
FEBS Letters 578 (2004) 128–134 FEBS 29019
Enhancing the first enzymatic step in the histidine biosynthesis
pathway increases the free histidine pool and nickel tolerance in

Arabidopsis thaliana
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Abstract Naturally selected nickel (Ni) tolerance in Alyssum
lesbiacum has been proposed to involve constitutively high levels
of endogenous free histidine. Transgenic Arabidopsis thaliana
expressing a Salmonella typhimurium ATP phosphoribosyl
transferase enzyme (StHisG) resistant to feedback inhibition
by histidine contained approximately 2-fold higher histidine con-
centrations than wild type plants. Under exposure to a toxic Ni
concentration, biomass production in StHisG expressing lines
was between 14- and 40-fold higher than in wild-type plants. This
suggested that enhancing the first step in the histidine biosynthe-
sis pathway is sufficient to increase the endogenous free histidine
pool and Ni tolerance in A. thaliana.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Worldwide large areas of soil contaminated with toxic heavy

metals represent an environmental hazard through wind and

water erosion. In addition, plants cultivated on polluted soils

are a major route for the entry of toxic heavy metals into the

food chain. It has been proposed to use high-biomass non-

food crops for phytoremediation, defined as the stabilization

or clean-up of metal-contaminated soils using plants [1,2].

Expressing microbial genes of known function, mercury toler-

ance [3], arsenic tolerance and substantial shoot arsenic accu-

mulation [4], as well as cadmium tolerance [5–7], have

recently been engineered in plants.
Abbreviations: ATP-PRT, adenosine 50-triphosphate phosphoribosyl
transferase; bp, base pairs; Col, accession Columbia; gDNA, genomic
DNA; Ni, nickel; RT-PCR, reverse transcriptase-polymerase chain
reaction; S.D., standard deviation; StHisG, ATP-PRT of Salmonella
typhimurium

*Corresponding author. Fax: +49 331 56789 8357.
E-mail address: kraemer@mpimp-golm.mpg.de (U. Krämer).
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Among the plants found on nickel (Ni)-rich soils and pos-

sessing naturally selected Ni tolerance, about 350 taxa of so-

called Ni hyperaccumulators are known to accumulate very

high concentrations of between 1000 and 38000 mg kg�1 Ni

in dry leaf biomass [8]. In contrast, a majority of non-accumu-

lator taxa in the same habitat accumulate between below 1 and

200 mg kg�1 Ni [9]. Metal hyperaccumulators are rare and

generally slow-growing plants unsuitable for phytoremedia-

tion, but may serve as models to engineer or breed high bio-

mass plants for this purpose.

In the Ni tolerant Ni hyperaccumulator Alyssum lesbiacum

(Candárgy) Rech.f., root free histidine concentrations are

constitutively high, and Ni exposure induces a large and

proportional increase in the concentration of free histidine

in the xylem sap [10]. Histidine acts as a low-molecular

weight chelator for Ni2+ ions in the xylem sap and in root

and shoot tissues of A. lesbiacum [10]. In the closely related

Ni sensitive non-accumulator plants Brassica juncea L. cv

Vitasso and Alyssum montanum L., supplying exogenous free

histidine increases Ni tolerance of whole plants, as well as the

rate of Ni translocation from the roots into xylem exudates

of de-topped root systems [11]. This supports the hypothesis

that increasing the pool of endogenous free histidine in plants

can confer Ni tolerance, and may increase the accumulation

of Ni in the shoot by enhancing the rate of Ni loading into

the xylem.

