

11 V1

}

×
k∏

i=2

|Vi |
ni−p1−pi−1

2

∣∣∣∣�11 �1i

�i1 �ii

∣∣∣∣
− ni

2

etr

{
−1

2

(
�11 �1i

�i1 �ii

)−1

Vi

}

∝ |�|n|�11|n1

k∏
i=2

∣∣∣∣�11 0
�i1 �ii

∣∣∣∣
ni

· etr

{
−1

2
�V0�

′
}

etr

{
−1

2
�11V1�

′
11

}

×
k∏

i=2

etr

{
−1

2

(
�11 0
�i1 �ii

)(
Vi11 Vi12
Vi21 Vi22

)(
�11 0
�i1 �ii

)′}

=
k∏

i=1

|�ii |mi ·
k∏

i=1

etr

{
−1

2
�iiWii·1�′

ii

}

×
k∏

i=2

etr

{
−1

2
(�i1 + �iiWi1W−1

i11)Wi11(�i1 + �iiWi1W−1
i11)

′
}

�
k∏

i=1

|�ii |mi ·
k∏

i=1

etr

{
−1

2
�iiWii·1�′

ii

}
(18)

where etr(A) = exp(trace(A)). Hence, the MLE �̂ of � will be determined by

�̂′
ii�̂ii = miW

−1
ii·1, i = 1, . . . , k,

�̂i1 = −�̂iiWi1W−1
i11, i = 2, . . . , k, (19)

and thus by (13) and (15) the MLE of � is obtained as described in the proposition. �

Under the conditions n > p, n1 > p1 and ni > p1 +pi, i = 2, . . . , k, the MLE �̂M is positive
definite with probability one. In addition, by (19), the MLE �̂M of the precision matrix � can be
straightforwardly obtained as follows:
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Proposition 2. Based on the incomplete data (V0, V1, . . . , Vk) in the star-shape model, the MLE
�̂M of � is given by

�̂M
11 = m1W−1

11 +
k∑

i=2

miW
−1
i11W1iW

−1
ii·1Wi1W−1

i11,

�̂M
1i = (�̂M

i1 )′ = − miW
−1
i11W1iW

−1
ii·1,

�̂M
ii = miW

−1
ii·1, i = 2, . . . , k. (20)

The MLE �̂M of the precision matrix � also can be obtained by the following relationships
between � and �,

�11 = �−1
11 +

k∑
i=2

�−1
11 �1i�

−1
ii·1�i1�

−1
11 ,

�1i = −�−1
11 �1i�

−1
ii·1,

�ii = �−1
ii·1, i = 2, . . . , k, (21)

where

�ii·1 = �ii − �i1�
−1
11 �1i , i = 2, . . . , k.

Remark 1. For a star-shape model with missing data, the MLE �̂M is no longer a minimal
sufficient statistic for �, which is different from the case with complete observations in [23]. In
fact, W11, W211, . . . , Wk11, W21, . . . , Wk1, W22·1, . . . , Wkk·1 are minimal statistics of �, which
can be shown by the likelihood function in (18).

Sun and Sun [23] showed that for a star-shape model with complete observations, the MLE �̂M

of the covariance matrix � is unbiased while �̂M is biased. However, the following proposition
shows that for a missing case, neither �̂M is unbiased for �, nor �̂M is unbiased for �.

Proposition 3. Consider a star-shape model with missing data.

(a) The MLE �̂M in (17) is not an unbiased estimate of �.
(b) The MLE �̂M in (20) is not an unbiased estimator of �.

Proof. (a) In fact, we will show E(�̂M
ii ) �= �ii , i = 2, . . . , k. By Proposition 1,

�̂M
ii = Wi22 − Wi1W−1

i11W1i

mi

+ Wi1W−1
i11W11W−1

i11W1i

m1

= Wi22

mi

+
( 1

m1
− 1

mi

)
Wi1W−1

i11W1i + Wi1W−1
i11(

∑k
t=1 Vt11 − Vi11)W

−1
i11W1i

m1
.

Obviously, from (12), E(Wi22) = E(V0ii + Vi22) = mi�ii , i = 2, . . . , k and

E

{
Wi1W−1

i11

(
k∑

t=1

Vt11 − Vi11

)
W−1

i11W1i

}
=(m1 − mi)E(Wi1W−1

i11�11W−1
i11W1i ).

