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Abstract

The concept of cluster tilting gives a higher analogue of classical Auslander correspondence between
representation-finite algebras and Auslander algebras. The n-Auslander—Reiten translation functor 7, plays
an important role in the study of n-cluster tilting subcategories. We study the category M,, of preinjective-
like modules obtained by applying 7, to injective modules repeatedly. We call a finite-dimensional algebra
A n-complete if M,;, = add M for an n-cluster tilting object M. Our main result asserts that the endomor-
phism algebra End 4 (M) is (n 4 1)-complete. This gives an inductive construction of n-complete algebras.
For example, any representation-finite hereditary algebra AW js 1-complete. Hence the Auslander algebra
A@ of AD s 2-complete. Moreover, for any n > 1, we have an n-complete algebra A which has an
n-cluster tilting object M™ such that A®t1 = End A (M (")), We give the presentation of A®™ by a
quiver with relations. We apply our results to construct n-cluster tilting subcategories of derived categories
of n-complete algebras.
© 2010 Elsevier Inc. All rights reserved.
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The concept of cluster tilting [24] is fundamental to categorify Fomin—Zelevinsky cluster al-
gebras [28], and a fruitful theory has been developed in recent years (see survey papers [23,62,65,
54]). It also played an important role from the viewpoint of higher analogue of Auslander—Reiten
theory [45—47] in the study of rigid Cohen—Macaulay modules, Calabi—Yau algebras and cate-
gories, and non-commutative crepant resolutions [21,22,26,31-33,50,51,55-58,67,68]. There are
a lot of recent work on higher cluster tilting [3,17,25,27,37-39,52,53,59,66,69—71]. In this paper
we shall present a systematic method to construct a series of finite-dimensional algebras A with
n-cluster tilting objects.

In the representation theory of a representation-finite finite-dimensional algebra A with an
additive generator M in mod A, the endomorphism algebra I" := End 4 (M) called the Auslander
algebra gives a prototype of the use of functor categories in Auslander—Reiten theory. The Aus-
lander algebra I keeps all information of the category mod A in its algebraic structure, and it is a
prominent result due to Auslander [5,13] that Auslander algebras are characterized by ‘regularity
of dimension two’

gl.dimI" <2 < dom.dim I

Since almost split sequences in mod A correspond to minimal projective resolutions of simple
I'-modules, the Auslander—Reiten quiver of A coincides with the quiver of I"°P. As a result the
quiver of I" has the structure of translation quivers. Moreover, the structure theory due to Riedt-
mann [64], Bongartz and Gabriel [20], Igusa and Todorov [40,41], Bautista, Gabriel, Roiter and
Salmeron [18], ... realizes Auslander algebras as factor algebras of path algebras of translation
quivers modulo mesh relations. They can be regarded as an analogue of the commutative relation
xy = yx in the formal power series ring S> := k[[x, y]] of two variables since the mesh category
of the translation quiver
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gives a universal Galois covering of S in Gabriel’s sense [29]. This is a basic pattern of
Auslander—Reiten quivers, so it is suggestive in the representation theory to regard their mod-
ule categories as a certain analogue of S. A typical example is given by the category CM(A)
of Cohen—Macaulay modules over a quotient singularity A := SZG corresponding to a finite
subgroup G of SL(2, k) [7,11,63]. In this case CM(A) has an additive generator S, and the Aus-
lander algebra I" := End 4 (S>) is isomorphic to the skew group algebra S, % G which is regular

in the sense that gl.dim I =2 = depth I". The Koszul complex 0 — § (—V)> 52 (E)() S—k—0
of S induces almost split sequences in CM(A). Hence the Auslander—Reiten quiver of A is given
by the McKay quiver of G, and forms the translation quiver ZA /7 associated to an extended
Dynkin diagram A.

It is natural to consider a higher-dimensional analogue of this classical theory, and n-cluster
tilting (= maximal (n — 1)-orthogonal) subcategories were introduced in [45,46] in this context.
The endomorphism algebra I" := End 4 (M) of an n-cluster tilting object M in mod A is called
an n-Auslander algebra, and characterized by ‘regularity of dimension n 4 1°

gldimI" <n+ 1< dom.dim /.

It is known that the category add M has n-almost split sequences, which correspond to minimal
projective resolutions of simple I'-modules. It is natural to regard I" as analogue of the formal
power series ring S,41 := k[[x1, ..., x,41] of n 4+ 1 variables. Actually a typical example of
n-cluster tilting objects is given by a quotient singularity A := S}? ', corresponding to a finite
subgroup G of SL(n + 1, k) acting on k"t {0} freely. In this case CM(A) has an n-cluster
tilting object Sy+1, and the n-Auslander algebra I" := End 4 (S,+1) is isomorphic to the skew
group algebra S, * G. Again the Koszul complex of S induces n-almost split sequences in
add S,,+1. So it is natural to hope in a certain generality that n-almost split sequences in add M
can be constructed as a certain analogue of Koszul complexes of S, and that the basic pattern
of quivers of n-Auslander algebras is given by the Galois covering
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(the case n = 2),

of S,+1, which has the set Z"+! of vertices.

