View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 170, 449-456 (1992)

Attraction Principle for Nonlinear
Integral Operators of the Volterra Type

RYSZARD SZWARC

Department of Mathematics, University of Wisconsin-Madison,
Madison, Wisconsin 53706, and Institute of Mathematics,
Wroclaw University, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

Submitted by C. Foias
Received December 17, 1990

1. INTRODUCTION

We are studying the integral equation of the form
u(x) = alx, y) $(u(y) d. (1)

All functions appearing here are nonnegative and defined for 0< y<x.
Equation (1) has the trivial solution u(x)=0. It can have also other solu-
tions. We prove, using the method due to Okrasinski, that under certain
conditions upon a(x, y) and ¢(x) there can be at most one solution which
does not vanish identically in a neighborhood of 0. Our main result is the
attraction property of this nonnegative solution, provided that it exists.
Namely we show that the iterations 7"« of the operator

Tu(x)= | " a(x, y) u(») dy

tend to the unique nonnegative solution for every function u, strictly
positive in a neighborhood of 0.

A similar equation was studied in [4, 1, 2], under the conditions that
a(x, y) is invariant and ¢(x) is concave.

2. THE RESULTS

We will deal with the integral operators T of the form

Tu(x) = [ a(x, y) $(u()) .
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The functions # and ¢ are assumed to be nonnegative and strictly
increasing on the half-axis [0, +o0) and #(0)=0, #(0) =0. Let the kernel
a(x, y), x> y, be positive and satisfy the conditions

da
—=0
Ox
(2)
da Jda
—+—2=0.
ax oy

We also assume that a(x, x)=0. If not specified otherwise all the functions
we introduce are smooth on the open half-axis (0, + o0 ) and continuous on
[0, + o). The kernel a(x, y) is to be smooth for x > y and continuous for
x 2 y. The task we are going to address is the study of the equation

Tu(x)=u(x),

where u is nonnegative, strictly increasing, and u(0)=0. Obviously the
conditions (1) imply that if u(x) is strictly positive for x>0 and satisfies
(2), then u is strictly increasing. Observe that the conditions (1) are
equivalent to

a(x, y)=al(s, 1)
for 0<s<x,0<i<y,p<x,andx—y>s5—1. (3)
LEMMA 1. Let u and h be increasing functions on [0, + ) such that

u(0)=h(0)=0. Assume also that h(x) is a continuous and piecewise smooth
Sfunction on [0, + o0). Put #(x) = u(h(x)).

(1) If Tu(x) = u(x) and h'(x) <1, then Tii(x) = ii(x).
(ii)) If Tu(x)<u(x) and h'(x) = 1, then Tii(x) < #(x).

Proof. We will only prove the first part of the lemma. The proof of the
second part is similar. Observe that if 0 < y < x then

a(h(x), h(y)) < al(x, y). 4)

Indeed, since #'<1 and A(0)=0 we have h(x)<x, A(y)<y, and h(x)—
h(y)<x— yfor 0< y < x. Applying (3) we get the inequality (4). Therefore
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Ti(x) = | alo, y)u(h(y))) dy

> ["a(x, ) ulh(y)) W (») dy

= [ atx, h(6)) Bluts)) ds

h(x)
>[ alh(x), 5) gluts)) ds
0
= Tu(h(x)) = u(h(x)) = ii(x).
By applying Lemma 1 with

0 if 0<x<c
xX—c if c<x

hx)={
we get the following.

COROLLARY 1. Assume that u satisfies Tu(x)>=u(x). For a given ¢>0
let

_fo if 0<x<c
" u(x—c) if c<x

Then Tu (x)>u.(x).

ExaMpPLE. Let f(x) be an increasing function such that f(0)=0. Then
the invariant kernel

a(x, y)=f(x—y)
satisfies the conditions (1). Observe that if Tu = u then Tu_ = u, in this case.

Before stating the main result about the attraction principle for the
equation

Tu(x) = u(x) (5)
we need some auxiliary lemmas.
LEMMA 2. Assume that the function u(x) satisfies Tu(x) > u(x) and let

_ fu(x) if 0<x<c
U(x)_{u(c) if c<x
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Then there exists ¢ >0 such that
lim inf T"v(x) = u(x),
n— oC

forc<x<c+e.

Proof. Assume that ¢ <1. Let

c,= sup a(x, y),

y<x<c+l1

= sup  ¢'(x),

u(c)<x<u(c+1)

c,= sup u'(x).

c€x<e+1
Then for c<x<c+1 we have

u(x) — To(x) < Tu(x) — Tv(x)

- fox a(x, y)[#(u(»)) — #(o(»))] dy

=" alx. Y1)~ ()] dy
< catyLu(x) —u(e)1(x —c)
e e e, (x—c)

Similarly we get

u(x)— T"v(x) < T"u(x) — T"v(x)
=" alx, »)u(y)) ~ HT~'0(y))] dy

Sepegx—c)  sup  [H(u(y))— (T 'o(y)].

c<y<c+1

Thus by induction we can prove that
u(x)— T (x) S c le c) (x—c)"*
This implies

lim inf T"v(x) = u(x),

if x—c<e ey and x—c< 1.
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LEMMA 3. Assume that Tu(x)=u(x) and let

u(x) if 0<x<c
u(c) if c<x

v(x) ={

Then there is € >0 such that

lim T"o(x)=u(x),

n— oo

Jor c<x<c+e.