In plants, other known low-molecular-weight metal chela-

tors are phytochelatins [12] and nicotianamine [13]. Phytochel-

atins, which are synthesised from glutathione by the enzyme

phytochelatin synthase [14–16], have a role in arsenic tolerance

[17], and in basal tolerance to cadmium and copper. Interest-

ingly, phytochelatins have apparently not been selected as che-

lators in metal hypertolerance of hyperaccumulator plants,

such as Thlaspi caerulescens J. & C. Presl [18]. In accordance

with this, thiol group-containing molecules, such as phytochel-

atins or glutathione, are not involved in Ni binding in the Ni

hyperaccumulators A. lesbiacum [10] and T. goesingense

Hálácsy [19]. Nicotianamine is synthesized by the enzyme

nicotianamine synthase from three molecules of S-adenosylme-

thionine, whereby three molecules of 5 0-S-methyl-5 0-thioade-

nosine are released. Nicotianamine is involved in iron

homeostasis and in naturally selected zinc [20,21] and Ni toler-

ance [22]. The question why histidine has been selected as a

major chelator in Ni hyperaccumulators of the genus Alyssum

cannot be answered with any certainty. However, it is interest-

ing to note that chelation of metal ions with histidine, which
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contains six C and three N atoms, is of relatively low metabolic

cost because its biosynthesis does not involve the assimilation

of sulfate into thiol groups, and because less carbon and nitro-

gen atoms are committed for the chelation of one metal ion,

when compared to nicotianamine (12 C and 3 N) or phytochel-

atins (approximately 18 or 36 C, 5 or 10 N, and 2 or 4 S).

In Escherichia coli, Saccharomyces cerevisiae and plants,

histidine is synthesised from ATP and phosphoribosyl pyro-

phosphate in 11 catalytic steps (Fig. 1). In plants, cDNAs

have been identified which encode seven out of presumably

eight enzymes involved in histidine biosynthesis, mostly by

functional complementation of yeast and E. coli mutants

[23–32]. The enzyme ATP phosphoribosyl transferase

(ATP-PRT) catalyses the first committed step in histidine bio-

synthesis in bacteria (for example, E. coli and Salmonella

typhimurium HisG proteins), yeast (ScHis1p) and in plants

(Fig. 1) [27,33]. Yeast, bacterial and plant ATP-PRT enzymes

are subject to allosteric feedback inhibition by free histidine

[27,34]. Thiazolealanine and triazolealanine are toxic false
Reaction Plants 

       ATP  +  PRPP 
ATP phosphoribosyl AtATP-P

PPi transferase AtATP-P
(2.4.2.17) TgTHG1

      PR-ATP 
 Phosphoribosyl-ATP AtIE3

PPi pyrophosphohydrolase  
(2.6.1.31) 

      PR-AMP 
 Phosphoribosyl-AMP AtIE
 cyclohydrolase 
 (3.5.4.19) 
BBMII At BBMI

BBMII isomerase (5.3.1.16) isomeras
      BBMIII 
Gln Glutamine amidotransferase AtHF5

Glu (2.4.2-) 
AICAR

 Imidazoleglycerol-phosphate AtHF
synthase cyclase (4.1.3.-) 

      Imidazoleglycerolphosphate 
 Imidazoleglycerol phosphate AtIGPD1

H2O dehydratase (4.2.1.19) AtIGPD2
TgTHB1

Imidazoleacetolphosphate
Glu Histidinol phosphate NtHPA7

2-Ogl aminotransferase 
 (2.6.1.9) 

L-Histidinolphosphate
Histidinol phosphate  n.i. 

     Pi phosphatase (3.1.3.15) 
L-Histidinol  
NAD+ Histidinol dehydrogenase  BoHDH8

NADH (1.1.1.23) TgTHD1
L-Histidinal
NAD+ Histidinol dehydrogenase BoHDH 
NADH TgTHD12

L-Histidine 

1[27]; 2[32]; 3[28]; 4[30]; 5[29]; 6[26]; 7[31]; 8[24,25].

