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1. INTRODUCTION 

Our recently published paper [l] contains a fundamental logical error 
which invalidates our assertions about the ease with which certain parametric 
representations of nonsteady one-dimensional flows could be constructed. 
Of course, this grievously restricts the prospects for application of such 
representations. 

In this note we shall (i) expurgate [I]; (ii) d escribe our error; (iii) correct 
it; and (iv) develop a family of correct examples of our parametric represen- 
tations. 

The following changes are required in [I]: 

Section 1: Delete the last three paragraphs. 

Section 4: Delete all material starting with the paragraph that contains 
Eq. (4.9) and continuing to the end of Case 1. 

Section 5: Delete the last paragraph. 

Sections 6-8: Proposals to apply the method suggested in Section 4 are 
absurd and should be deleted. 

The nature of our error can be summarized as follows. One-dimensional 
flows can be characterized by means of solutions of a family of Monge- 
Ampere equations that involve a single nonconstant coefficient, determined 
by the equation of state and by the form of the distribution of entropy among 
the various particle paths. By means of this coefficient we can subdivide 
the set of one-dimensional flows into mutually exclusive subsets. If we 
consider any two flows of the same subset we can identify the values of times, 
geometrical coordinates, and flow functions that correspond to identical 
values of the pressure, p, and of a Lagrangian variable, 4. The mapping of 
one ut-plane onto another, defined in this way, preserves area. A well-known 
representation of the general area-preserving map in terms of parameters, 01 
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and /3, involves an arbitrary function H(or, fl). In attempting to apply this 
result to the comparison of two flows in the same subset, we determined a 
necessary condition that relates H(ol, /I) to a function z(p, #) such that a! = zs 
and p = zQ . We assumed, erroneously, that H(ol, /3) remains arbitrary in our 
application. A necessary and su..cient condition, which will be developed in 
this note, restricts the permissible function H(a, /3) to be any solution of a 
certain quasi-linear, second-order, hyperbolic partial differential equation. 

It is not easy to guess solutions for the equation that defines H. Nevertheless, 
our representation retains a little value as a source of novelties, since for an 
important class of equations of state, which includes that of the perfect gases, 
we have been able to determine a family of separated-variable solutions of a 
suitably transformed version of the equation for H. 

2. THE FALLACY IN [l] 

We shall require the following extract from the valid and relevant parts 
of [I]. 

M. H. Martin [2] has developed the following formulation for the equations 
of all one-dimensional flows, except for an easily discussed special class. Let 
us define a Lagrangian variable, 4, by 

d# = p dx - pu dt. (2-l) 

Then the specific entropy must be of the form 

s = s($), (2.2) 

and by the equation of state we can express the density in the form 

P = P@, 44)). (2.3) 

Assume that p and 4 are functionally independent, and let Qp, #) be any 
solution of 

5m&b$ - t;, = - A2(P, *), (2.4) 

where 

A2(P, 9) = - (j, # 0. (2.5) 

Then the description of a one-dimensional flow is completed by 

t = 5, I u = E, , (2.6) 

d-v = 5J, 4, + ($) 4, (2.7) 

where t denotes time, u particle velocity and x an Eulerian coordinate. 
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Now let us suppose &P, #) and f*(P, $) are two different solutions of (2.4) 
that correspond to the same A@, I+). Th e mapping of the z&+-plane onto the 
#t-plane, defined by identifying points with identical values of p and # 
preserves area. Hence we must have 

5, = 0: + H, , &=B-H,, (2.8) 

f,* = a- H, , S,* = B + Ha, (2.9 

for some function H(a, /?) of some parameters LY and /3. Since we are actually 
interested in t* and u*, rather than .$* for its own sake, it would suffice to 
determine an acceptable H, or even just H, and HB . If we set 

2Z(P, $1 = 5 + t*, 2W(P, $1 = 6 - 5*, (2.10) 

then by (2.8) to (2.10) 

a = zl, ) B = Z$, (2.11) 

H,= -wJ,, H, = w, . (2.12) 

If we eliminate w from (2.12) we obtain 

( aa aa -- 
8P a5 + -- 

w a~$ 1 H(z~,z+) =O. (2.13) 

Up to this point in [l] all of our reasoning has been legitimate. 
In [l] we assumed that H was arbitrary. This is incorrect since, as we 

shall show in the following section, H(ar, /3) must satisfy the quasi-linear 
partial differential equation (3.16). 