Because(
V011 V01i

V0i1 V0ii

)
∼ Wp1+pi

(
n,

(
�11 �1i

�i1 �ii

))
,
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it follows

V0i1 | V011 ∼ Npi,p1(�i1�
−1
11 V011, �ii·1 ⊗ V011). (22)

Similarly,

Vi12 | Vi11 ∼ Npi,p1(�i1�
−1
11 Vi11, �ii·1 ⊗ Vi11), (23)

and thus we have

(V0i1 + Vi12) | (V011, Vi11) ∼ Npi,p1(�i1�
−1
11 (V011 + Vi11), �ii·1

⊗ (V011 + Vi11)). (24)

So,

E(Wi1W−1
i11W1i ) = E{E(Wi1W−1

i11W1i | (V011, Vi11))}
= E{tr(W−1

i11Wi11)�ii·1} + E(�i1�
−1
11 Wi11W−1

i11Wi11�
−1
11 �1i )

= tr(Ip1)�ii·1 + �i1�
−1
11 E(Wi11)�

−1
11 �1i

= p1�ii·1 + mi�i1�
−1
11 �1i

and

E(Wi1W−1
i11�11W−1

i11W1i )

= E{E(Wi1W−1
i11�11W−1

i11W1i | (V011, Vi11))}
= E{tr(W−1

i11�11W−1
i11Wi11)�ii·1} + E(�i1�

−1
11 Wi11W−1

i11�11W−1
i11Wi11�

−1
11 �1i )

= tr{E(V011 + Vi11)
−1�11}�ii·1 + �i1�

−1
11 �1i

= p1

mi − p1 − 1
�ii·1 + �i1�

−1
11 �1i .

Let

ri = 1 + p1

{
1

m1
− 1

mi

+ m1 − mi

m1(mi − p1 − 1)

}
,

then

E(�̂M
ii ) = E(Wi22)

mi

+
(

1

m1
− 1

mi

)
E(Wi1W−1

i11W1i )

+m1 − mi

m1
E(Wi1W−1

i11�11W−1
i11W1i )

= ri�ii + ri�i1�
−1
11 �1i ,

which is not equal to �ii .
(b) Because(

V011 + Vi11 V01i + Vi12
V0i1 + Vi21 V0ii + Vi22

)
∼ Wp1+pi

(
n + ni,

(
�11 �1i

�i1 �ii

))
,

we have Wii·1 ∼ Wpi
(mi − p1, �ii·1), and thus

E(�̂M
ii ) = mi

mi − p1 − pi − 1
�−1

ii·1 �= �ii , i = 2, . . . , k,

which proves the second part. �
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2.4. Unbiased estimators

Based on �̂M, �̂M , we create unbiased estimates of � and �, respectively.

Proposition 4. Consider a star-shape model with missing data.
(a) An unbiased estimate �̂U of � is given by

�̂U
ii =

[
1 − p1(m1 − p1 − 1)

m1(mi − p1 − 1)

]
Wii·1

mi − p1
+ Wi1W−1

i11W11W−1
i11W1i

m1
, i = 2, . . . , k

and �̂U
ij = �̂M

ij for other i, j , where �̂M
ij is shown by (17) in Proposition 1.

(b) An unbiased estimate �̂U of � is given by

�̂U
11 = (m1 − p1 − 1)

(
1 −

k∑
i=2

pi

mi − p1 − 1

)
W−1

11

+
k∑

i=2

(mi − p1 − pi − 1)W−1
i11W1iW

−1
ii·1Wi1W−1

i11,

and for i = 2, . . . , k,

�̂U
1i = −(mi − p1 − pi − 1)W−1

i11W1iW
−1
ii·1,

�̂U
ii = (mi − p1 − pi − 1)W−1

ii·1.

Proof. (a) Obviously, E(�̂M
11) = E(V011 + ∑k

i=1 Vi11)/m1 = �11. By (24),

E(V0i1 + Vi21 | V011, Vi11) = �i1�
−1
11 (V011 + Vi11)

and thus E(�̂M
i1 ) = �i1 because of E(V011 + Vi11) = mi�11, i = 2, . . . , k. In addition, for any

1 < i < j �k,(
V0i1

V0j 1

)
| V011 ∼ Npi+pj ,p1

((
�i1

�j1

)
�−1

11 V011,

(
�ii·1 0

0 �jj ·

)⊗
V011

)
,

Vi21 | Vi11 ∼ Npi,p1(�i1�
−1
11 Vi11, �ii·1 ⊗ Vi11),

Vj21 | Vj11 ∼ Npj ,p1(�j1�
−1
11 Vj11, �jj · ⊗ Vj11), (25)

then we get(
V0i1 + Vi21

V0j1 + Vj21

)
| (V011, Vi11, Vj11)

