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1. Introduction

In the last few decades, the hypergroups have been studied in connection with various
domains, such as: binary relations, graphs and hypergraphs, fuzzy sets, rough sets, topology, codes,
cryptography, automata, probabilities, etc.; for more details see [7]. Chvalina [1] used ordered
structures for the construction of semihypergroups and hypergroups. Later Rosenberg [ 18] extended
Chvalina’s definition, introducing a hypergroupoid associated with a binary relation and described all
the relations p on a set H such that the new hypergroupoid is a join space, i.e. a hypergroup with
a geometry inspired property. Then this new hyperstructure was studied by Corsini [4], Corsini and
Leoreanu [8], and recently by Cristea and Stefanescu [9,10]. Other hypergroupoids associated with
binary relations were introduced and analysed by Corsini [5,3,6], De Salvo and Lo Faro [ 11,12], Spartalis
[19,20], Spartalis and Mamaloukas [21], Konstantinidou and Serafimidis [ 13]. Recently Leoreanu-Fotea
and Davvaz [14] studied n-hypergroups in connection with binary relations.

In this paper we continue the study on the correspondence between hypergroups and ordered
sets; in particular we use n-ary relations. The n-ary relations were studied in depth by Novak
and Novotny [15-17] because of their applications in the theory of dependence spaces. USan and
Seselja [23] gave several kinds of generalized reflexive, symmetric and transitive n-ary relations and
established connections between some of these relations. Moreover, the n-ary relations are used in
database theory, because they provide a convenient tool for database modeling.

In this work we use some connections between binary and n-ary relations, explained in the papers
of V. Novak and M. Novotny. More precisely, an n-ary relation o, on a nonempty set H may be
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associated with any binary relation o on H and conversely, a binary relation p” on H may be associated
with any n-ary relation p on H. In the following section we recall some definitions and results obtained
on this argument.

Our goal is to extend the results obtained on the hypergroups connected with binary relations
to the case of n-ary relations. Firstly, we define a hypergroupoid associated with a given n-ary
relation and we find necessary and sufficient conditions, regarding the n-ary relation, such that this
hypergroupoid is an H,-group or a join space. Secondly, we establish some connections between
hypergroupoids associated with n-ary relations and hypergroupoids associated with binary or ternary
relations.

2. n-ary relations

In this section we present some basic notions about the n-ary relations. We suppose that H =  is
a set,n € N a natural number such thatn > 2, and p € H" an n-ary relation on H.

Definition 1 (See [16]). The relation p is said to be:

(i) reflexive if, for any x € H, the n-tuple (x, ..., x) € p;
(ii) n-transitive if it has the following property: if (x1, ..., X;) € p, V1, ..., Yn) € p hold and if there
exist natural numbers iy > josuchthat1 < ip < n, 1 < jo < n, %, = ym, then the n-tuple

(C yj,(+],...,yjn) € p for any natural number 1 < k < nand iy, ..., ik, jk+1s - - - »Jn
suchthat1 <iy; < --- <y <ig,jo <Jiwr1 < -+ <Jjn <

(iii) strongly symmetric if (xq, ..., x,) € p implies (Xom), ..., Xs@m)) € p for any permutation o of the
set{1,...,n};

(iv) n-ary preordering on H if it is reflexive and n-transitive;
(v) an n-equivalence on H if it is reflexive, strongly symmetric and n-transitive.

We consider the following examples.

Examples 2. (1) For n = 2, a binary relation is 2-transitive if and only if it is transitive in the usual
sense and therefore it is a 2-equivalence if and only if it is an equivalence in the usual sense.

(2) Letn = 3. A ternary relation p is 3-transitive if and only if it satisfies the following conditions:

(i) f(x,y,2) € p, (¥, u,v) € p, then (x, u, v) € p.