3. ON THE DETERMINATION OF H(a,,t?) 

Let us continue to assume that [(p, $) is a known solution of (2.4) for 
a given A& #) # 0. Recall that by (2.6), (2.8), and (2.11) we have 

4&s #) = t = a + Hfi, &tP,#I)=u=B-H,, (3.1) 
and 

cx = %(P, $4, B = .%(Pl *I, (3.2) 

for some H(oL, j3) and z(p, #). S ince 5, and [4 are functionally independent 
by (2.4), (3.1) implicitly defines 

P = P(4 4, 9 = $a 4. (3.3) 
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Since the functions (3.3) are the inverses of the functions (3.1), we must have 

--L---E- Pt 
6 $G %, x, = 2. (3.4) 

By (3.1) and (3.3) we can express p and # as functions of OL and 8. Since we 

have assumed that p and # are independent, then OL and /I must also be inde- 
pendent. Now let us make the Legendre transformation defined by (3.2) and 

Z(a, 8) = pz, + $hz+ - z = ap + p/J - z. (3.5) 

Then we must have 

P = 2, , 9 = z, , (3.6) 

and now by (3.5) and (3.6) 

z(p,~)=orz,+Bzg--==p+19~-z. (3.7) 

Furthermore, by a well-known property of Legendre transformations 

By (3.1) and (3.6) we have 

&I@,, Z/3) = a7 + ql? I,(&, -q?> = B - K - (3.9) 

For a known Qp, 9) let the pair H(ar, p), Z((Y, 8) be any solution of the system 
(3.9). Define p and 4 by (3.6) and z(p, #) by (3.7). Then (3.2) follows from 

the Legendre transformation (3.6) and (3.7). Finally, (3.9) and (3.6) imply 

(3.1). Thus (3.1) and (3.2) are equivalent to (3.6) and (3.9). 

I f  we eliminate H from (3.9) we obtain 

(I, - 4d + (f# - &I = 09 (3.101 

which is equivalent to 

Lr&m + %,Z4 + &q3a = 2, (3.11: 

where the arguments of t,, , tp9, and .$,, have been replaced by the expres 

sions (3.6). In general, (3.11) is a nonlinear partial differential equation fo 
Z((Y, /I). By (2.4) it is of hyperbolic type. 

If  we let Z(ar, 8) be any solution of (3.11) such that Z, and Z, are independ 
ent, and if we define p and 4 by (3.6), then (3.11) is equivalent to (3.10) 
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This, in turn, implies (3.9) for some H(Lx, p). A possible H(cc, 8) could be 
defined by 

(3.12) 

If we know a solution Z((Y, fi), we need not actually determine H(cY, 8). For, 
by (2.8), (2.9), and (2.11) 

t*(p, 4) = 24?3 #I - &P? 99. (3.13) 

To determine f*(p, #), it would suffice to find z(p, #). But the latter can be 
defined by (3.7). 

Instead of eliminating H from (3.9), let us solve for Z, and Zs to obtain 

Z=P(~fq?,B-K), -5 = #(a + 43, B - m, (3.14) 

in terms of the inverse functions p and (CI defined by (3.3). If we eliminate Z 
from (3.14) we obtain 

aP a+ =o --- , ap aa (3.15) 

or in expanded form 

PJ%,E + P,V - H,,) - A(1 + f&J + &H, = 0. 

By (3.4) this becomes 

If we replace the arguments of eD9, bp#, and fIIa by the right members of 
(3.14), (3.16) becomes a quasi-linear partial differential equation for H(a, /3). 
All steps from (3.14) to (3.16) are reversible. Hence, for any solution H of 
(3.16) there exists a Z(ar, p) which satisfies (3.14). 