∼Npi+pj ,p1

((
�i1�

−1
11 (V011 + Vi11)

�j1�
−1
11 (V011 + Vj11)

)
,

(
�ii·1

⊗
(V011 + Vi11) 0

0 �jj ·
⊗

(V011 + Vj11)

))
. (26)

Also, by E(W11) = m1�11, we can easily obtain that E(�̂M
ij ) = �i1�

−1
11 �1j = �ij . In addition,

similar to (25), we can easily see that E(�̂U
ii ) = �ii , i = 2, . . . , k and part (a) is proved.
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(b) By (24),

Wi1 | Wi11 ∼ Npi,p1(�i1�11Wi11, �ii·1 ⊗ Wi11), (27)

and (Wi1, Wi11) is independent of Wii·1. Therefore,

E(W−1
i11W1iW

−1
ii·1 | Wi11) = W−1

i11E(W1i | Wi11)E(W−1
ii·1)

= 1

mi − p1 − pi − 1
W−1

i11 · Wi11�
−1
11 �1i · �−1

ii·1

= 1

mi − p1 − pi − 1
�−1

11 �1i�
−1
ii·1

and

E(W−1
i11W1iW

−1
ii·1Wi1W−1

i11 | Wi11)

= 1

mi − p1 − pi − 1
W−1

i11E(W1i�
−1
ii·1Wi1 | Wi11)W

−1
i11

= pi

mi − p1 − pi − 1
W−1

i11 + 1

mi − p1 − pi − 1
�−1

11 �1i�
−1
ii·1�i1�

−1
11 .

So we get

E(�̂U
11) = (m1 − p1 − 1)

(
1 −

k∑
i=2

pi

mi − p1 − 1

)
E(W−1

11 )

+
k∑

i=2

pi

mi − p1 − 1
�−1

11 +
k∑

i=2

�−1
11 �1i�

−1
ii·1�i1�

−1
11

= �−1
11 +

k∑
i=2

�−1
11 �1i�

−1
ii·1�i1�

−1
11 = �11,

E(�̂U
1i ) = −(mi − p1 − pi − 1)E(W−1

i11W1iW
−1
ii·1) = −�−1

11 �1i�
−1
ii·1 = �1i ,

E(�̂U
ii ) = (mi − p1 − pi − 1)E(W−1

ii·1) = �−1
ii·1 = �ii , i = 2, . . . , k.

The proof is completed. �

3. The invariant Haar measures

Group invariance plays an important role in finding better estimates of the covariance and
precision matrices in multivariate normal distribution. See for example, James and Stein [10],
Olkin and Selliah [19], Sharma and Krishnamoorthy [21], Konno [13], Sun and Sun [23] etc.
Define

G = {
A ∈ Rp×p | A has a structure as (14)

}
. (28)

Sun and Sun [23] showed that G is a group with respect to matrix multiplication. For any i =
1, 2, . . . , k, let

�ii =

⎛
⎜⎜⎝

�i11 0 · · · 0
�i21 �i22 · · · 0

...
...

. . .
...

�ipi1 �ipi1 · · · �ipipi

⎞
⎟⎟⎠ . (29)
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And for i = 2, . . . , k, let

�i1 =

⎛
⎜⎜⎝

�i11 �i12 · · · �i1p1
�i21 �i22 · · · �i2p1

...
...

. . .
...

�ipi1 �ipi2 · · · �ipip1

⎞
⎟⎟⎠ . (30)

Similar to Example 1.14 of [7], the left invariant Haar measure and the right invariant Haar measure
of G are given by

�l
G(d�) ∝ d�

p1∏
j=1

�j
1jj ·

k∏
i=2

pi∏
j=1

�p1+j
ijj

, (31)

�r
G(d�) ∝ d�

p1∏
j=1

�p−j+1
1jj ·

k∏
i=2

pi∏
j=1

�pi−j+1
ijj

, (32)

respectively. In addition, we can readily verify that �r
G(d�) = �l

G(d�) and �l
G(d�) = �r

G(d�)

because � = �−1.
However, unlike the case with complete data in [23], it seems impossible to get the closed form

of equivariant estimators of � or � with respect to G in a star-shape model with missing data. So
it is impossible to obtain the best equivariant estimate of � (or �) under an invariant loss. Like
[6], the Bayesian method will be applied to get the best equivariant estimates of � (or �) in the
next few sections.