Fig. 1. The pathway of histidine biosynthesis in plants, S. cerevisiae and E. coli
each reaction are listed on the right. Please note that some enzymes are bi-
Biotechnology Information) Accession Numbers are given of the cDNAs
pyrophosphate; AICAR, 5 0-phosphoribosyl-5-amino-4-imidazolecarboxami
carboxamide ribonucleotide; BBMIII,N 0-[(5 0-phosphoribulosyl)-formimino]-5
n.i. not identified; At, Arabidopsis thaliana; Bo, Brassica oleracea; Nt, Nicotian
feedback inhibitors of ATP-PRT and have been used to

screen for feedback-resistant mutants in bacteria and yeast,

respectively [35,36]. Most of the mutations conferring feed-

back resistance were later mapped to the genes encoding

ATP-PRT. However, sequence information has so far only

been published for mutations in the HisG gene of S. typhimu-

rium [37]. Resistance of the encoded S. typhimurium ATP-

PRT enzyme to the histidine analogue thiazolealanine was

conferred by small deletions of between one and two amino

acids including the residue Q207. Mutants possessing feed-

back-resistant forms of ATP-PRT were found to secrete histi-

dine, suggesting that they overproduced this amino acid

[34,38]. Thus the reaction catalysed by ATP-PRT appears to

be rate-limiting for histidine biosynthesis in bacteria and

yeast. In analogy, it can be hypothesised that the expression

of a feedback-resistant microbial ATP-PRT in plants may re-

sult in an increased rate of histidine biosynthesis and in a lar-

ger pool of free histidine. A larger pool of endogenous free

histidine may in turn increase Ni tolerance in plants.
NCBI S. cerevisiae E. coli

RT11 AB025251 HIS1 HisG
RT2 AB025250 
2 AF003347  

 AB006082 HIS4 HisE

AB006082 HIS4 HisI

I
e4 AB006139 HIS6 HisA

AB006210 HisH

AB006210 HIS7 HisF

6  U02689 HIS3 HisB
 

2  AF023140 

 Y09204 HIS5 HisC

HIS2 HisB

 M60466 HIS4 HisD
2  AF023141 

HIS4 HisD
 AF023141

O23346 

M60466

HIS7

. Each reaction (EC number) is listed on the left. The enzymes catalysing
or trifunctional. For the plant enzymes, NCBI (National Center for

encoding them. Abbreviations are as follows: PRPP, phosphoribosyl
de; BBMII, N 0-[(5 0-phosphoribosyl)-formimino]-5-aminoimidazole-4-
-aminoimidazole-4- carboxamide ribonucleotide; 2-Ogl, 2-oxoglutarate;
a tabacum; Tg, Thlaspi goesingense.
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Here we report the generation of transgenic A. thaliana

plants engineered to express wild-type and feedback-resistant

variants of the S. typhimurium ATP-PRT, HisG. In order to

assess the potential of this metabolic engineering approach

for the phytoremediation of soils contaminated with Ni, free

histidine concentrations, Ni tolerance and Ni accumulation

were analysed in the transgenic lines.
2. Materials and methods

2.1. Plant cultivation
All plants were cultivated in a climate-controlled growth chamber at

a photon flux density of 120 lmol m�2 s�1 during the day, a 14-h pho-
toperiod, day and night temperatures of 20 and 16 �C, respectively,
and 75% constant relative humidity.