The problem of constructing a new solution f*(p, #) of (2.4) from a pre- 
viously determined solution Qp, #) h as b een transformed into that of solving 
the quasi-linear equation (3.16). For most equations of state (3.16) will still 
be nonlinear. Thus nothing has been gained unless we can at least guess some 
solutions H(a, /3). This will be done in Section 4 and 5 for an important 
special class of flows. 

In our discussion up to this point we have assumed 4(p, 9) is known. As a 
by-product we have discovered the parametric representation (3.1), (3.6) 
for t, u, p, IJ in terms of suitable functions H(a, 8) and Z(OL, #?). Prior knowledge 
of &p, #) is not really essential for this parametric representation, since 
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we can determine a system of partial differential equations for H and Z that 
does not depend on 5. First, note that by (2.4) we must have 

%I * 5d e(P, *) 
a(% B) = 

- -VP, $4 qqiy ’ 
, 

By (3.1) and (3.6) this is equivalent to 

fLJ$, - HZ, + 1 = - A2(Z, , Za> CZ,,z,, - Z$,. 

On the other hand, if we eliminate .$ from (3-l), we obtain 

(a + H& - (B - KJZ, = 0. 

In expanded form this becomes 

(1 + f&J CQ, + HaaP, + KP, - (1 - Ha,) 8, = 0, 

whence by (3.2) and (3.8) 

(3.17) 

.&EL, - 2&.&x8 + Z,,H,, = 0. (3.18) 

Thus, in the present case the pair H, Z must be a solution of the system 
(3.17), (3.18). 

To complete our parametric representation note that by (2.7), (3.1), and 
(3.6). 

x, = (B - HJ (1 + H,,) + P-‘Z,, 9 

q = @ - K) HbB + p-‘-&i . (3.19) 

It might be worth mentioning that for H = constant (3.18) is certainly 
satisfied. By (3.1) we have 

a = t = 5, ) p =u =go. (3.20) 
Now (3.2) yields 

(=A? (3.21) 
and (3.6) becomes 

z(t, u) = pt + flu - 5. (3.22) 

Then (3.17) reduces, as one would expect, to the equation that would be 
obtained from (2.4) under the Legendre transformation (3.20), (3.22). 

4. FLOWS ASSOCIATED WITH 5 = K(p)+Z,($) 

Equation (2.4) will have the solution 

5 = K(P) +-w4 (4-l) 
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if 

- mp, $4 = K”tP)L”W, (4.2) 

where primes denote differentiation with respect to the appropriate argument, 
and by (2.5) 

K”cP)L”($4 # 0. (4.3) 

By (2.5) this choice of A2 corresponds to 

(4.4) 

where M(4) is an arbitrary function of 4. If 

ICI = *w (4.5) 

is the inverse of the function s(#) mentioned in (2.2), then (4.4) and (4.5) 
define an equation of state. The equation of state of a perfect gas, 

- = e-s/c, _ P P 
( 1 

WJ 
9 

PO PO 

is in the class defined by (4.4) for M = 0. 
By (4.1) Eq. (3.16) assumes the form 

K”@) H, +L”(#) H#l = 0, (4.6) 

where by (2.8) 

K’(p)=a+H,, L’(#) = /3 - H, . (4.7) 

By (4.3) Eqs. (4.7) uniquely define 

P = ~(a + HP), Ic, = VV - HJ. (4.8) 

Since (4.6) is nonlinear we cannot hope to find the general solution for arbi- 
trary choices of K” and L”. However, we can develop some particular solu- 
tions, as follows: 

First, it will be convenient to make one of the transformations 

X* = a + H, , Y* = B f Hu , 

Z* = 2($ T H) - PQ*, 

P* = B =F Ha, Q” = (Y =/= H, . 
Then 

(4.9) 

(4.10) 

(4.11) 

E, = K'(P) = x 5, = L'w = p, t,* =Q, .ff = Y (4.12+) 
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for + superscripts, and 

5, = K'(p) = Q, e* = L'($J) = y, t; = x, f; = P (4.12-) 

for - superscripts. 
In the sequel we shall assume that one of the pairs X+, Y+ or X-, Y- is 

functionally independent. The exceptional case in which both pairs are 
functionally dependent will be discussed in Section 6. For convenience we 
shall omit the superscripts hereafter. 