Let Tii be the Cholesky decomposition of Wii·1, i = 1, 2, . . . , k.

Theorem 1. If we take the left invariant Haar measure of the group G, �l
G(d�) as a prior, then

the posterior distribution of � in a star-shape model with missing data satisfies

(a) �11, (�21, �22), . . . , (�k1, �kk) are mutually independent;
(b) For i = 2, . . . , k, �i1 | (�ii , V0, V1, . . . , Vk) ∼ Npi,p1(−�iiWi1W−1

i11, Ipi
⊗ W−1

i11);
(c) �11W11�′

11 | (V0, V1, . . . , Vk) ∼ Wp1(m1, Ip1) and

E[�′
11�11 | (V0, V1, . . . , Vk)] = (T′

11)
−1diag(�11, . . . , �1p1)T

−1
11 , (33)

E[(�′
11�11)

−1 | (V0, V1, . . . , Vk)] = T11diag(�11, . . . , �1p1
)T′

11, (34)

where

�1j = m1 + p1 − 2j + 1, j = 1, . . . , p1, (35)

�1j = m1 − 1

(m1 − j − 1)(m1 − j)
, j = 2, . . . , p1; (36)

(d) For i = 2, . . . , k, �iiWii·1�′
ii | (V0, V1, . . . , Vk) ∼ Wpi

(mi − p1, Ipi
) and

E[�′
ii�ii | (V0, V1, . . . , Vk)] = (T′

ii )
−1 diag(�i1, . . . , �ipi

)T−1
ii , (37)

E[(�′
ii�ii )

−1 | (V0, V1, . . . , Vk)] = Tii diag(�i1, . . . , �ipi
)T′

ii , (38)

where

�ij = mi − p1 + pi − 2j + 1, j = 1, . . . , pi, (39)

�ij = mi − 1

(mi − p1 − j − 1)(mi − p1 − j)
, j = 1, . . . , pi . (40)
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Proof. Combining the likelihood function of � in (18) with the prior of � in (31), we have the
posterior of �,

p(� | V0, V1, . . . , Vk)

∝
k∏

i=2

exp

[
−1

2
tr
{
(�i1 + �iiWi1W−1

i11)Wi11(�i1 + �iiWi1W−1
i11)

′}]

× exp

{
−1

2
tr(�11W11·1�′

11)

} p1∏
j=1

�m1−j
1jj

×
k∏

i=2

exp
{
−1

2
tr(�iiWii·1�′

ii )
} pi∏

j=1

�mi−p1−j
ijj . (41)

Thus, we prove parts (a) and (b). For part (c), we have the posterior marginal of �11

p(�11 | V0, V1, . . . , Vk) ∝ exp
{
−1

2
tr(�11W11·1�′

11)
} pi∏

j=1

�m1−j
1jj

and thus �11W11�′
11 | (V0, V1, . . . , Vk) ∼ Wp1(m1, Ip1). Eqs. (33) and (34) are the special

cases of Lemma 5.1 in [23]. Similarly, we can prove part (d). �

4. Best equivariant estimator of � under the Stein loss

For estimating the covariance matrix �, Eaton [7] showed that under some conditions, the best
equivariant estimate of � under the group G will be a Bayesian estimate if we take the right Haar
measure �r

G(d�) as a prior. So for estimating the precision matrix �, the best equivariant estimate

of � under the group G will be a Bayesian estimate if we take the left Haar measure �l
G(d�) as

a prior because �l
G(d�) = �r

G(d�).
Now define

T =

⎛
⎜⎜⎜⎜⎜⎝

T11 0 0 · · · 0
W21W−1

211T11 T22 0 · · · 0
W31W−1

311T11 0 T33 · · · 0
...

...
...

. . .
...

Wk1W−1
k11T11 0 0 · · · Tkk

⎞
⎟⎟⎟⎟⎟⎠ . (42)

Then we have

R = T−1 =

⎛
⎜⎜⎜⎜⎜⎝

T−1
11 0 0 · · · 0

−T−1
22 W21W−1

211 T−1
22 0 · · · 0

−T−1
33 W31W−1

311 0 T−1
33 · · · 0

...
...

...
. . .

...