Proof. From the preceding lemma we have that liminf,_,  T"v(x) >
u(x), for c < x <c+s, for some ¢>0. On the other hand

lim sup T"v(x) < u(x).

n-~=> o

This is because u(x) = v(x) and T is monotonic.

The idea of the proof of the next proposition is due to Okrasinski.

ProOPOSITION 1.  Equation (2) can have at most one positive solution.

Proof. Suppose u(x) and v(x) are two different positive solutions of (2).
Without loss of generality we may assume that u £ v. Then there is d>0
such that u(x—d)>uv(x) for some x>0. If not, then we would have
u(x —d)y<v(x) for every x and d, which would imply u<v. Thus let
u(x —d)>v(x). This can be written as u,(x)>uv(x). Let ¢ be the lower
bound of the numbers x for which u,(x)>v(x). Thus u,(x)<v(x) for
0 < x < c. Define the function #(x) as

ﬁ(x)—{ud(x) if 0<x<c
T ugle)  if e<x

By Corollary 1 we have Tu,(x) = u,(x). Moreover #(x) < v(x). Therefore

lim sup T"i(x) < v(x).

n-» o0

On the other hand by Lemma 2

lim inf 773(x) = u,(x),

n— oo

for ¢ < x < c+¢. This implies that u,(x) <v(x) for ¢ <x <c¢+¢& The latter
contradicts the choice of c.

We are now ready to prove the attraction principle for Equation (2).

409/170/2-11
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THEOREM 1. Let u(x) be a positive solution of (2). Assume v(x), x>0, is
a positive function satisfying v(0)=0. Then

lim 7"v(x)=u(x),
n— o
for x=0. The convergence is uniform on every bounded interval.

Proof. Suppose first that
To(x) = v(x)

and 0 < v(x) <u(x). Then the sequence of functions {7"v(x)} is increasing
and bounded by u(x). Thus the limit

f(x)= lim T"v(x)

n-—- o

defines the solution #(x) of (2). By Proposition 1 we have #i(x) = u(x). This
proves the theorem in the case when Tv > v.
A similar reasoning shows that if

To(x) <v(x)
and 0 < u(x)<v(x), then

lim 7T"v(x)=u(x),

n— oc

for x =0.
We will complete the proof by showing that there exist increasing
positive functions w, and w, such that

wix)<o(x)Swy(x),  wilx)<ul(x) <wy(x),
and
Twi(x) = w(x), Twy(x) < wy(x).

We can assume that v(x) is a strictly increasing function. If not, then
Tv(x) is such. Obviously the solution u(x) is strictly increasing. Introduce
the increasing function w,(x) by

wilx)=v" (x)+u"(x).
Then

0<w(x)<o(x) and wi(x) < u(x).
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Since the functions ¥~ !, v=!, w; ! are increasing

(wity =@ ). (6)
Write w, in the form w,(x) = u(h,(x)). Then h,(x)=u""(w,(x)) and by (6),
Ri(x)= (1) (wy(x)) wix) < L.
By Lemma 1 we then have
Tw,(x) = w,(x).

Define the function w,(x) as

wio =] min{ !y () (071 (1) @

Then
Wi <[ @7 () dy=v71(),

W< Wy ) dy=u~'(x).

Thus w,(x) > max{u(x), v(x)}. Moreover,
w1y <(@u™'y. (7)

Thus w, can be written as w,(x)=u(h,(x)), where h,(x)=u""'(w,(x)). By
(7) we have

(ha) (x) = (u™") (walx)) wix) = 1.
Again by Lemma 1,
Tw,y(x) = wy(x).
‘Summarizing we proved that there are w, and w, such that
wi(x) S v(x) S wy(x),
nlirr!o T'w;(x) = u(x), i=1,2.
Thus

lim T"v(x)=u(x).

n—
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Furthermore, the sequences 7"w, and T"w, are increasing and decreasing,
respectively. Hence by Dini’s theorem both converge to u(x) uniformly on
bounded intervals. So does 7T',v as

T'wi(x) < T'v(x) < T"wy(x).
This completes the proof.

Remark. By Theorem 1 we can get an estimate for the nonzero solution
u(x), if it exists. Assume that the function v(x) satisfies

To(x) < v(x), for 0<x<ec

Then
u(x)<v(x) for 0<x<ec.

In particular we have the following.

COROLLARY 2. Let {v,(x)}X_, be a sequence of positive increasing
functions such that

Iim v,(x)=0, for x=0,

n—

and
Tv,(x) < v,(x), for xz=0.

Then the equation Tu(x)=u(x) has no positive solutions.

In a forthcoming paper we will use Corollary 2 to prove that if ¢(x) =
\/; and a(x, y)= f(x— y) is an invariant kernel given by the function

fxy=e ",

then Eq. (2) admits no nonzero solutions.
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