2.2. Cloning and generation of transgenic lines
Cloning and DNA manipulations were performed according to stan-

dard protocols [39]. All kits and enzymes were used according to the
manufacturers recommendations. A 991 bp long DNA fragment
including the coding sequence of S. typhimurium HisG (Genbank
Accession No. X13464) encoding an ATP-PRT enzyme was amplified
by PCR in a total reaction volume of 50 lL from pAQ1 DNA contain-
ing the wild-type StHisG sequence [37] (kindly provided by the labora-
tory of B. N. Ames, University of California, Berkeley, USA), using
0.5 lL of a proofreading DNA polymerase and 5 lL of the accompa-
nying 10· reaction buffer (Pfu Turbo, Stratagene, La Jolla, CA, USA),
0.4 lM of each primer 5 0-GCGCGCGATACAGACCGGTTCAG-
ACA-3 0 and 5 0-AACGCATTACGTAGGCCTGAT-30, and 0.2 lM
dNTPs using the following PCR programme: 94 �C (240 s), 36 cycles
of 94 �C (60 s), 57 �C (45 s), and 72 �C (180 s), and 72 �C (600 s).
The PCR reaction product was purified in a 0.8% (w/v) TAE-agarose
gel, the excised fragment purified using silica [40], and eluted in 20 lL
of ultrapure H2O. Ten microliters of the eluate was used for addition
of single 3 0 A overhangs and cloning into the vector pCRIITOPO
(TOPO TA Cloning kit, version E, Invitrogen, Carlsbad, CA, USA).
The DQ207-E208 deletion was introduced by site-directed mutagenesis
using the primer 5 0-GGCACAGAGCAAGCTGATCGATAAAT-
TGC-3 0, which contains a deletion of six nucleotides corresponding
to nucleotides 619–624 of the HisG coding sequence, and 5 0-
CTCGGTACCAAGTTTGATGCATAGC-3 0, which removes a un-
ique HindIII site in the pCRIITOPO backbone [39]. StHisG and
StHisG DQ207-E208 were subcloned into the binary vector pMON530
[41] using EcoRI. Agrobacterium tumefaciens strain GV3101(pMP90)
was used for transformation of Arabidopsis thaliana (L.) Heynhold
(accession Columbia, Col) using the floral dip method [42]. In the T2
generation, lines were selected that exhibited a 25:75 segregation ratio
of kanamycin-sensitive to tolerant plants on agar plates containing
0.5· Murashige & Skoog salts (Duchefa, Haarlem, The Netherlands),
0.5% (w/v) sucrose and 50 mg L�1 kanamycin. The selected lines were
propagated into the T3 generation, and homozygous seed batches were
used in all experiments.

2.3. Nickel tolerance experiments
Seeds of eight independent lines per construct were sterilised, and

ten seeds were plated in a horizontal line on a plastic petri plate
containing 20 mL of a sterile minimal medium composed of 2.5
mM Ca(NO3)2, 1 mM H3PO4, 5 mM KNO3, 2 mM MgSO4, 0.2
lM CuSO4, 0.1 mM Fe(III)NaEDTA, 7 lM H3BO3, 1.4 lM
MnSO4, 0.01 lM MoO3, 3.8 lM NaCl, 1 lM ZnSO4, 5 mM
MES, 0.5% (w/v) sucrose (pH 5.7), 0.8% (w/v) agarose (Seakem
LE, BMA, Rockland, ME, USA), with or without 120 lM added
NiSO4. Two replicate plates were set up per line and Ni concentra-
tion in each experiment. Plates were kept at 4 �C for 5 d, then incu-
bated in a vertical position in a climate-controlled growth chamber
for 12 d. Final root length was measured for each seedling. Where
indicated, seedlings were taken from plates and pooled in groups of
five. After drying at 60 �C for 3 d, dry biomass was determined. Se-
ven independent replicate experiments were performed for root
length and four for biomass determination.
2.4. Determination of Ni accumulation and histidine concentrations
Plants were grown in a hydroponic system as described earlier [20].

Hydroponic solutions were exchanged weekly. After a four-week pre-
culture of 60 seedlings in a 2-L culture vessel, two plants were trans-
ferred into one vessel filled with 500 mL of the hydroponic solution
and cultivated for 1 w. Subsequently, the hydroponic medium of three
replicate vessels per line was supplemented with 3 lM NiSO4 for two
weeks before harvest. At harvest, one leaf was taken from each plant
and frozen immediately in liquid nitrogen for the determination of his-
tidine concentrations. The remainder of the rosette leaves was har-
vested and rinsed in ultrapure water. To remove apoplastically
bound Ni2+, roots were desorbed in 5 mM Ca(NO3)2 for 20 min, with
one exchange of solutions, and then rinsed in ultrapure water. Roots
and shoots were dried at 60 �C for 3 d. Plant tissues were ashed [11]
and analysed by inductively-coupled atomic emission spectrometry
as described previously [20]. Extraction of frozen leaves, derivatisation
and amino acid analysis were performed as described [11].