(ii) If (x,y,2) € p, (z,u,v) € p,then (x,y,u) € p, (x,y,v) € p, (x,u,v) € p, (¥, U, v) € p.
(iii) If (x,y,2) € p, (u,z,v) € p,then (x,y, v) € p.

(3) SetH = {ay,az,...,a,}and let p = {(a;, ..., a;) | 1 <i < n}, where any sequence is formed by
n equal symbols, be the diagonal relation on H. Then p is an n-equivalence.

(4) Set H = {1,2,3} and let p € H x H x H be the ternary relation on H defined by p =
{1,1,3),(1,1,1),(2,2,2),(3,3,3), (1, 3,3)}.
Then p is a 3-ary preordering on H, but it isn’t a 3-equivalence.

Definition 3 (See[16]).Let p be an n-ary relation on a set H. We may associate with p a binary relation
pP as follows. For any (x, y) € H?, we put (x,y) € p” if there exist (X1, X2, ..., X,) € p and natural
numbersi,jsuchthat1 <i<j<nx=x,y=x;.

Example 4. Let p be a ternary relation on H. Then the binary relation p? associated with H like in
Definition 3 is defined as follows: (x,y) € p” if there exists z € H such that (x,y,z) € p or
(z,x,y) € por(x,z,y) € p.
For example, the binary relation p? associated with the ternary relation p in Examples 2, (4), is
o’ =1{(1,1),(1,3), (2,2), (3, 3)}, which is a preordering but not an equivalence.

More generally, we have the following results from Novak and Novotny [16].

Theorem 5 (Theorem 3.1 [16]). Let p be an n-ary preordering on a set H. Then p" is a preordering on H.

Theorem 6 (Theorem 5.1 [16]). Let p be an n-equivalence on a set H. Then p" is an equivalence relation
onH.
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Definition 7 (See[16]).Let o be a binary relation on a set H. We may associate with o an n-ary relation
oy on H by putting for any (x1, X2, ..., X;) € H", (X1, X2, ..., Xz) € oy if (%;, X;) € o for every pair of
natural numbers (i, j) suchthat 1 <i <j <n.

Theorem 8 (Theorem 4.1 [16]). Let o be a preordering on a set H. Then o, is an n-ary preordering on H.

Theorem 9 (Theorem 5.2 [16]). Let o be an equivalence relation on a set H. Then o, is an n-equivalence
on H.

It is easy to see that the following corollary holds.

Corollary 10. (i) If p isan n-ary relation on aset H, then (p?), D p, but the equality does not necessarily
hold.
(ii) If o is a binary relation on a set H, then (¢,)” C &, but the equality does not necessarily hold.

Proof. The first parts of the two statements are easily verified. We give only counterexamples for

their second parts.

(i) On the set H = {1, 2} we consider p = {(1,2,...,2)}. Then p? = {(1,2), (2, 2)} and thus
(lob)ﬂ :{(172532)7(2952)} 210

(ii) On the set H = {1, 2, 3} we take the binary relation o = {(1, 2), (2, 1), (2, 3), (3, 3)}. Then
on=1{(2,3...,3),(3,...,3)} and therefore (c,)’ = {(2,3), (3,3)} Co. O

Proposition 11. (i) If p; and p, are two n-ary relations on a set H such that p; C p,, then ,0%’ C ,05’.
(ii) For any n-ary relation p on a set H, it follows that ((0”),)” = p".

Proof. (i) Set (x,y) € p%’; then there exist (x1, X2, ..., X;) € p; and natural numbers i, j such that
1<i<j<nx=x,y=Xx.Since p; C py, it follows that there exist (X1, X2, ..., x,) € p, and
natural numbers i, jsuchthat 1 <i <j <nx=x,y =x;, thatis (x,y) € ,03.