The aim of this paper is to give a class of finite-dimensional algebras with n-cluster tilting
objects satisfying the desired properties above. Our construction is inductive in the following
sense: We introduce a class of algebras A called n-complete algebras, which are algebras with
n-cluster tilting objects M satisfying certain nice properties. Our main result asserts that the
endomorphism algebra I" := End4 (M) is (n + 1)-complete, hence I" has an (n + 1)-cluster
tilting object N. This procedure continues repeatedly, so End(N) is (n + 2)-complete and has
an (n 4 2)-cluster tilting object, and so on. We notice here that we consider not only n-cluster
tilting objects in whole module categories mod A but also those in full subcategories

T+:={X emod A | Ext), (T, X)=0 (0 <i)}

associated to tilting A-modules 7. Such a generalization is natural from the viewpoint of study of
Auslander-type conditions [46,36,44], and indispensable for our inductive construction to work.
It is interesting that our inductive construction reminds us of a classical result due to Auslander
and Reiten [10] which asserts that the category of coherent functors over a dualizing variety again
forms a dualizing variety.

In forthcoming papers [35,48,49,61] n-complete algebras will be studied further.

Conventions. Throughout this paper, all subcategories are assumed to be full and closed under
isomorphism, direct sums, and direct summands. We denote by J¢ the Jacobson radical of an
additive category C [13,4].
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All modules are usually right modules, and the composition fg of morphisms means first g,
then f. We denote by mod A the category of finitely generated A-modules, by J4 the Jacobson
radical of A. For M € mod A, we denote by add M the subcategory of mod A consisting of direct
summands of finite direct sums of copies of M. For example add A is the category pr A of finitely
generated projective A-modules, and add D A is the category in A of finitely generated injective
A-modules.

1. Our results
In this section, we shall present our results in this paper. Let A be a finite-dimensional algebra.
1.1. n-Cluster tilting in module categories

Let us recall a classical concept due to Auslander—Smalo [14]. A subcategory C of an ad-
ditive category X is called contravariantly finite if for any X € X, there exists a morphism

f € Homy (C, X) with C € C such that Homy (—, C) —f> Homy (—, X) — 0 is exact on C.
Dually a covariantly finite subcategory is defined. A contravariantly and covariantly finite sub-
category is called functorially finite.

Definition 1.1. Let n > 1. Let C be a subcategory of mod A. We call C n-rigid if Exti‘ ,C)=0
for any 0 < i < n. We call C n-cluster tilting if it is functorially finite and

C={X emodA |Ext(X,0)=0(0<i<n)}
={X emod A | Ext,(C,X)=0(0<i <n)}.

This equality can be understood such that the pair (C, C) forms a ‘cotorsion pair’ with respect to
Ext' for 0 <i < n. We call an object C € mod A n-cluster tilting (respectively, n-rigid) if so is
add C. Clearly mod A is a unique 1-cluster tilting subcategory, and 2-cluster tilting subcategories
are often called cluster tilting.

Let us start with introducing basic terminologies. We have the duality

D :=Homy(—, k) :mod A <> mod A°P.

We denote by

v=v,:=DHomy(—, A) :mod A — mod A and

V™ =v, :=Homge(D—, A) :mod A — mod A

the Nakayama functors of A. They induce mutually quasi-inverse equivalences v : add A —
add DA and v~ :add DA — add A. We denote by

modA and mod A

the stable categories of mod A [13,4]. For a subcategory X" of mod A, we denote by X (respec-
tively, X) the corresponding subcategory of mod A (respectively, mod A). We denote by
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Tr: mod A <> mod AP, 2:modA—->modA and £~ :modA — modA

Auslander—Bridger transpose duality, the syzygy functor and the cosyzygy functor [8].
For n > 1, we define n-Auslander—Reiten translations [45] by

7, :=DTr2" ' :mod A — mod A,
t =TrDR" "D :modA - mod A.

They are by definition given as follows: For X € mod A, take a minimal projective resolution
and a minimal injective resolution

Pn—f>Pn_1—>--~—>P0—>X—>O and 0—>X—>10—>--~—>1,,_1—g>1,,.