2.5. Protein extraction and immunoblot analyses
Total soluble proteins extracted from leaves of soil-grown four-

week-old plants were separated in a denaturing SDS gel and blotted
using a semidry procedure onto a polyvinylidine fluoride membrane
(Millipore Corp., Bedford, MA, USA) according to standard protocols
[43,44]. Membranes were incubated in affinity-purified polyclonal
anti-HisG antibody (Pineda Antikörper-Service, Berlin, Germany),
followed by biotinylated anti-rabbit-IgG and streptavidin alkaline
phosphatase conjugate (Amersham Pharmacia Biotech, Little
Chalfont, UK), with colour detection using nitroblue tetrazolium chlo-
ride/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP; Roche
Molecular Biochemicals, Mannheim, Germany). Anti-HisG antibodies
were raised against a synthetic peptide designed according to the ATP-
PRT of S. typhimurium (StHisG) protein sequence (E80LLNRRAQ-
GEDPRYL94), which was coupled to keyhole limpet haemocyanin
prior to immunization of two rabbits. Antisera were affinity purified
against the peptide before use.

2.6. Transcript analysis by RT-PCR
Total RNA was isolated from leaves of A. thaliana grown on soil

using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Two
lg of total RNA were treated with 0.2 U of RNase-free DNase (Pro-
mega, Madison, WI, USA) with 1.5 ll 5· SuperScriptII-RT-Buffer in
a total volume of 11 ll for 10 min at 37 �C to remove residual genomic
DNA (gDNA), followed by 10 min at 70 �C to inactivate the DNase.
The DNase treated sample was directly used for first strand cDNA syn-
thesis using the SuperScriptTMII RNase H� Reverse Transcriptase kit
(Invitrogen) in a total volume of 20 lL. Aliquots of the cDNA or of
gDNA, isolated according to [45], were amplified using either StHisG
-specific primers 5 0-TATCGGCGAAAACGTGCT-3 0 and 5 0-TAAC-
CTCTTCCAGGCGTTCA-3 0, which are designed to generate a prod-
uct of 512 bp from StHisG and 506 bp from StHisGDQ207-E208, or
primers specific for the A. thaliana actin 8 cDNA (ACT8; At1g49240;
NCBI: AY087348), namely 5 0-AGCTGCAGGGATCCACGAGA-30

and 5 0-TGCCTGGACCTGCTTCATCA-3 0, designed to generate a
product of 296 bp from cDNA and a product of 403 bp from gDNA.
Thirty cycles of amplification were performed at 94 �C (60 s), 64 �C
(30 s), and 72 �C (30 s) using a Taq polymerase kit (Invitrogen). The
reaction products were resolved electrophoretically using ethidium bro-
mide-containing agarose gels, and visualised in ultraviolet light. The
experiment was repeated 3 times with similar results.

2.7. Statistical data analysis
Nickel tolerance datasets were analysed by two-way analysis of var-

iance (ANOVA), using genotype and Ni treatment as factors. Nickel
accumulation datasets were analysed by two-way ANOVA, using geno-
type and tissue type as factors. Tolerance and Ni concentration data
were log-transformed for statistical analysis. Where the null hypothesis
was rejected, Tukey tests were performed for the comparison of the
means obtained for theHisG transgenic lines with those of the wild type
and the empty vector transformant line, respectively. Free histidine
concentration datasets were analysed by one-way ANOVA, followed
by the Newman–Keuls test. Results from the ANOVAs and a posteriori
tests are given in the figure legends. All analyses were performed using
the programme Microsoft Office Excel 2003 (Microsoft Corp.,
Redmond, WA, USA), according to standard procedures [46].



