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1. INTRODUCTION 

We are studying the integral equation of the form 

4x) = lx 4x, Y) 44~)) 4. (1) 
0 

All functions appearing here are nonnegative and defined for 0 6 y < x. 
Equation (1) has the trivial solution U(X) z 0. It can have also other solu- 
tions. We prove, using the method due to Okrasinski, that under certain 
conditions upon a(x, y) and d(x) there can be at most one solution which 
does not vanish identically in a neighborhood of 0. Our main result is the 
attraction property of this nonnegative solution, provided that it exists. 
Namely we show that the iterations T"u of the operator 

Wx) = j; 4x, Y) 4(4~)) dy 

tend to the unique nonnegative solution for every function U, strictly 
positive in a neighborhood of 0. 

A similar equation was studied in [4, 1,2], under the conditions that 
a(x, y) is invariant and $(x) is concave. 

2. THE RESULTS 

We will deal with the integral operators T of the form 

Wx) = Jx a(~, Y) #(U(Y)) dy. 
0 
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The functions u and 4 are assumed to be nonnegative and strictly 
increasing on the half-axis [0, + co) and u(0) = 0, d(O) = 0. Let the kernel 
a(x, y), x > y, be positive and satisfy the conditions 

@>O 
ax’ 

“+@>O. 
ax ay 

(2) 

We also assume that a(x, x) = 0. If not specified otherwise all the functions 
we introduce are smooth on the open half-axis (0, + co) and continuous on 
[0, + co). The kernel a(x, y) is to be smooth for x > y and continuous for 
x 2 y. The task we are going to address is the study of the equation 

i%(x) = u(x), 

where u is nonnegative, strictly increasing, and u(O) = 0. Obviously the 
conditions (1) imply that if u(x) is strictly positive for x > 0 and satisfies 
(2), then u is strictly increasing. Observe that the conditions (1) are 
equivalent to 

for O<s<x,O<t<y,y<x,andx-y>s-t. (3) 

LEMMA 1. Let u and h be increasing functions on [0, + a) such that 
u(O) = h(0) = 0. Assume also that h(x) is a continuous and piecewise smooth 
function on [0, + m). Put ii(x) = u(h(x)). 

(i) Zf l%(x) 2 u(x) and h’(x) < 1, then E(x) 2 ii(x). 

(ii) If G(x) < u(x) and h’(x) 2 1, then E(x) 6 ii(x). 

Proof: We will only prove the first part of the lemma. The proof of the 
second part is similar. Observe that if 0 < y < x then 

4h(x), h(y)) G 4x, Y). (4) 

Indeed, since h’< 1 and h(0) =0 we have h(x) <x, h(y) f y, and h(x) - 
h(y) < x - y for 0 < y < x. Applying (3) we get the inequality (4). Therefore 
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a ,x 4x9 Y) d(uv4.Y))) h’(Y) 4 I 
s h(x) = 4x, h-‘(s)) ~44s)) ds o 
I h(x) B 44x), 3) 4(4s)) ds 

0 

= Tu(h(x)) 2 #(h(X)) = ii(x). 

By applying Lemma 1 with 

if O<x<c 
if c<x 

we get the following. 

COROLLARY 1. Assume that u satisfies Tu(x)> u(x). For a given c> 0 
let 

u,(x) = I 0 if o<x<c 
u(x - c) ly- c<x. 

Then Tu,(x) > u,(x). 

EXAMPLE. Let f(x) be an increasing function such that f(0) = 0. Then 
the invariant kernel 

4x7 Y) =f(x - Y) 

satisfies the conditions (1). Observe that if Tu = u then Tu, = u, in this case. 

Before stating the main result about the attraction principle for the 
equation 

Tu(x) = u(x) (5) 

we need some auxiliary lemmas. 

LEMMA 2. Assume that the function u(x) satisfies Tu(x) 2 u(x) and let 

v(x) = 1 
u(x) lj- o,<x<c 

u(c) ly- c < x. 
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Then there exists E > 0 such that 

lim inf T%(x) 2 U(X), 
n+cc 

for c<x<c+&. 

ProojY Assume that E < 1. Let 

c, = sup 4x, Y), 
yCX<C+l 

cg = sup 4’(x), 
u(c)=sx~u(c+l) 

c, = sup u’(x). 
CbX<C+l 

Then for c<x<c+ 1 we have 

u(x) - TV(X) < Tu(x) - To(x) 

= I x 46 Y)C$(~.Y)) - h4c))lb c 
f c,c&(x) - u(c)l(x - c) 

< C,C&(X - c)‘. 

Similarly we get 

u(x) - T’%(x) < T”u(x) - T%(x) 

= 5 x4x9 YKcWY)) - ~(T”-‘u(Y))~ dy c 

< C&(X - c) sup C~(U(Y)) - 4(T”- ‘u(~))l. 
r<y<c+1 

Thus by induction we can prove that 

u(x) - T%(x) G c.(c,cJ (x - c)~+ ‘. 

This implies 

lim inf T’%(x) > u(x), 
n’cc 

if x-c<c;‘c;’ and x-c< 1. 
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LEMMA 3. Assume that G(x) = u(x) and let 

v(x) = r 4x1 if o<x<c u(c) lj- c < x. 

Then there is E > 0 such that 

lim T%(x) = u(x), 
n-02 

for C<X<C+E. 