(i) For the proof of the direct inclusion we denote p” by o. By Corollary 10(ii) we have (¢,)” C o, that
is ((p®)n)? C pP. Conversely, by Corollary 10(i), for an n-ary relation p, we have p C (o?), and
by the item (i) of this proposition, it follows that p® C ((0?),)?, which concludes the proof. O

Theorem 12 (See Theorems 4.2, 4.3, 5.3 [16]). If p is an n-ary preordering on a set H, then (p"), = p. If
o is a preordering on a set H, then (o,)? = o.

3. Hypergroupoids associated with n-ary relations

For a nonempty set H, we denote by #*(H) the set of all nonempty subsets of H. A nonempty set
H, endowed with a mapping, called a hyperoperation, o : H> — £*(H) is called a hypergroupoid. A
hypergroupoid which verifies the following conditions:

(i) xoy)oz=xo0(yoz),forallx,y,z € H,and
(iil) xoH = H = H o x, for all x € H (reproduction axiom)

is called a hypergroup.

If A and B are nonempty subsets of H, then we defineAo B = | J ae aob.

A hypergroupoid (H, o) is called an H,-semigroup if the weakly associative axiom is valid, i.e., (xoy) o
zNxo(yoz) # @, forallx, y, z € H. An H,-semigroup is called an H,-group if the reproduction axiom
is valid.

For each pair (a, b) € H?, we define:

a/b={x|aexoblandb\a = {y|ae boy}.IfAand B are nonempty subsets of H, then we denote
A/B = Ugeg a/b.

A commutative hypergroup (H, o) is called a join space if for any (a, b, c,d) € H?*, the following
implication holds:

a/bNc/d# 0 =—aodNboc#@ (“transposition axiom”).
For more details on hypergroup theory, see [2,24].
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Let p be an n-ary relation on a set H. In what follows we use the notation
L(p) ={xeH|3Juy,us,...,up €H: (X, Uy, ..., Uy) € p}
R(p) ={xeH|3uj,up,...,up_1 €H: (U, ..., Up_1,X) € p}.
Moreover, for any x € H, set
Lx) ={yeH|3uy,...,up2€H: ¥, X, U1,...,Us_2) €EP
VUi, ooy Un—2,Y,X) € PV (Up, .oy Up, ¥y Xy U1, - - -, Un—2) € P,
foranyk € {1,...,n —3}}
and similarly
Rx) ={yeH|Juy,...,up2€H: Xy, Up,...,Up_2) €Ep
VUi, .o Up2, X, Y) €V (Uq, o Ug, X, Y, Ugt 1y -+ -, Un—2) € P,
forany k € {1,...,n— 3}}.

Remark 1. It is obvious that

(i) y € L(x) if and only if x € R(y), for any (x, y) € H>.

(ii) ey L(x) # H if and only if there exists y € H such that R(y) = @.
(iii) U,y R(x) # H if and only if there exists y € H such that L(y) = #.

Indeed, | J,,; L(x) # H if and only if there exists y € H such thaty & [ J, ., L(x), which is equivalent

to the fact that there exists y € H such that y & L(x), for any x € H, that is there exists y € H such

that x € R(y), for any x € H, equivalent to the fact that there existsy € H suchthatR(y) =@. O
Let p be an n-ary relation on a nonempty set H. We define on H the following hyperoperation:

X®,y = L(x) UR(y) (1
and we notice that if (H, ®,) is a hypergroupoid then, for any x € H, L(x) # @ or R(x) # 0.
The converse is not true as the following counterexample shows: let H = {x,y,z,t} and p =

{(x,y,2), (x,z,t), (x,y,t)}. We have L(x) = R(t) = #andsox®,t = @, thatis (H, ®,) is not a
hypergroupoid.

Lemma 13. The hypergroupoid (H, ®,) is a quasihypergroup if and only if, for any x € H, L(x) # ¥ and
R(x) # 0.

Proof. The reproducibility law means: foranyx € H,x®, H = H ®, x = H, thatis, forany x, y € H,
there exist z1, z; € H such thaty € [L(x) U R(z1)] N [L(z2) U R(X)].