It can easily be verified that dZ = P dX + Q dY, so that 

and then 
P=Z,, Q=Z,, 

dP = Z,, dX + Z,, dY, 

dQ = Z,,dX + Zy,dE: (4.13) 

From (4.9) to (4.12) we obtain 

1 T H,, - (1 zt Xx& ZXY = f ZxxHsa = f ZYYH, . 

Eliminate Haa and H,, from the latter of these equations and (4.6) to find 
either 

K”MW) zxx + ~“b7w)) ZYY = 0 

for + superscripts, or 

(4.14+) 

fWQ)) Zxx + ~YW’)) ZYY = 0 (4.14-) 

for - superscripts. 

5. SEPARABLE SOLUTIONS 

Now let us try to find solutions of (4.14-) of the form 

Z(X, Y) = k(X)/(Y). (5.1) 

As we shall eventually discover, this will impose a strong, but acceptable, 
restriction on the permissible functional forms for K(p). 

BY (5.1) 
P = k’(X)f(Y), Q = &X)6”(Y). (5.2) 

By (4.7) and (4.9) for - superscripts 

K’(P) = Q> L’W) = y, (5.3) 
whence 

P =P(Q), # = tw. (5.4) 
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Now (4.14-) yields 

K”(p(Q)) K”(X)4 Y> + L”M V) k(X) f’( Y) = 0. (5.5) 

Next, we may assume Q and X are independent. For, if they were not, 
then by (4.12-) and (2.6) tD and <*, would be dependent. Since t* = .$ 
must not be constant, we would have .$“, = G(f,) for some nonconstant 
function G. Hence 

by (4.1). Hence f* = K*(p) +L*($). S ince solutions of this form have been 
considered in [l], this requires no further discussion. 

Incidentally, if Q and X are independent, then by (5.2) ke’ # 0, and 
hence k/ # 0, in general. Then we can rewrite (5.5) as 

K”lp(Q)) k”(X) / L”(+(y))L”(y) = o 
k(X) w> * (5.6) 

Differentiate the left-hand member of (5.6) with respect to X, and use (5.2) 
to find 

K"'(P) P'(Q) Q _ k(X) 
K”(p) - - k’(X) [ 

log k"(X) 
k(X) 1 ' = 

Cl ’ (5.7) 

By (5.3) 

K"CP)P'(Q) = 1, L”($q f(Y) = 1. 

Thus (5.3) and the outer members of (5.7) yield 

(5-g) 

whence 

CASE 1. If c, 

whence 

and then 

K”‘(P) G”(P) 
K”(p)=-, K’(P) 

K”(p) = cZrC’(p). 

1, then (5.9) implies 

K(p) = c3eC2~ + c, , 

w 

(5.10) 

WP) = c22c2eca* = c,K’(p) = c2Q, (5.11) 

(5.12) P =$%$/ 



OKE-DIMENSIONAL FLOWS: A CORRECTION 

Now (5.5) yields 

L”(+)k”(y) = _ c2k”(X) = cs . 
f(Y)P(Y) 

501 

(5.13) 

Then by (5.8) and (5.13) k and 8 must satisfy 

k(X)= +Xz+c,X+c,, (5.14) 
2 

C(Y) = c,tp(Y)t(Y)t’(Y), (5.15) 

where I/( k’) is defined by (5.3). 
Note that although the choice of K@) is restricted by (5.10), the choice of 

L(#) is arbitrary. Any solution of (5.15) with c” f 0 can be multiplied by any 
polynomial (5.14) with cs # 0 to form a product solution 2 of (4.14-). Then 
(4.12-) will enable us to construct a f* that differs from .$ in the following 
important respect. By (4.1) 

5D$ = 0. (5.16) 

On the other hand, by (4.12-) and (5.2) 

By (5.2) and (5.3) 

6; = P = k’(X)@‘(+)). 