Then we have

X =Ker(vP, L vP, 1) and 1, X = Cok(v™I,_1 5 v71L,). (1)
The functors T = 7y = DTr and = = 7, = Tr D are classical Auslander—Reiten translations,

and we have 7, = 72""! and 7, = 1~ 2"~ by definition. Moreover X € mod A satisfies
7, X = 0 (respectively, 7, X = 0) if and only if pd X 4 < n (respectively, id X 4 < n).

For the case gl.dim A < n, clearly 7, and 7, are induced by the functors D Ext’,(—, A) :
mod A — mod A and Ext},,, (D—, A) : mod A — mod A respectively. In this case, we always
lift 7, and 7, to endofunctors of mod A by putting

T, := DExt’ (—, A) :mod A - mod A,
7, = Ext}op(D—, A) :mod A — mod A.

Then 7, (respectively, 7, ) clearly preserves monomorphisms (respectively, epimorphisms) in
mod A.

Let us consider the relationship between the functor t, and n-cluster tilting subcategories.
The following results [45, Th. 2.3] show that the functor 7, plays the role of Auslander—Reiten
translation for n-cluster tilting subcategories.

Proposition 1.2.
(a) For any n-cluster tilting subcategory C of mod A, the functors t, and T, induce mutually
quasi-inverse equivalences t, :C — C and 1, :C — C.
(b) 1, gives a bijection from isoclasses of indecomposable non-projective objects in C to iso-
classes of indecomposable non-injective objects in C.
Immediately we have the following results.

Proposition 1.3. Let M be an n-cluster tilting object of mod A.

(a) For any indecomposable object X € add M, precisely one of the following statement holds.
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(1) X is t,-periodic, i.e. ‘r,fX >~ X for some £ > 0.
(i) X =~ t!I for some indecomposable injective A-module I and € >0, and X ~ 1, P
for some indecomposable projective A-module P and m > 0.

(b) A bijection from isoclasses of indecomposable injective A-modules to isoclasses of inde-
composable projective A-modules is given by I +— tf "I, where £; is a maximal number ¢
satisfying r,f[ #0.

(c) If gl.dim A < n, then the above (i) does not occur.

Proof. (a)(b) Immediate from Proposition 1.2(b).

(c) Fix any indecomposable object X € add M. We consider two possibilities in (a). It is
enough to show that r,fX = 0 holds for some £ > 0. Take an injective hull 0 — X — I. Since 1,
preserves monomorphisms because gl.dim A < n, we have an exact sequence 0 — 7. X — 7!/
for any i > 0. Since {1 = 0 holds for sufficiently large £ by (b), we have t‘X = 0. Thus we
have shown the assertion. 0O

These observation motivates to introduce the following analogue of preinjective modules,
which was studied by Auslander—Solberg for n =1 [15].

Definition 1.4. We define the t,,-closure of D A by

M= M,(DA) :=add{t,(DA) |i >0} CmodA.
Immediately from Proposition 1.2(a), we have the following result.
Proposition 1.5. Any n-cluster tilting subcategory C of mod A contains M.

Summarizing Propositions 1.3(c) and 1.5, we have the uniqueness result of n-cluster tilt-
ing objects for algebras A with gl.dim A < n, which is not valid if we drop the assumption
gl.dim A < n.

Theorem 1.6. Assume gl.dim A < n and that A has an n-cluster tilting object M. Then M =
add M holds. In particular, M is a unique n-cluster tilting subcategory of mod A.

Thus the condition gl.dim A < n seems to be basic in the study of n-cluster tilting subcate-
gories.

We note here that M enjoys nice properties below for the case n = 2, which we shall prove
in Section 2. In particular, M provides us a rich source of 2-rigid objects.

Proposition 1.7. Assume n = 2.

(a) M is2-rigid.
(b) Assume gl.dim A < 2. Then A has a 2-cluster tilting object if and only if A € M.

Let us calculate M for a few examples.
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Example 1.8. Let A and A’ be Auslander algebras

3 5 > 2
VRN Y N\ ¥
5 > 2 [ > 3
V2 NN A NN
6 > 4 > 1 4 > 1
Then one can calculate
I 1 5 2 3
DA:(I@ 0 2 ®,0®4 30 s),
3 5 6

nDAH=uo6* e ). ©BDA=(). 1DA)=0,

’r_ 1 2 2 !
DA =(1D26 ;7% 3 ©
4

3
3 @4 5>7
5 6
n(DA)=(1es50",°). 1(DA)=0.
The quivers of M»(D A) and M, (D A’) are the following, where dotted arrows indicate ;.
1 1
2
3
2 / \
4 3 12
5
3 / ’\\\ 5 / \
5 X 1
6

6

\

N

N\
Ve

By Proposition 1.7(a), we have that M7 (D A) is a 2-cluster tilting subcategory of mod A, while
My(DA') is not a 2-cluster tilting subcategory of mod A’. Nevertheless M, (D A’) can be re-

garded as a 2-cluster tilting subcategory of a certain subcategory of mod A defined as follows.