First we suppose that, for any x € H, L(x) # @ and R(x) # @. Then |,y L(x) = H = U,y R(®)
and therefore, for any y € H, there exist z;,2z, € H such thaty € R(z1) N L(zz); thus (H, ®,) is
reproductive, so it is a quasihypergroup.

Now we consider (H, ®,) a quasihypergroup and we suppose that there exists y € H such that
L(y) = @orR(y) = @.IfR(y) = @ then, foranyx € H,y ¢ L(x) and thus L(x) UR(Y) = x®,y =
L(x) # y,foranyx € H,andthen H®,y ¥ y; so H®,y # H which contradicts the reproducibility
law. Similarly, if there exists y € H such that L(y) = @, then y®,H # H and again we obtain a
contradiction. O

Proposition 14. Let p be an n-ary relation on a set H. Then (H, ® ,) is an H,-group if and only if, for any
x € H, L(x) # ) and R(x) # (.

Proof. If (H, ®,) is an H,-group, then it is a quasihypergroup and, by Lemma 13, it follows that
L(x) # ¥ and R(x) # @, for any x € H.

Conversely, we suppose that for any x € H, L(x) # ¥ and R(x) # (. By Lemma 13, it follows that
(H, ®,) is a quasihypergroup. It remains to prove that the hyperoperation “®," is weakly associative;
for this we show that, for any x, y, z € H,

R Y)®,z2NXR,(Y®,2) D Y.
Since
x®,Y)®pz ={LW)URE) |uelx)URY)} 2 {Lw) |uecRW}={lw|yelw}>y
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and
XQ®,(¥®p2) = {LX) UR(V) | v € L(y) UR@)} 2 {R(v) |v e L)} ={R(v) |y €R(W)} 2y
it follows that (H, ®,) is an H,-group. O

Corollary 15. Let p be an n-ary relation on a set H. Then (H, ®,) is an H,-group if and only if it is a
quasihypergroup.

Proposition 16. Let p = {(x, X, ..., x) | x € H} be the diagonal n-ary relation on a set H. Then (H, ®,)
is a join space.

Proof. For any x € H we obtain L(x) = R(x) = {x} and thus, for any x, y € H, it follows that
X®py =yQpx={x,y}

and thenx®,H = H®, = H, for any x € H. Moreover, for any (x,y, z) € H?3, we obtain
(x®pY)®pz=x8,(y®,2) = {x,y, 2},

so (H, ®,) is a commutative hypergroup.

It remains to prove that, for any a,b,c,d € H such that a/b N c/d # {, it follows that
a®,dNb®,c # ¥. We find thata/a = {x € H | a € x®,a} = Handfora # b € H,
a/b={xecH|aecx®,b}={a}.

Leta,b,c,d € H be suchthata/bNc/d # ¥.1fa = borc = dthena®,dNb®,c > aor
a®,dNb®,c > dIfa # bandc # d,thena/bNc/d # @ ifand only if a = c and thus
a®,dNb®,c > alnbothcasesa®,dNb®, c # ¥ and therefore (H, ®,) is a join space. 0O

Lemma 17. If p is an n-ary preordering on a set H, then, for any a, x, u € H such that a € L(u) and
u € L(x), it follows that a € L(x).

Proof. Let a, x, u be in H such that a € L(u) and u € L(x). Then there existay, ...,a,_, € H, by, ...,

by,—» € Hsuchthat (a,u,aq,...,a,—2) € pV(@1,...,0p-2,0,U) € pV (a1, ..., 0, A U, Qg1 - - -,

ap—3) € pand (u,x, by, ...,by—3) € pv(by,...,bp2,u,x) € pV(by, ..., b, u, X, bgs1, ..., bp_2) €

p withk € {1, ..., n— 3}. We distinguish the following situations:

(1) If (a,u,aq,...,ap—2) € pV(ay,...,an—2,0a,u) € pVv (ay,...,0a, a, U, Qgy1, - .., dp—2) € p and
(u, x, by, ..., by_3) € p then, by the n-transitivity, it results that (a, x, by, ..., by_2) € p, thatis
a € L(x).