Fig. 2. Nickel tolerance measured as root elongation of wild type Arabidopsis thaliana (Col), eight Arabidopsis lines transformed with a
p35S::StHisGDQ207-E208 construct (d-1 to d-8) and eight lines transformed with a p35S::StHisG construct (1–8). Seeds were germinated on vertically
oriented agarose plates containing minimal medium (controls) or the same medium supplemented with 120 lM NiSO4. Values are mean root
length ± S.D. of 20 twelve-day-old seedlings (ANOVA: P < 0.001 for factors genotype, Ni concentration, and their interaction, respectively).
Significant differences of means, when compared to wild type plants (P < 0.05, according to a Tukey test), were only detected at 120 lM Ni, for lines
d-1, d-2, d-3, d-5, d-6, d-8, 1, 2, 3, 4, 5, 6, 7, and 8.

Fig. 3. Expression analysis of microbial ATP-PRT in leaves of
transgenic A. thaliana lines. Results are shown for two lines
transformed with a p35S::StHisGDQ207-E208 construct (d-1, d-2) and
two lines transformed with a p35S::StHisG construct (1, 2). (A)
Analysis of transcript levels by RT-PCR with StHisG -specific primers
(top panel), and primers specific for the actin 8 gene used as a
constitutive control (lower panel). Lanes are as follows: Col, A.
thaliana (Col) wild type plants; eV, empty vector transformants; eV-
RT, empty vector transformants, control cDNA synthesis performed
without added reverse transcriptase; + ctrl, for HisGPCR product
amplified from pCRIITOPO-HisG plasmid DNA, for actin PCR
product amplified from A. thaliana gDNA. (B,C) Analysis of protein
levels by Western Blot for (B) lines d-1 and d-2 and (C) lines 1 and 2.
Total protein extracts from wild-type (Col) plants, from empty vector
transformants (eV), from E. coli mutant NK5526 lacking a functional
HisG gene (hisG�, negative control), and from E. coli strain DH5a
(HisG+, positive control) were included as controls.
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3. Results and discussion

A. thaliana (Col) were transformed with expression con-

structs, which comprised either the StHisG coding sequence

or a mutant StHisGDQ207-E208 sequence, known to encode a

thiazolealanine-resistant ATP-PRT enzyme [37], downstream

of a CaMV 35S promoter. A number of transformant lines

were screened for Ni tolerance using a root growth assay on

agarose plates containing 120 lM Ni (Fig. 2). All seedlings

exhibited equivalent root growth under control (0 Ni) condi-

tions (Fig. 2). Compared to wild-type seedlings, Ni tolerance

was enhanced significantly in seedlings of most HisG and

HisGD Q207-E208 lines (Fig. 2). Overall, there was no apparent

difference in Ni tolerance between lines transformed with the

different constructs (Fig. 2).

Lines d-1 and d-2 (HisGDQ207-E208) and lines 1 and 2 (HisG)

were chosen for a detailed characterisation. Transcript analysis

by reverse transcriptase-polymerase chain reaction (RT-PCR)

suggested that in all four lines stable transcripts were generated

from the introduced transgenes (Fig. 3A). In protein extracts

an StHisG-specific polyclonal antibody detected a single band

of the predicted size of St HisG (33 kDa) in the transgenic

lines, but not in empty vector or wild type controls (Fig. 3B

and C). This suggested that the introduced microbial sequences

were transcribed and translated into proteins of the correct size

in the four A. thaliana transformant lines.