−T−1
kk Wk1W−1

k11 0 0 · · · T−1
kk

⎞
⎟⎟⎟⎟⎟⎠ . (43)

Theorem 2. Under the Stein loss L∗
1, the best G-equivariant estimator of � is given by

�̂1B = R′B1BR, (44)
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where R is given by (43), B1B = diag(B11B, B12B, . . . , B1kB), B11B = D1 + ∑k
i=2 piT′

11
W−1

i11T11 and D1 = diag(d11, . . . , d1p1) with d1j = m1 + p1 − 2j + 1, j = 1, . . . , p1;
B1iB = diag(bi1B, . . . , bipiB) with bijB = mi − p1 + pi − 2j + 1, j = 1, . . . , pi , i = 2, . . . , k.

Proof. The best equivariant estimate of � under the Stein loss L∗
1 will be produced by minimizing

the posterior risk

b1(�̂) =
∫ [

tr
{
�̂−1(�′�)

}
− log |�̂−1(�′�)| − p

]
f (� | V0, V1, . . . , Vk) d�,

where f (� | V0, V1, . . . , Vk) is described in Theorem 1. Letting �̂ = �̂′�̂, where �̂ ∈ G and
has the similar block partition as in (14). Thus, the question becomes to minimize

g1(�̂) =
∫

tr
{
(��̂−1)(��̂−1)′

}
f (� | V0, V1, . . . , Vk) d� − log |(�̂′�̂)−1|. (45)

So we need to calculate the posterior expectation of tr
{
(��̂−1)(��̂−1)′

}
. Because

��̂−1 =

⎛
⎜⎜⎜⎜⎜⎝

�11�̂
−1
11 0 0 · · · 0

(�21 − �22�̂
−1
22 �̂21)�̂

−1
11 �22�̂

−1
22 0 · · · 0

(�31 − �33�̂
−1
33 �̂31)�̂

−1
11 0 �̂33�

−1
33 · · · 0

...
...

...
. . .

...

(�k1 − �kk�̂
−1
kk �̂k1)�̂

−1
11 0 0 · · · �̂kk�

−1
kk

⎞
⎟⎟⎟⎟⎟⎠ , (46)

we have

tr{(��̂−1)(��̂−1)′}

=
k∑

i=1

tr{(�̂′
ii )

−1�′
ii�ii�̂

−1
ii }

+
k∑

i=2

tr{(�i1 − �ii�̂
−1
ii �̂i1)(�̂

′
11�̂11)

−1(�i1 − �ii�̂
−1
ii �̂i1)

′}. (47)

From (33) and (37) in Theorem 1, it follows

E(�′
11�11 | V0, V1, . . . , Vk) = (T′

11)
−1D1T−1

11 (48)

and

E(�′
ii�ii | V0, V1, . . . , Vk) = (T′

ii )
−1B1iBT−1

ii , i = 2, . . . , k. (49)

Moreover, for any 2� i�k, by Theorem 1(b) and applying Theorem 2.3.5 in [8], we have

E{(�i1 − �ii�̂
−1
ii �̂i1)(�̂

′
11�̂11)

−1(�i1 − �ii�̂
−1
ii �̂i1)

′ | V0, V1, . . . , Vk}
= tr{(�̂′

11�̂11)
−1W−1

i11}Ipi

+E{�ii (Wi1W−1
i11 + �̂−1

ii �̂i1)(�̂
′
11�̂11)

−1

×(Wi1W−1
i11 + �̂−1

ii �̂i1)
′�′

ii | V0, V1, . . . , Vk}
= tr{(�̂′

11)
−1W−1

i11�̂
−1
11 )Ipi

+(Wi1W−1
i11 + �̂−1

ii �̂i1)(�̂
′
11�̂11)

−1(Wi1W−1
i11 + �̂−1

ii �̂i1)
′(T′

ii )
−1B1iT

−1
ii . (50)
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Combining (47)–(50), it yields

E
[
tr{(��̂−1)(��̂−1)′} | V0, V1, . . . , Vk

]

=
k∑

i=1

tr{(�̂′
ii )

−1(T′
ii )

−1B1iBT−1
ii �̂−1

ii }

+
k∑

i=2

tr
{
(Wi1W−1

i11 + �̂−1
ii �̂i1)(�̂

′
11�̂11)

−1

× (Wi1W−1
i11 + �̂−1

ii �̂i1)
′(T′

ii )
−1B1iBT−1

ii

}
(51)

and thus we have

g1(�̂) =
k∑

i=1

tr
{
(�̂′

ii )
−1(T′

ii )
−1B1iBT−1

ii �̂−1
ii

}
−

k∑
i=1

log |(�̂′
ii )

−1�̂−1
ii |

+
k∑

i=2

tr
{
(Wi1W−1

i11 + �̂−1
ii �̂i1)