(2) If(bq,...,bpa,u,x) € pV (by,...,bg, U, X, byy1,...,by_2) € pwithk € {1,...,n— 3} and
since (x, ..., x) € p by the reflexivity, then (u, x, ..., x) € p by the n-transitivity. Now, if (a, u,
ai,...,an—3) € pV (ay,...,0p_3,a,u) € pV (ay,...,0,a,u,dgtq,...,0p—2) € p, with
k € {1,...,n — 3}, and since (u,x, ...,x) € p, it follows that (a,x,...,x) € p, again by the

n-transitivity. Thereforea € L(x). O
Now we give some conditions for an n-ary preordering to induce a join space.
Proposition 18. If p is an n-ary preordering on H such that L(x) = R(x), for any x € H, then (H, ®,) is
a join space.
Proof. Since p is reflexive, it follows, by Lemma 13, that (H, ®,) is a quasihypergroup. Moreover,
since L(x) = R(x), for any x € H, it follows that
XQpY =YQpX = L(x) U L(y),

forany x, y € H, and therefore (H, ®,) is commutative.
Now we prove that the hyperoperation “®," is associative. For any a € (x®,y) ®, z, there exists
u € L(x) U L(y) such that a € L(u) U L(z). We distinguish the following cases:

(i) Ifa € L(z), wetake v = z € L(y) U L(z) and thena € L(x) UL(z) = L(x) U L(v); thus
aex®,y®,2).
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(ii) If a € L(u) with u € L(x), then, by Lemma 17, it follows that a € L(x); therefore there exists
v € L(y) U L(2) (for example v = y) such thata € L(x) UL(v),s0a € X®,(y ®, 2).

(iii) Ifa € L(u) withu € L(y), there exists v = u € L(y) UL(z) such thata € L(x) UL(u) = L(x) UL(v),
and againa € X®,(y ®, 2).

We have proved that, for any x, y, z € H, we have
(X®pY)®pzZ CXQ,(Y R, 2).

Similarly we can show the other inclusion
X®,0®,2) C(xQ,Y) Q2.

It remains to check the condition of the join space. Set a, b, ¢, d € H such that a/b N c/d # @; then
there existsx € a/bNc/d, thatisa € x®, b = L(x) UL(b) andc € x®, d = L(x) U L(d). We consider
the following situations:

(i)Ifa € Lx) and ¢ € L(x) thenx € R(a) = L(a),x € R(c) = L(c) and therefore x
(L@ UL]IN[LB) ULC)] =a®,dNb®,c.
(ii) If c € L(x) and a ¢ L(x) then a € L(b), and since a € L(a) (by the reflexivity), it follows that
ae[l(@ULDIN[Lb)ULC)]=a®,dNb®,c.
(iii) Ifc & L(x) then c € L(d), and since ¢ € L(c) (by the reflexivity), it follows that ¢ € [L(a) UL(d)] N
[LyULO)] =a®,dNb®,c.

We can conclude thata®, d Nb®, ¢ # ¥,s0 (H, ®,) is a join space. O

Since an n-ary equivalence satisfies the conditions of the above proposition, we have:
Corollary 19. If p is an n-ary equivalence on a set H, then (H, ®,,) is a join space.

Remark 2. Let p be an n-ary preordering on a set H. The condition L(x) = R(x), forany x € H, is a
sufficient condition, but not a necessary one such that the hyperoperation “®," is associative, as we
can observe in the following examples.

Example 20. On the set H = {1, 2, 3} we consider the ternary relation p = {(1, 1, 1), (2, 2, 2),
(3,3,3),(1,3,3), (1, 1, 3)} which is a 3-preordering. It is obvious that L(1) = {1} # {1, 3} = R(1),
L(2) = {2} = R(2) and L(3) = {1, 3} # {3} = R(3). Moreover, forany x,y,z € H, X ®,y)®,z =
XQ,(Y®,2).