Definition 1.9 (Relative version of Definition 1.1). Let n > 1. Let X be an extension closed
subcategory of mod A. We call a subcategory C of X’ n-cluster tilting if it is functorially finite

and

C={XeX|Ext,(X,0)=0(0<i<n)}
={XeX|Ext,(C,X)=0(0<i<n)}.

We call an object C € X n-cluster tilting if so is add C.
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Especially we deal with subcategories X of mod A associated with tilting A-modules. Recall
that a A-module T is called tilting [60,34] if there exists m > 0 such that

e pdTp <m,
o Ext) (T, T)=0foranyi >0,
e there exists an exact sequence 0 > A — Top — -+ — T, > O with 7; € add T'.

In this case, we have an extension closed subcategory
T+ ={X emod A | Ext),(T, X) =0 (0 < i)}

of mod A. This is a functorially finite subcategory of mod A, and plays an important role in tilting
theory [34] analogous to the category of Cohen—Macaulay modules over commutative rings [9,
12].

For tilting modules T with pd T4 < m, we call n-cluster tilting subcategories of the category
T+ as m-relative. For the case m = 0 (i.e. T+ = mod A), we use the terminology absolute
instead of O-relative. In Example 1.8, M»(D A) is an absolute 2-cluster tilting subcategory of A,
and M, (D A’) is a 1-relative 2-cluster tilting subcategory of A associated to a tilting A’-module

2 1 3
T=(3® 3 @4 s@4dsd" 7).
4 5 6
It was shown in [46, Th. 4.2.1] that n-cluster tilting objects are closely related to algebras of

finite global dimension:

Theorem 1.10. Let n > 1 and n > m > 0. For a finite-dimensional algebra I', the following
conditions are equivalent.

(a) There exists a finite-dimensional algebra A and an m-relative n-cluster tilting object M of
A such that I’ ~End (M).
(b) The following conditions are satisfied.
(1) gldimI"<n+ 1.
(i1) The minimal injective resolution

O—-TI—->Ip—---—>1,—> 41 —>0

of the I'-module I" satisfies pd(I;)r < m forany 0 <i < n.
(iii) The opposite side version of (ii).

In this case we call I' an (m-relative) n-Auslander algebra (of A).
Now let us formalize Examples 1.8, where M give a relative n-cluster tilting subcategory.

Definition 1.11. Let A be a finite-dimensional algebra and n > 1. Let M = M, (D A) be the
7,-closure of D A. We define subcategories of M by

I(M):=addDA,
PM)={XeM|pdXp<n}={XeM]|1,X =0},
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Mp:={XeM | X has no non-zero summands in (M)},

Mp = {X eM | X has no non-zero summands in P (M) }

e We call A t,-finite if gl.dim A < n and tf(DA) = 0 holds for sufficiently large £. In this
case, it is easily shown that r,f = 0 holds (e.g. Proof of Proposition 1.3(c)).

o We call A n-complete if gl.dim A < n and the following conditions (A, )—(C,) are satisfied.
(A;) There exists a tilting A-module T satisfying P(M) =add T,
(B,) M is an n-cluster tilting subcategory of T+,
C) Ext"A(Mp, A)=0forany 0 <i < n.
We call A absolutely n-complete if P(M) = add A.

We have the properties of n-complete algebras below, which we shall prove in Section 2. The
statements (a)—(c) are similar to Propositions 1.2 and 1.3(b).

Proposition 1.12. Let A be an n-complete algebra.

(a) We have mutually quasi-inverse equivalences t, : Mp — My and T, : M| — Mp.

(b) 1, gives a bijection from isoclasses of indecomposable objects in M p to those in M.

(c) A bijection from isoclasses of indecomposable objects in Z(M) to those in P(M) is given
by I — r,f T'1, where £} is a maximal number € satisfying r,fl #0.

(d) A is 1,-finite.

In particular, if A is n-complete, then M has an additive generator M by (d) above. We call
End 4 (M) the cone of A. This is by definition an (n — 1)-relative n-Auslander algebra of A.

For example, any finite-dimensional algebra A with gl.dim A < n is clearly n-complete since
M =P(M)=1I(M)=add DA holds. It is interesting to know a characterization of n-complete
algebras. For the case n = 1, we have a nice characterization (a) below. Also the following (b)
gives a simple interpretation of absolute n-completeness.

Proposition 1.13.