Free histidine concentrations analysed by HPLC were

approximately 2-fold higher in the transgenic lines d-1, d-2

and 1 than in wild type plants or empty vector transformants

(Fig. 4). In line 2 leaf free histidine concentrations appeared to

be slightly higher than in the controls, but the difference was

not statistically significant (Fig. 4). For comparison, in the

Ni tolerant Ni hyperaccumulator A. lesbiacum, root free histi-

dine concentrations were constitutively about 4.4-fold higher

than in the Ni sensitive plant B. juncea. Taken together, the

data suggested that the overexpression of the microbial ATP-

PRT proteins resulted in increased steady-state free histidine

concentrations in A. thaliana. Since the Ni hyperaccumulator

A. lesbiacum is known to contain high concentrations of free

histidine constitutively [11], an alternative approach for the

engineering of an increased pool of endogenous free histidine

might be the expression in A. thaliana of an ATP-PRT from

a Ni hyperaccumulator plant [32].
A detailed analysis of metal tolerance showed that upon

exposure to 120 lM Ni, biomass production in the four lines

expressing S. typhimurium ATP-PRT was between 14- and

40-fold higher than in wild-type plants and empty-vector
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Fig. 4. Total free histidine concentrations in leaves of transgenic A.
thaliana lines expressing microbial ATP-PRT. Histidine concentrations
were analysed in extracts from rosette leaves of seven-week-old
hydroponically grown plants of genotypes as described in Fig. 3.
Values are means ± S.D. of between 4 and 6 independent replicate
samples (ANOVA: P < 0.01). Significant differences of means, when
compared to the wild type or the empty vector line (P < 0.05,
according to a Newman–Keuls test), were detected for lines d-1, d-2,
and 1.

Fig. 5. Detailed characterization of Ni tolerance in selected lines of A.
thaliana expressing microbial ATP-PRT. Results are from genotypes
as described in Fig. 3. (A) Biomass of 12-day-old seedlings after
growth on minimal medium without (control) or with 120 lM Ni.
Values are mean seedling dry biomass ± S.D. of 4 replicate pools, each
containing five seedlings (ANOVA: P < 0.001 for factors genotype, Ni
concentration, and their interaction, respectively). Significant differ-
ences of means, when compared to the wild type or the empty vector
line (P < 0.05, according to a Tukey test), were only detected at 120
lM Ni, for lines d-1, d-2, 1 and 2. (B) Photograph showing plants of
the empty vector transformant line on plates containing 120 lM Ni.
(C) Photograph showing plants of line d-1 on plates containing 120
lM Ni.
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transformants (Fig. 5A). In agreement with this, growth of

empty vector transformant seedlings was arrested under these

conditions, whereas seedlings expressing StHisG or

StHisGDQ207-E208 (shown as an example) continued to grow

and develop at 120 lM Ni (Fig. 5 B and C). Taken together,

the results presented in Figs. 2–5 confirmed our model of an

involvement of the endogenous free histidine pool in Ni detox-

ification, presumably by chelation of Ni2+ cations [10].

Lines expressing the feedback-resistant StHisGDQ207-E208

were expected to contain a larger free histidine pool and thus

to exhibit a higher degree of Ni tolerance than lines expressing

the wild type StHisG, but the observed differences were only

minor (see Figs. 2, 4, and 5). In addition to ATP-PRT activi-

ties, there could be other factors limiting the extent of accumu-

lation of free histidine in Arabidopsis. Tobacco plants,

transformed with a construct encoding a plastid-targeted feed-

back-insensitive S. cerevisiae His1 protein, were very difficult

to regenerate, developed necrosis and died (Danuta Maria

Antosiewicz, personal communication). Arabidopsis lines

transformed with the same construct were less Ni tolerant than

StHisGDQ207-E208 line d-1 (Ute Krämer, unpublished observa-

tions). The histidine concentrations resulting in an inhibition

of ATP-PRT enzyme activity by 50% (IC50) were reported to

be about 10 lM in crude protein extracts from pea and oat,

about 60 lM in crude extracts from S. typhimurium and 75

lM for the purified StHisG protein [33,47]. It is thus possible

that in the metabolic context of a plant and its endogenous

ATP-PRT, an expressed wild-type StHisG is partially feed-

back-insensitive.