Example 21. On the set H = {1, 2, 3} we consider the 3-preordering p = {(1,1, 1), (2,2, 2),
3,3,3),(1,3,3),(1,1,3),(2,3,3), (2,2, 3)}, where L(1) = {1} # {1,3} = R(1),L(2) = {2} #
{2,3} = RQ),L3B) = {1,2,3} # {3} = R(3).Since 2®,2)®,3 = (1,2,3} # (2,3} =
2R®,(2®, 3), it follows that “®," is not associative.

Remark 3. Let p be an n-ary reflexive relation on a set H. By Lemma 17 it follows that, if p is also
n-transitive, then p satisfies the property

(T) forany a, x, u € H such thata € L(u) and u € L(x) it results thata € L(x).

Moreover, for n-ary reflexive relations p on H such that L(x) = R(x), for any x € H, the property (T)
does not imply the n-transitivity, and also if L(x) = R(x), for any x € H, as we can see in the following
example.

Example 22. On the set H = {1,2,3} let us consider the following n-relation: p
{a1,....1D,2,...,2),3,...,3),2,1,...,1,2)}. We find L(1) = {1,2} = R(1), L(2) = {1, 2}
R(2),L(3) = {3} = R(3), and the property (T) is easily satisfied, but p is not n-transitive, because we
have 2,...,2) e p,(2,1,...,1,2) € p,but (2,...,2,1) & p.

Proposition 23. Let p be an n-ary relation on H such that x € L(x) = R(x), for any x € H. If p satisfies
the property (T), then “®, " is associative and therefore (H, ®,) is a join space.
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Proof. The reproducibility follows from Lemma 13. We suppose that “®,,” is not associative; then
there exist x,y,z € H such that x®, ) ®,z # x®,(y ®, z). Thus there exists u € x®,¥) ®,2
such thatu ¢ x®,(y ®, z) or vice versa. We consider the first situation; it follows that there exists
v € L(x) UL(y) such thatu € L(v) U L(z),and forany t € L(y) U L(z), u & L(x) U L(t) (in particular
ué&L(x)UL(y)UL(2)). Ifu € L(v) with v € L(x), by the property (T) it follows that u € L(x), which is
false, and similarly, ifu € L(v) with v € L(y), it follows that u € L(y), again false. If u € L(z) we obtain
a contradiction with the fact u & L(x) UL(t),forany t € L(y) UL(z). O

Proposition 24. Let p be an n-ary relation on a set H, with |H| > 3, such that x &€ L(x), [L(x)] = 1 =
[R(x)|, for any x € H. Then “®,," is not associative.

Proof. Since |[L(x)] = 1 = |R(x)|, for any x € H, it follows that L(x) % @ and R(x) # ¢, for any x € H,
that is |,y LX) = H = |,y R(X). Moreover, there exists a unique y, € H \ {x} such thatx € L(yy)
(if there exist yx # y,, € H \ {x} such that x € L(yx) N L(y,), then yy, ¥, € R(x), so |R(x)| > 2, which is
false) and similarly there exists a unique z, € H \ {x} such thatx € R(z,). We distinguish the following
situations:

(1) IfL(x) NR(x) = @, for any x € H, then it is clear that y, # z, and L(yx) = R(zx) = {x}, R(x) = {yx},
L(x) = {z,}. Now it follows that
(X ®p X) ®p X = {st Zx} ®p X = L(_yx) ) L(ZX) U R(X)
= Xy} ULz F 2z
X®p{yx, 2} = L(x) U R(yx) U R(z)
{2, X} UR(Yx) 3 2z,

so the hyperoperation “®,"” is not associative; it is only weakly associative.
(2) There exists x € H such that L(x) = R(x) = {yz}. Then