(a) A finite-dimensional algebra is 1-complete if and only if it is representation-finite and hered-
itary.

(b) A finite-dimensional algebra A is absolutely n-complete if and only if gl.dim A < n and A
has an absolute n-cluster tilting object.

Proof. (b) Since the ‘only if” part is clear, we only have to show the ‘if* part. By Theorem 1.6,
we have that M is an n-cluster tilting subcategory of mod A. Thus (C,) holds. By Proposi-
tions 1.2(b) and 1.3(b), we have that A is 1,-finite and P (M) = add A holds. Thus (A,) and
(B,,) also hold.

(a) Any 1-complete algebra is absolutely 1-complete by definition. Since absolute 1-cluster
tilting objects are nothing but additive generators of mod A, the assertion follows from (b). O

Now we state our main theorem in this paper. It gives an inductive construction of algebras
with n-cluster tilting objects.
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Theorem 1.14. For any n > 1, the cone of an n-complete algebra is (n + 1)-complete.

For the case n = 1, we have the result below immediately from Proposition 1.13(a) and The-
orem 1.14. This explains the reason why the Auslander algebras in Example 1.8 have 2-cluster
tilting objects.

Corollary 1.15. Let A be a representation-finite hereditary algebra and I' an Auslander algebra
of A. Then I' has a 1-relative 2-cluster tilting object.

Our Theorem 1.14 gives the following inductive construction of algebras with n-cluster tilting
objects.

Corollary 1.16. Let AV be a representation-finite hereditary algebra. Then there exists an al-
gebra A™ for any n > 1 such that A™ is an n-complete algebra with the cone A"V,

The quivers with relations of these algebras A" will be given in Theorem 6.12.

Now we apply Corollary 1.16 to a special case. We denote by T, (F') the m x m upper triangu-
lar matrix algebra over an algebra F'. They form an important class of algebras by the following
easy fact.

Proposition 1.17. Let A be a ring-indecomposable finite-dimensional algebra. Then gl.dim A <
1 < dom.dim A holds if and only if A is Morita equivalent to T,,(F) for some division algebra
Fandm > 1.

Proof. We provide a proof for the convenience of the reader.

Since dom.dim A > 1, there exists an indecomposable projective-injective A-module P;. Put
P, .= P, Jz_l for any i > 0. Then there exists m > 1 such that P, = 0. Since gl.dim A < 1,
each P; is a projective A-module. Since soc P is simple, each P; is indecomposable, and so P;
has a unique maximal submodule P; . Consequently P; has a unique composition series

PIDOP, DD Py D Puy1=0.

We often use the fact that any non-zero morphism between indecomposable projective modules
is injective, which is a conclusion of gl.dim A < 1. In particular F := End 4 (P;) is a division
algebra. Put P := ;. P;.

(i) We shall show that End 4 (P) >~ T,,,(F).

Since P; is injective, any non-zero morphism P; — P; extends to a morphism P; — Pj,
which is an isomorphism. Thus we have

Hom (P;, Pj) >~ {(1)7 8 ; j;’
This implies the assertion.

(i1) We shall show that P is a progenerator of A.

Since A is ring-indecomposable, we only have to show that, for any indecomposable pro-
jective A-module Q such that Hom 4 (Q, P) # 0 or Hom4 (P, Q) # 0, we have Q € add P. If
Hom4 (Q, P) # 0, then Hom 4 (Q, P;) # 0. Thus Q is a submodule of P;, and we have Q ~ P;
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for some i. If Hom4 (P, Q) # 0, then Hom 4 (Q, P1) # 0 since P; is an injective hull of each P;.
Thus Q € add P by the previous observation. O

Applying Corollary 1.16 to T,,,(F), we have a family of algebras with n-cluster tilting objects.
Moreover, they are absolute by the following result.

Theorem 1.18. For any division algebra F and m > 1, there exists an algebra T,f,")(F ) for any
n = 1 such that T,,(ll)(F) =T (F) and T,,(l")(F) is an absolutely n-complete algebra with the
cone T,,S"H)(F).

The quiver of T, (k) will be given in Theorem 6.12 as follows. It looks like an (1 + 1)-
simplex. The relations are given by commutative relations for each small square, and zero
relations for each small half square.

Ti”(k) o Tf)(k) o T4(3)(k) .
BN 7 N\ 7 N\
L] L] L] L] L]
EN 7 N\ 7z X\ 7 W\ 7 N\
EN 7 N N 7 X\ 7 W\ ‘X\ N 7 N\
L] L] L] L] L] L] L] L] L]
N
L] L]
7 N\ 7 X
L] \. L]
7 N\
L]
Tf”(k) .