× (�̂′
11�̂11)

−1(Wi1W−1
i11 + �̂−1

ii �̂i1)
′(T′

ii )
−1B1iBT−1

ii

}

�
k∑

i=1

tr
{
(�̂′

ii )
−1(T′

ii )
−1B1iBT−1

ii �̂−1
ii

}
−

k∑
i=1

log |(�̂′
ii )

−1�̂−1
ii |,

and the equality holds if we take �̂i1 = −�̂iiWi1W−1
i11, i = 2, 3, . . . , k. Consequently, g1(�̂) at-

taches minimum at �̂11 = G11T−1
11 , �̂ii = B1/2

1iBT−1
ii and �̂i1 = −�̂iiWi1W−1

i11, i = 2, 3, . . . , k,
where G11 is the inverse of the Cholesky decomposition of B−1

11 . This completes the proof. �

Remark 2. It is well-known that the group of lower-triangular matrices is solvable and thus its
subgroup G is also solvable (see [3] for a survey). By Kiefer [11], the best G-equivariant estimator
�̂1B is also minimax with respect to the Stein loss L∗

1.

The MLE of � given by (20) can be expressed as

�̂M = R′ diag(m1Ip1 , m2Ip2 , . . . , mkIpk
)R,

and the unbiased estimate �̂U of � given by Proposition 4(b) can be expressed as �̂U = R′UR,
where

U = diag

{
(m1−p1−1)

(
1−

k∑
i=2

pi

mi −p1−1

)
Ip1 , (m1−p1−p2−1)Ip2 , . . . ,

(mk−p1−pk−1)Ipk

}
.

Remark 3. By Corollary 2, both �̂M , �̂U are inadmissible under the Stein loss L∗
1 because they

are equivariant under the group G.
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Note that any estimate of � having the form of R′ diag(a1, . . . , ap)R will be equivariant with
respect to the group G, where ai is a constant, i = 1, . . . , p. Thus, by Theorem 2, any estimator
having the form like R′ diag(a1, . . . , ap)R will be inadmissible under the Stein loss. However, it
is unclear whether R′ diag(a1, . . . , ap)R is a Bayesian estimate, which also is different from the
case with complete data in [23].

5. Best equivariant estimator of � under the entropy loss

Theorem 3. Under the entropy loss L∗
2, the best G-equivariant estimator of � is given by

�̂2B = R′B2BR, (52)

where R is given by (43), B2B = diag(B21B, B22B, . . . , B2kB), and B2iB = diag(di1B, . . . ,

dipiB) with

dijB =

⎧⎪⎪⎨
⎪⎪⎩

(m1 − j − 1)(m1 − j)

m1 − 1
if i = 1, j = 1, . . . , p1,

(mi − p1 − j − 1)(mi − p1 − j)

(mi − 1){1 + tr(B−1
21BT′

11W−1
i11T11)}

if i = 2, . . . , k, j = 1, . . . , pi .
(53)

Proof. Similarly to the proof of Theorem 2, best G-equivariant estimator of � under the entropy
loss L∗

2 will be produced by minimizing the posterior risk

b2(�̂) =
∫ [

tr
{
�̂(�′�)−1} − log |�̂(�′�)−1| − p

]
f (� | V0, V1, . . . , Vk) d�,

which is equivalent to minimize

g2(�̂) =
∫

tr{(�̂�−1)(�̂�−1)′}f (� | V0, V1, . . . , Vk) d� − log |�̂′
�̂|.

Similar to (47), we have

tr{(�̂�−1)(�̂�−1)′} =
k∑

i=1

tr{�̂ii (�
′
ii�ii )

−1�̂
′
ii}

+
k∑

i=2

tr{(�̂i1 − �̂ii�
−1
ii �i1)(�

′
11�11)

−1

×(�̂i1 − �̂ii�
−1
ii �i1)

′}. (54)

From (34) and (38),

E{(�′
11�11)

−1|V0, V1, . . . , Vk} = T11B−1
21BT′

11,

E{(�′
ii�ii )

−1|V0, V1, . . . , Vk} = TiiB
−1
2iBT′

ii/{1 + tr(T11B−1
21BT′

11W−1
i11)},

i = 2, . . . , k.