In several Ni hyperaccumulators of the genus Alyssum, a

tight correlation has been observed between Ni and histidine

concentrations in xylem sap collected as root-pressure exu-

date from de-topped root systems of Ni-exposed plants

[10]. Transport of Ni into the xylem exudates collected from

de-topped root systems of two non-accumulator Brassicaceae

species was enhanced when Ni was supplied in combination

with exogenous free histidine, at high concentrations of 300
lM and for short periods of time of several hours [10,11]. In

order to test whether the increased pool of free histidine in

the transgenic A. thaliana lines resulted in increased Ni accu-

mulation in the leaves, five-week-old plants were exposed to

a Ni concentration of 3 lM Ni in hydroponic culture for 2

weeks. Whereas agarose-based media contain rather high

concentrations of the nutrients Fe and Ca, which are known

to alleviate Ni toxicity, hydroponic solutions approximate

the composition of the soil solution and contain consider-

ably lower nutrient concentrations. A concentration of 3

lM Ni was used in the hydroponic experiments, because it

was the maximum non-inhibitory concentration for wild-

type A. thaliana plants (M. Becher, A.N. Chardonnens and



0

50

100

150

200

250

300

350

400

450

Col eV d-1 d-2 21

Line

N
i c

on
ce

nt
ra

tio
n 

(m
g 

kg
-1

 D
W

)
leaves roots

Fig. 6. Nickel concentrations in leaves and roots of transgenic
A. thaliana lines expressing microbial ATP-PRT. Results are from
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supplemented with 3 lM Ni. Values are means ± S.D. of three
independent replicates, each consisting of pooled material from two
plants grown in one culture vessel (ANOVA: P < 0.05 for the factor
genotype, P < 0.001 for the factor tissue type, P = 0.311 for interac-
tion). Significant differences of means, when compared to the wild type
or the empty vector line (P < 0.05, according to a Tukey test), were not
found in either roots or shoots for any of the transgenic lines.
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U. Krämer, unpublished data), and thus allowed the analysis

of Ni accumulation in wild type and transgenic plants in

comparable physiological and developmental states. After 2

weeks of exposure to Ni, neither root nor leaf Ni concentra-

tions in the transgenic lines differed significantly from those

found in empty vector or wild type control plants (Fig. 6).

Similar results were obtained when plants were grown on

a soil contaminated with Ni (data not shown). Increasing

the endogenous free histidine pool is thus not sufficient to

enhance steady-state Ni accumulation in shoots of A. thali-

ana after two weeks of Ni exposure, suggesting that further

modifications are needed in a transgenic plant used for phy-

toextraction of metals from contaminated soils [2].

The results obtained in our long-term experiments employ-

ing intact plants (Fig. 6), are somewhat different from the

implications of earlier studies [10,11]. Earlier, the choice of

high Ni concentrations may have permitted low-affinity trans-

port processes. It is possible that these transport routes are not

available in the transgenic Arabidopsis plants under the exper-

imental conditions used (Fig. 6), or that local concentrations

of Ni or Ni and histidine are not of sufficient magnitude to al-

low an increased rate of root-to-shoot translocation of Ni. It

may be possible to increase the rate of Ni influx into the root

symplasm at low external Ni concentrations by co-expressing a

high-affinity cellular Ni uptake system, such as Schizosaccharo-

myces pombe Nic1p [48]. The long-term nature and the use of

intact plants in the Ni accumulation experiment (Fig. 6) may

add additional levels of control over the translocation of Ni

into the xylem, which were not present in the earlier experi-

ments [10,11]. For example, a shoot-derived signal is involved

in the control of root iron-deficiency responses in pea plants

[49].

In summary, we report here that expression in A. thaliana of

a microbial enzyme catalysing the first, rate-limiting step in
histidine biosynthesis increased the endogenous pool of the

low-molecular-weight chelator free histidine. This resulted in

enhanced tolerance of the transgenic plants to Ni2+ ions, par-

tially recapitulating naturally selected Ni hypertolerance of A.

lesbiacum and other Ni hyperaccumulators [10].

Acknowledgements: We thank Astrid Schröder for element analyses,
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