Proof: From the preceding lemma we have that lim inf, _ m T%(x) > 
u(x), for c <x < c + E, for some E > 0. On the other hand 

lim sup T’%(x) G u(x). 
n-02 

This is because u(x) 2 v(x) and T is monotonic. 

The idea of the proof of the next proposition is due to Okrasinski. 

PROPOSITION 1. Equation (2) can have at most one positive solution. 

Proof: Suppose u(x) and v(x) are two different positive solutions of (2). 
Without loss of generality we may assume that u & v. Then there is d > 0 
such that u(x- d) > v(x) for some x > 0. If not, then we would have 
U(X-d) < V(X) for every x and d, which would imply U< v. Thus let 
u(x- d) > v(x). This can be written as uJx)> v(x). Let c be the lower 
bound of the numbers x for which z+(x) > v(x). Thus Q(X)< v(x) for 
0 <x < c. Define the function ii(x) as 

ii(x) = 1 
Q(X) if O<x<c 

&i(c) if c <x. 

By Corollary 1 we have Tud(x) 2 Us. Moreover ii(x) < u(x). Therefore 

lim sup T’S(x) < v(x). 
n-cc 

On the other hand by Lemma 2 

lim inf T”ii(x) 2 u,(x), 
n-m 

for c < x < c + E. This implies that Q(X) < v(x) for c <x < c + E. The latter 
contradicts the choice of c. 

We are now ready to prove the attraction principle for Equation (2). 

409/170/2-l 1 
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THEOREM 1. Let u(x) be a positive solution of (2). Assume v(x), x > 0, is 
a positive function satisfying u(0) = 0. Then 

lim T’%(x) = u(x), 
n-co 

for x > 0. The convergence is uniform on every bounded interval. 

ProoJ: Suppose first that 

TV(X) 2 v(x) 

and 0 < U(X) < u(x). Then the sequence of functions (T%(x)} is increasing 
and bounded by u(x). Thus the limit 

ii(x)= lim T%(x) 
“--r’X 

defines the solution ii(x) of (2). By Proposition 1 we have ii(x) = u(x). This 
proves the theorem in the case when TV > v. 

A similar reasoning shows that if 

TV(X) < u(x) 

and 0 < U(X) < v(x), then 

lim T%(x) = u(x), 
“--t’X 

for x > 0. 
We will complete the proof by showing that there exist increasing 

positive functions wi and w1 such that 

WI(X) G 4x1 G WAX), WI(X) G u(x) G WAX), 

and 

Tw,(x) 2 WI(X), Tw#) < w*(x). 

We can assume that v(x) is a strictly increasing function, If not, then 
TV(X) is such. Obviously the solution u(x) is strictly increasing. Introduce 
the increasing function wi(x) by 

Then 

w;‘(x) = v-‘(x) + u-‘(x). 

0 < WI(X) < u(x) and WI(X) < u(x). 
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Since the functions u - ‘, u- ‘, w ; ’ are increasing 

(w,‘)‘>/ (u-l)‘. (6) 

Write w1 in the form wI(x) = u(h,(x)). Then h,(x) = uP1(wI(x)) and by (6), 

h\(x) = (u-l)’ (W’(X)) w;(x) < 1. 

By Lemma 1 we then have 

Tw,(x) 2 W’(X). 

Define the function wZ(x) as 

w;‘(x) = JoX min{(u-‘1’ (~1, (up’)’ (y)) &. 

Then 

w2 -‘(X)QJ~(U-‘)~(y)dy=u-l(x), 

w2 -l(x) < J; (u-1)’ ty) ciy = u-l(x). 

Thus wZ(x) 3 max{u(x), u(x)}. Moreover, 

(wy’)‘< (u-1)‘. (7) 

Thus w2 can be written as wZ(x)=~(Izz(x)), where IQ(X)= U-‘(w2(x)). By 
(7) we have 

(h*)’ (x) = (u-l)’ (wz(x)) w;(x) 2 1. 

Again by Lemma 1, 

n+(x) 2 w*(x). 

Summarizing we proved that there are w1 and w2 such that 

WI(X) G 4x1 G wz(x), 

lim T”w,(x) = u(x), i= 1,2. 
“-*UZ 

Thus 

lim T%(x) = u(x). 
n-r* 
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Furthermore, the sequences T’w, and Tnwz are increasing and decreasing, 
respectively. Hence by Dini’s theorem both converge to U(X) uniformly on 
bounded intervals. So does T,,u as 

T”w,(x) < T’%(x) < T”w,(x). 

This completes the proof. 

Remark. By Theorem 1 we can get an estimate for the nonzero solution 
u(x), if it exists. Assume that the function u(x) satisfies 

To(x) <u(x), for O<x<c. 

Then 
u(x) < u(x) for O<x<c. 

In particular we have the following. 

COROLLARY 2. Let {u,Jx)}~= 1 be a sequence of positive increasing 
functions such that 

lim u,(x) = 0, for x 2 0, 
“-CC 

and 

TV,(X) 6 u,(x), for x30. 

Then the equation Tu(x) = u(x) has no positive solutions. 

In a forthcoming paper we will use Corollary 2 to prove that if d(x) = 
,,& and a(x, y)=f(x- ) y is an invariant kernel given by the function 

f(x) = eC@, 

then Eq. (2) admits no nonzero solutions. 
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