XRp %) ®p ¥z = Yx ®p ¥z = Lx) URYz) # yx,
X®,(x®,¥x) =XQ,({yx} UR(Yx) = L(x) UR(yz) UR(u) > ys,
where u € R(yz), which means that the hyperoperation “®,,” is not associative. O

XQ,(x Q) x)

4. Hypergroupoids associated with ternary relations

Another approach to the connections between hypergroups and ordered sets is given by
Stefanescu [22]: given a hypergroupoid (H, o), we may consider the ternary relation p on H associated
with the hyperoperation

(a,b,c) e p ifandonlyif ce€aob.

This is the most natural way to define a ternary relation associated with a hyperoperation.
If (H, o) is a hypergroup, then Stefanescu [22] has shown that p satisfies the following three
conditions:

(1) Foralla, b € H, there exists at least one element c € H, such that (a, b, ¢) € p.

(2) If, for a, b, ¢, z € H there exists x € H such that (a, b, ), (x, c,z) € p, then there existsy € H
such that (a, y, z), (b, c,y) € p and conversely.

(3) Foralla, b € H there exist x, y € H such that (a, x, b) € p and (y, a, b) € p.

Conversely, if p is a ternary relation on a nonempty set H such that the conditions (1)-(3) are
satisfied, then, on taking the hyperoperation
xoy={aeH]| Yy, a) € p},

(H, o) is a hypergroup.
In the following we present two properties of the ternary relations p which satisfy the condition (1).
With any binary relation o on a set H we associate a ternary relation denoted by oy C H x H x H
as follows:

x,y,2) €0 <= (x,y) e A(y,2) €0 AN(X,2) €0O. (2)
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Proposition 25. The unique ternary relation o, obtained from a binary relation o using the method (2)
and such that

Y(a,b) € H®, 3JceH:(a,b,c) €0, (3)
is the total relation oy = H x H x H.

Proof. The condition (3) is equivalent to the following one: for any (a, b)) € H?, (a,b) € o, so the
binary relation o is the total relation H x H and thuso; = H x H x H. O

Moreover, the hypergroupoid obtained from o; taking
xoy={z€eH|(xy,2) €0t}

is the total hypergroup on H.
Conversely, with any ternary relation p on H we associate a binary relation o € H x H as follows:

xy)ep’ < 3FzeH:(xy 2) €p. (4)
Let (H, o) be an arbitrary hypergroupoid which determines the ternary relation p defined by
X,y,2) e p&=z€xo0y.

Since (H, o) is a hypergroupoid, it follows that, for any (x,y) € H?, there exists z € H such that
z € xoy, thatis (x, y, z) € p; therefore, for any (x, y) € H?, we obtain (x, y) € p?, thatis p? = H x H.
So we have proved the following result.

Proposition 26. The unique binary relation p® obtained, using the method (4), from the ternary relation
p associated with any hypergroupoid (H, o) as follows:
x,y,z2) Ep<=z€x0Yy,

is the total relation H x H.
5. Connections with Rosenberg’s hypergroupoid

Let p be a binary relation on a nonempty set H. We denote by
D(p) ={xe€ H| (x,y) € p,forsomey € H}
R(p) ={x € H| (y,x) € p, forsomey € H}

the domain and the range of p. Rosenberg [18] defined the following hyperoperation on H. For any
x€eH,setUy={yeH| (,y) € p}and, foranyx,y € H,

xoy=U,UU,.

He proved that H, = (H, o) is a hypergroupoid if and only if D(p) = H. Moreover H,, is a
quasihypergroup if and only if D(p) = R(p) = H. In the same paper, Rosenberg characterized
all binary relations p such that H, is a semihypergroup, a hypergroup or a join space. Here we are
interested only in weak associativity: for any x, y, z € H, there exists a € H such that

a€(xoy)ozNxo (yoz),

which is equivalent to: for any x, y, z € H, there exista € Hand b € U, U U, such thata € U, U U,
and there exists ¢ € U, U U, such that a € Uy U U.. This means that there exists a € H such that

x,a)ep’*Vy,a)ep’Viz,a)ep
and
x.a)€pV(y,a) €p’V(z,a) € p°.