While there are a lot of algebras with relative n-cluster tilting objects, algebras with absolute
n-cluster tilting objects are rather rare. In fact the following result shows a certain converse of
Theorem 1.18.

Theorem 1.19. Let A be a ring-indecomposable finite-dimensional algebra satisfying gl.dim A <
n < dom.dim A for some n > 1. Then A has an absolute n-cluster tilting subcategory if and only

if A is Morita equivalent to T,fl") (F) for some division algebra F and m > 1.
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For example an Auslander algebra I" of a ring-indecomposable representation-finite algebra

A has an absolute 2-cluster tilting object if and only if A is Morita equivalent to T,,(lz)(F ) for
some division algebra F and m > 1.

A key step to prove Theorem 1.19 is the following more explicit version of Auslander corre-
spondence (Theorem 1.10), which will be shown in Proposition 4.2.

Theorem 1.20. Let n > 1. For a finite-dimensional algebra I', the following conditions are equiv-
alent.

(a) There exists a finite-dimensional algebra A with gl.dim A < n and an absolute n-cluster
tilting object M of A such that I >~ End o (M).
(b) gl.dimI" <n+ 1< dom.dimI" and Ext\-(DI", I') =0 for any 0 < i < n.

In forthcoming papers [35,48,49], absolutely n-complete algebras will be called n-represen-
tation-finite algebras and a lot of examples will be constructed. Also combinatorial aspects of
T, (F) will be studied in [61].

1.2. n-Cluster tilting in derived categories

In Section 5, we construct n-cluster tilting subcategories in triangulated categories. Let A be
a finite-dimensional algebra with id 4 A = id A 4 < co. We denote by

D:=KP (pr A)
the homotopy category of bounded complexes of finitely generated projective A-modules, and

we identify it with K°(in A) in the derived category of A. As in Definition 1.1, we call a functo-
rially finite subcategory C of D n-cluster tilting if

C={X € D |Homp(X,C[i])=0 (0 <i <n)}
={X e D |Homp(C, X[i]) =0 (0 <i <n)}.

If mod A has an absolute n-cluster tilting subcategory and gl.dim A < n, then D also has an
n-cluster tilting subcategory by the following result.

Theorem 1.21. Let A be a finite-dimensional algebra with gl.dim A < n. If C is an absolute
n-cluster tilting subcategory of mod A, then

C[nZ]:=add{X[¢n] | X €C, L € Z} 2)
is an n-cluster tilting subcategory of D.
Notice that we cannot drop the assumption that C is absolute.
For the case n = 1, we have C[Z] = D, which means the well-known fact that any object in

D is a direct sum of stalk complexes if A is hereditary. It is natural to hope that C[nZ] forms an
(n 4 2)-angulated category under a certain proper definition [30].
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In Theorem 6.12, we draw Auslander—Reiten quivers of C[nZ] for A = T,f,")(k) as follows.
The relations are again given by commutative relations for each small square, and zero relations
for each small half square.

()] (2)
7, (k) . . o 7,7 () .

)Aé
Y

N £ N
¥\ F
N £ N
¥ N\ ¥
N £ N
¥ N ¥

N

\
7
k

%

/\%/7\%

3)
0]

We also give another construction of an n-cluster tilting subcategory of D by using derived
analogue of n-Auslander—Reiten translations. Recall that there exists an autoequivalence

S:=DoRHomy(—, A) >~ — ém (DA):D— D,
which gives the Serre functor of D, i.e. there exists a functorial isomorphism
Homp (X, Y) >~ DHomp (Y, SX)
for any X, Y € D [34,19]. We define an autoequivalence of D by

S,:=So[-n]:D—D.
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Any n-cluster tilting subcategory C of D satisfies C = S,C =S, 'C [51, Prop. 3.4]. Therefore
S, plays the role of n-Auslander—Reiten translations, and it is natural to introduce the following
subcategory.

Definition 1.22. Define the S,,-closure of an object X € D by
Un(X) =add{S(X) | L e Z}.

The categories M, (DA) and U,(DA) are closely related since r,f ~H O(Sﬁ—) holds on
mod A for any £ > 0 if gl.dim A < n by Lemma 5.5. In particular, C[nZ] = U, (A) holds in
Theorem 1.21 if C has an additive generator.

We shall study the problem whether U4, (A) is an n-cluster tilting subcategory of D. For a
hereditary algebra A, one can easily show that {/1(A) is a 1-cluster tilting subcategory of D if
and only if A is representation-finite. This observation suggests that it is related to the n-complete
property. In fact we have the following another main result in Section 5.