K’(p) = Q = k(X)&‘@‘(#)). 

Since by (5.8) K” # 0, then by (5.14) with cs # 0 this actually suffices to 
define a function X(p, 9) such that X, # 0. But then 

in contrast with (5.16). Thus I* is not a completely trivial modification of 5. 

CASE 2. Now suppose cr f 1. By (5.9) 

K(P) = cp(2 : c1) Nl - Cl) C,(P + C3)1(2-cl)‘(1-c~) + c4 3 (5.17) 

Q = K'(p) = [(l - cl) c2(p + c~)]~'+-cI) (5.18) 

K”(p) = c,@. (5.19) 

Now (5.2), (5.5), and (5.19) yield 

L”(4) w7 
e(Yy'cl(Y) 

= - c2kC+(X) k”(X) = cg . (5.20) 
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Then by (5.8) and (5.20) we obtain 

k”(X) = - c;1c5k1-c1(X), 

I”(Y) = c,#( Y)t( Y)PCl( Y). 

(5.21) 

(5.22) 

Equation (5.21) can be solved by quadratures, of course. 

Again, the choice of K(p) is restricted, this time by (5.17), but L(4) is still 
arbitrary. The restriction on the form of KCp) is not too serious, if we note 
that for cs = 0, c, = y  + 1, M(#) = 0, and arbitrary L(4), (5.18) and (4.4) 
lead to the equation of state for a perfect gas. 

By the argument presented at the end of Case 1, $, # 0 again. 
All of the discussion in this section has dealt with (4.14-). A similar analysis 

of separable solutions could be developed for (4.14+). All that we really 
require are the analogs of Eqs. (5.10), (5.14), and (5.15), or of (5.17), (5.21), 

and (5.22). These can easily be written by interchanging X and Y, k and k’; 
K and L; and p and #. Now, of course, it becomes possible to choose K(p) 

arbitrarily, but then L(t,b) is restricted. This situation seems to have less 
physical interest than the one we have just discussed at length. 

6. BOTH X+, Y+ AND X-, Y- ARE FUNCTIONALLY DEPENDENT 

If both X+, Y+ and X-, Y- are functionally dependent, then in accordance 
with (4.9) 

Thus 
(1 f H+J2 - H,,,Haa = 0. 

These equations are equivalent to 

H,=O, 

HtiaHM = 1. 

BY (6-l) 

(6.1) 

(6.2) 

H(a, 8) =A4 + g(B), (6.3) 

for somef(or) and g(j3). By (6.2)f”(or) g”(p) = 1, whence 

f" =q, g"r--I-. 
Cl 
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Thus 

f(a) = & cp2 + crp + cg , 

g(B) =&P + 4 + c5* 

By (2.11) we can rewrite (2.8) in the form 

(6 - z), = Hp = g’(B) = ; (z + %IcI)s 9 

(5 - z)# = - H, = -f’(a) = - cl (z + 2~); 

Hence 

5 - z + i (z + $P + v*s) =fO 

wheref(5) is an analytic function of the complex variable 

5 = P + icA. 

Thus 

5,, -I- G25,, = 0. 

If  we demand that E be of the form (4.1), then 

K”(p) = - +“(I)) = C6 . 

Then by (4.1) and (2.4) to (2.7) 

t = 5, = c,p + c7 , 

I.4 = 5, = - Cl”C&h + cg ) 

,42 = c *c 2 169 

1 -= 
P 

- C12CG2P + Jqfq, 

x= - CI*C,*P$ + csclo~ + 1 W$) G. 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

This corresponds to a class of flows with straight particle paths on which the 

velocity is constant (though it varies from path to path). 
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