Proposition 27. If p is a binary relation on a set H, with full domain and full range, then H, is an H,-
group.
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Proof. Since D(p) = H, it follows that, for any x € H, there exists z € H such that (x,z) € p and
there exists y € H such that (z, y) € p; so, for any x € H, there exists y € H such that (x, y) € p?;
thus D(p?) = H. It follows that, for any y € H there exists a € H such that (y,a) € p? and then
ae€ (xoy)ozNxo (yoz),whichmeans that H, is an H,-group. 0O

Let p be an n-ary relation on H such that, forany x € H,L(x) # ) and R(x) # (. From Proposition 14,
it follows that the hypergroupoid (H, ® ,) defined in the third section is an H,-group. Then the binary
relation p” associated with p as in Definition 3 ((x,y) € p” if there exist (x1, X2, ...,%;) € p and
natural numbers i,jsuchthat 1 < i < j < n,x = x;, ¥ = x;) has full domain and full range, so,
by Proposition 27, Rosenberg'’s hypergroupoid H,;» is an H,-group. In conclusion, we have proved the
following result.

Proposition 28. If p is an n-ary relation on H such that, for any x € H, L(x) # ¢ and R(x) # 0, then the
hypergroupoids (H, ®,) and H» are H,-groups.

Conversely, let o be a binary relation on H, with full domain and full range. Then the n-ary relation
on associated with o as in Definition 7 ((x1, ..., X,) € oy if (x;,%;) € o,foranyi,j,1 <i <j < n)
has the property that, for any x € H, L(x) # ¥} and R(x) # ¢. Indeed, for any x € H, there existsy € H
such that (x, y) € o; theny € R(x). Similarly, there exists z € H such that (z, x) € o; thusz € L(x).
We can give the following result.

Proposition 29. If o is a binary relation on H, with full domain and full range, then the hypergroupoids
H, and (H, ®,) are H,-groups.

6. Conclusions

Several connections between hypergroups and binary relations have been established so far. Here
we have defined a hypergroupoid (H, ®,) associated with an n-ary relation o on H. For any x € H,
defining

Lx)y ={yeH|3uy,...,up2€H: (¥, x,U1,...,U;_2) €EP
V(Ui .o, Up—2,Y,%) € pV (U, oo, Uk, Yy X, U1, -+ - Un—2) € P,
forany k € {1,...,n— 3}}

and similarly
Rx) ={yeH|Juy,...,up2€H: (X, y,Up,...,Up_2) €Ep

VUL, o Un2,%,Y) € 0V Uty oo, U, X, Y, Ukg 1, -0 Un—2) € 0,
forany k € {1,...,n— 3}},

we set
X®,y = L(x) UR(Y).

We have characterized all the n-ary relations p such that the hypergroupoid (H, ®,) is an H,-group,
and we have stated some connections between p and hypergroups or join spaces. Moreover, we have
presented some correspondences between this hypergroupoid and the hypergroupoid obtained by
Rosenberg from a binary relation, or the hypergroupoid obtained by Stefanescu by a certain ternary
relation.

It is natural to consider also the hyperoperationsxo,y = R(x) UR(y) orx®,y = R(x) N L(y); the
first one is a generalization of Rosenberg’s hyperoperation to the case of n-ary relations and the second
one is a generalization of Corsini’s hyperoperation introduced in [5]. In a future work we intend to
analyze the hypergroupoids obtained in this manner and to study their properties in connection with
the union, intersection, and Cartesian product of n-ary relations. Moreover we try to generalize the
association between hypergroupoids and hypergraphs using the properties of n-ary relations (see [3]).
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