Theorem 1.23. Let A be a t,-finite algebra. Then U, (A) is an n-cluster tilting subcategory of D.
Moreover, U, (T) is an n-cluster tilting subcategory of D for any tilting complex T € D satisfying
gl.dimEndp(T) < n.

As a special case, if gldimA < n and T is a tilting A-module with pd74 < 1, then
gl.dimEndp(7T) < n holds and U, (T) is an n-cluster tilting subcategory of D. This general-
izes the construction of 2-cluster tilting objects in cluster categories using tilting modules given
in [24] as well as recent work of Amiot [1, Prop. 5.4.2] (see also [2, Th. 4.10]) and Barot, Fer-
nandez, Platzeck, Pratti and Trepode [16].

As a special case of Theorem 1.23, U, (A™) forms an n-cluster tilting subcategory of D for
algebras A given in Corollary 1.16. The quivers with relations of these categories will be given
in Theorem 6.12.

At the end of this section, we note the following left-right symmetry of t,-finite algebras,
which will be shown in Section 5.

Proposition 1.24. A finite-dimensional algebra A is t,-finite if and only if A°P is t,-finite.
We notice that easy examples show that n-completeness is not left-right symmetric.
2. Preliminaries

In this section, we give some preliminary results. Let us start with some properties of n-cluster
tilting objects.

Definition 2.1. Let C be a Krull-Schmidt category.
(a) For an object X € C, a morphism fy € Jo (X, Cy) is called left almost split if C; € C and
fo
Hom¢(Cy, —) = Je(X,—)—>0

is exact on C. A left minimal and left almost split morphism is called a source morphism.
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(b) We call a complex

xBele,k. . 3)
a source sequence of X if the following conditions are satisfied.

(i) C; €C and f; € J¢ for any i,
(ii) we have the following exact sequence on C,

- B Home (Ca, —) L Home(Cr, —) & Jo(x, =) = 0. @)

A sink morphism and a sink sequence are defined dually.
(c) We call a complex

0>X—->Ci—»>Cr—»---—>C,—>Y—>0
an n-almost split sequence if this is a source sequence of X € C and a sink sequence of Y € C.
A source sequence (3) corresponds to a minimal projective resolution (4) of a functor
Je(X, —) on C. Thus any indecomposable object X € C has a unique source sequence up to
isomorphisms of complexes if it exists.

Let us recall basic results for n-cluster tilting subcategories.

Theorem 2.2. Let A be a finite-dimensional algebra andn > 1. Let T be a tilting A-module with
pd T, < n.

(a) Let C be an n-cluster tilting subcategory of T

(i) Any indecomposable object X € C\add DA (respectively, Y € C\addT) has an
n-almost split sequence

0O—-X—-Ci—-C—>--->C,—>Y—=0

such thatY ~ v X and X ~1,Y.
(i) Any indecomposable object X € add D A has a source sequence of the form

X—>C—---—>C,—0.

(iii) Any indecomposable object X € add T has a sink sequence of the form

0—->C,— - --—C;— X.

(b) Let C =add M be an n-rigid subcategory of T satisfying T @ DA € C. Then the following
conditions are equivalent.
() C is an n-cluster tilting subcategory of T
(ii) I :=Endy (M) satisfies gl.dim " <n + 1.
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(iii) Any indecomposable object X € C has a source sequence of the form
X—>C—-—>Cyy1—0.
Proof. In [46], n-cluster tilting subcategories of the category
LU ={X emod A | Ext, (X, U)=0 (0 < i)},

for a cotilting A-module U is treated instead of T-. We can apply results in [46] since DT is a
cotilting A°P-module with id4(DT) < n + 1, and C is an n-cluster tilting subcategory of T+ if
and only if DC is an n-cluster tilting subcategory of +(DT).

(a)() This is shown in [46, Th. 2.5.3].

(i1) It is easily shown (cf. [46, Prop. 2.4.1(2-£)]) that there exists an exact sequence 0 —
X/socX - Cy — ---— C,, — O such that C; € C and

0 — Homu(C,, —) = --- = Homy (Cy, —) - Hom4(X/soc X, —) = 0

is exact on C. Connecting with the natural surjection X — X/soc X, we have a source sequence
X — Cy— ---— C, — 0 of the desired form.

(iii) Let I := End A(T). Then DT is a cotilting I"-module, and Tilting theorem [34,60] gives
an equivalence

F =Hom, (T, —): T+ — -(DT)r

which preserves Ext-groups. Thus we have an n-cluster tilting subcategory FC of +(DT') . For
any indecomposable object X € add T4, there exists a sink sequence 0 - C,, — --- - Co — FX
of the indecomposable projective I"-module FX with C; € FC by the dual of (ii). Applying the
quasi-inverse of F, we have the desired sink sequence of X.