In addition, similar to (50), for i = 2, . . . , k,

E
[
tr
{
(�̂i1 − �̂ii�

−1
ii �i1)(�

′
11�11)

−1(�̂i1 − �̂ii�
−1
ii �i1)

′} | V0, V1, . . . , Vk

]
= tr

[
E
{
(�̂i1−�̂ii�

−1
ii �i1)

′(�̂i1−�̂ii�
−1
ii �i1) | V0, V1,. . . ,Vk

}
× E{(�′

11�11)
−1 | V0, V1,. . . ,Vk}

]
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= tr
{
(�̂i1 + �̂iiWi1W−1

i11)
′(�̂i1 + �̂iiWi1W−1

i11)T11B−1
21BT′

11

}
+tr(T11B−1

21BT′
11W−1

i11) tr(�̂iiTiiB2iBT′
ii�̂

′
ii )/{1 + tr(T11B−1

21BT′
11W−1

i11)}.
So we have

E[tr{(�̂�−1)(�̂�−1)′} | V0, V1, . . . , Vk]

=
k∑

i=1

tr(�̂iiTiiB
−1
2iBT′

ii�̂
′
ii )

+
k∑

i=2

tr
{
(�̂i1 + �̂iiWi1W−1

i11)
′(�̂i1 + �̂iiWi1W−1

i11)T11B−1
21BT′

11

}
(55)

and thus

g2(�̂) =
k∑

i=1

{
tr(�̂iiTiiB

−1
2iBT′

ii�̂
′
ii ) − log |�̂′

ii�̂ii |
}

+
k∑

i=2

tr
{
(�̂i1 + �̂iiWi1W−1

i11)
′(�̂i1 + �̂iiWi1W−1

i11)T11B−1
21BT′

11

}
.

Hence, we can readily see that g2(�̂) is minimized at �̂ii = B1/2
2iBT−1

ii for i = 1, . . . , k and

�̂j1 = −�̂jj Wj1W−1
j11 for j = 2, . . . , k. Thus the proof is completed. �

Remark 4. Similar to Remark 2, the best G-equivariant estimator �̂2B is also minimax with
respect to the entropy loss L∗

2.

Remark 5. Similar to Remark 3, the MLE �̂M and the unbiased estimator �̂U are still inadmis-
sible under the entropy loss L∗

2.

6. Best equivariant estimator of � under the symmetric loss

We need the following lemma, which is a direct result of Lemma 2.2 in [7].

Lemma 1. Let A = {A ∈ Rp×p | A is lower-triangular with positive diagonal elements}. If �
and � are both positive definite, then

min
A∈A

{
tr(A�A′) + tr((A′)−1�A−1)

}
= 2 tr(�1/2��1/2)1/2

is achieved by taking A as the inverse of Cholesky decomposition of �−1/2(�1/2��1/2)1/2

�−1/2. Specifically, if � and � are both diagonal, then the minimum will be achieved at A =
�1/4�−1/4.

Theorem 4. Under the symmetric loss L∗
3, the best G-equivariant estimator of � is given by

�̂3B = R′B3BR, (56)

where B3B = diag(B31B, B32B,. . . ,B3kB) with B31B = B1/2
11B(B1/2

11BB−1
21BB1/2

11B)−1/2B1/2
11B and

B3iB = B1/2
1iBB1/2

2iB , i = 2, . . . , k, where B1iB and B2iB are given by Theorems 2 and 3, re-
spectively, i = 1, 2, . . . , k.
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Proof. The Bayesian estimator of � under the symmetric loss L∗
3 will be produced by minimizing

the posterior risk

b3(�̂)=
∫ [

tr
{
�̂(�′�)−1

}
+ tr

{
�̂−1(�′�)

}
− 2p

]
f (� | V0, V1, . . . , Vk) d�,

which is equivalent to minimize

g3(�̂)=
∫ [

tr
{
(�̂�−1)(�̂�−1)′

}
+tr

{
(��̂−1)(��̂−1)′

}]
f (�|V0, V1,. . . ,Vk) d�.

Combining (55) with (51), it yields

g3(�̂) =
k∑

i=1

[
tr
(
�̂iiTiiB

−1
2iBT′

ii�̂
′
ii

) + tr
{
(�̂′

ii )
−1(T′

ii )
−1B1iBT−1

ii �̂−1
ii

}]

+
k∑

i=2

tr
{
(�̂i1 + �̂iiWi1W−1

i11)
′(�̂i1 + �̂iiWi1W−1

11 )T11B−1
21BT′

11

}

+
k∑

i=2

tr
{
(Wi1W−1

11 + �̂−1
ii �̂i1)(�̂

′
11�̂11)

−1

×(Wi1W−1
11 + �̂−1

ii �̂i1)
′(T′

ii )
−1B1iBT−1

ii

}
�

k∑
i=1

[
tr
(
�̂iiTiiB

−1
2iBT′

ii�̂
′
ii

) + tr
{
(�̂′

ii )
−1(Tii )

−1B1iBT−1
ii �̂−1

ii

}]
,

and the equality holds if we take �̂i1 = −�̂iiWi1W−1
i11, i = 2, 3, . . . , k. Thus, by Lemma 1,

we can easily see that g3(�̂) attaches minimum at �̂11 = Q31T−1
11 with Q31 being the inverse

of Cholesky decomposition of B−1/2
11B (B1/2

11BB−1
21BB1/2

11B)1/2B−1/2
11B , �̂ii = B1/2

3iBT−1
ii and �̂i1 =

−�̂iiWi1W−1
i11, i = 2, 3, . . . , k. Thus the proof is completed. �

Remark 6. Similar to Remarks 2 and 4, the best G-equivariant estimators �̂2 is also minimax
with respect to the symmetric loss L∗

3.

Remark 7. Similar to Remarks 3 and 5, both �̂M and �̂U are inadmissible under the symmetric
loss L∗

3.

7. Estimating the covariance matrix

As immediate corollaries of our results on estimating the precision matrix, we now list the
results for estimating covariance matrix under a star-shape model with missing data.

Corollary 1. Under the loss Li, i = 1, 2, 3, the G-equivariant estimator of � is given by

�̂iB = TB−1
iB T′, (57)

where T is given by (42) and BiB , i = 1, 2, 3 is shown by Theorems 2, 3, and 4, respectively.

Remark 8. For fixed i = 1, 2, 3, both the MLE �̂M and the unbiased estimator �̂U are inadmis-
sible under the loss Li .
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Remark 9. For i = 1, 2, 3, the best G-equivariant estimator �̂i is minimax with respect to Li .

8. Simulation results

In this section, we will compare the risks of MLE �̂M , the unbiased estimator �̂U and the best
equivariant estimator �̂iB under each L∗

i , i = 1, 2, 3. Each risk will be denoted as RiM, RiU , RiB

under L∗
i , respectively.

Unlike the model with complete data studied by Sun and Sun [23], it is rather complicated to
derive a closed form expression for the risks of the above estimates under any L∗

i . So we compare
their risks by simulation. Because all of these estimators are equivariant, without loss of generality,
we may take � = Ip in our simulation. Risks of the three estimators �̂M , �̂U and �̂i under losses
L∗

1, L∗
2 and L∗

3 for various combinations of ni and pi , and k = 3 and 5 are plotted in Figs. 1–9.
The numerical values are computed based on 10, 000 simulated samples. From the simulation
study, �̂M is superior to �̂U under the loss L∗

1, but �̂U is superior to �̂M under the loss L∗
2.

There is no difference between �̂M and �̂U under loss L∗
3. Furthermore, the improvement over

the risks of �̂M and �̂U by �̂i under all three losses is quite substantial.

9. Concluding remarks

This paper deals with the problem of estimating the covariance matrix and the precision matrix
under the three common loss functions in a star-shape model with missing data. Using a type of
Cholesky decomposition of the precision matrix � = �′�, we easily obtained the MLEs of the
covariance matrix and the precision matrix. Also, we get the closed forms of the best equivariant
estimators of � under the Stein loss, entropy loss and symmetric loss, respectively. This method
is quite powerful in estimating the covariance matrix or the precision matrix.

Although our sample plan is restricted to taking observations from X, X1, (X′
1, X′

i )
′, i =

2, . . . , k, which is popular in economic studies, we can deal with other cases such as taking
observations from X, X1, (X′

1, X′
i1
, X′

i2
, . . . , X′

ij
)′, 2� i1 < · · · < ij �k by applying the similar

method. In these cases, the monotone missing data pattern is not required when the covariance
matrix has a special structure, which is different from the case of the covariance matrix with no
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restriction by Anderson [1] and Liu [18] and so on. In addition, for convenience, we assume that
the sample sizes satisfying n > p, n1 > p1 and ni > p1 + pi , i = 2, . . . , k in this paper. The
essential conditions are m1 > p1 + 1 and mi > p1 + pi + 1.

The investigation on a star-shape model with missing data is, nevertheless, far from being com-
plete, and there are many important and interesting questions to be further studied. An interesting
but difficult problem is whether the best equivariant estimate �̂iB is admissible under the corre-
sponding loss Li . Other Bayesian estimates by using appropriate priors will be considered in the
future.
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