(b)(i) & (i1) Apply [46, Th. 5.1(3)] ford :=0and m :=id s (DT) < n.

(ii) < (iii) Cp4+2 = 0 holds in the source sequence (3) if and only if the simple I"°P-module
top Hom 4 (X, M) has projective dimension at most n + 1. Since gl.dim I" < n 4 1 if and only if
any simple I"°P-module has projective dimension at most n + 1, we have the assertion. O

Put

Gn:={X emod A | Ext,(X,A) =0 (0<i <n)},
Hyp = {X emod A |Ext, (DA, X)=0(0<i<n)}.

Lemma 2.3. Let A be a finite-dimensional algebra with gl.dim A < n and X € mod A.
(a) We have mutually quasi-inverse equivalences
7, = DExt)(—, A):G, > H, and 1, =Exto(D—, A): H, — G,.

(b) If X has no non-zero projective summands and Ext"A (X, A) =0 for any 0 < i < n, then
X eg,.
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(¢) If X has no non-zero injective summands and ExtiA(DA, X) =0 for any 0 <i < n, then
X € Hy.

Proof. Although the assertions are elementary, we provide a proof for the convenience of the
reader.
(a) For X € G,, take a projective resolution

0O—P,—>---—> Ph—> X—0. 4
Applying v, we have an exact sequence
O—- 1 X—>vP,— - ---—vPh—0 (6)

where we use Ext"A (X, A) =0 for any 0 < i < n. The sequence (6) gives an injective resolution
of 7, X. Applying v~ to (6), we have a complex

O—P,— --—>Py—>0
whose homology at P; is Ext’}f"(DA, 7, X). Comparing with (5), we have t,X € H, and
T, T, X = X.

(b) Take a projective resolution

f Ji

O—)Pn—>-~'—>P1—]>P0—0>X—>0.
Applying Hom 4 (—, A), we have an exact sequence
Jo h
0— Homx (X, A) = Homy (Py, A) = Homy (P, A) — ---
— Hom (P,, A) — Ext’y (X, A) - 0.
Since X has no non-zero projective summand, f7 is left minimal. Since Hom(—, A) :
add A4 — add 4 A is an equivalence, f] : Homy4(Pp, A) — Homy (P, A) is right minimal.
Since fp: Homy (X, A) — Hom 4 (Py, A) is a split monomorphism by gl.dim A < n, we have
Homy (X, A)=0and X € G,.
(c) This is dual of (b). O

Lemma 2.4. Let A be a finite-dimensional algebra with gl.dim A < n and M the t,-closure of
D A satisfying the condition (Cy,) in Definition 1.11. Then we have the following.

(a) We have full functors
T, = DExt)y (-, A) : M —> M and 1, =Extyop(D—, A): M —> M
which give mutually quasi-inverse equivalences
T Mp—>Mp and 1, :M;— Mp.

(b) T, gives a bijection from isoclasses of indecomposable objects in M p to those in M.
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(c) MpC G, and M; CH,.
(d) Homp(Mp, P(M)) =0.
(e) Homu(ti (D A), ;] (DA)) =0 foranyi < j.

Proof. (a)(c) We have M p C G, by the condition (C,) and Lemma 2.3(b). By Lemma 2.3(a), we
have a fully faithful functor ¢, : M p — H,,. By our construction of M, we have 7,,(Mp) = M;.
Thus we have an equivalence 7, : M p — M with quasi-inverse 7, . Since 7,(P(M)) =0 and
7, (Z(M)) = 0, we have full functors 7, : M — M and 7,7 : M — M.

(b) Immediate from (a).

(d) For any X € P(M), take a projective resolution

O—P,_1— -+—>Ph—>X—0.
Applying Hom 4 (M p, —) and using Ext"A (Mp, A)=0forany 0 <i < n,wehave Hom,(Mp,
X)=0.

(e) We have M; C 'H, by (c), so Homa (D A, t,{_i(DA)) =0. Since 7, : M — M is afull
functor by (a), we have Hom 4 (1:,’; (DA), 1] (DA)=0. O

Now we shall prove Proposition 1.12.

By Lemma 2.4, we have (a)-(c) immediately. The assertion (d) follows immediately
from (¢). O

We give the following general property of 7,-closures.
Proposition 2.5. Let A be a finite-dimensional algebra and M the t,,-closure of D A.

(a) IfExt"A (Mp, A) =0 holds for any 1 <i < n, then M is n-rigid.
(b) Ifn=2, then M is 2-rigid.

For the proof, we need the following general observation.
Lemma 2.6. Let A be a finite-dimensional algebra, X,Y € mod A and 0 <i <n. If
Exti1 (X, A) =0 foranyn —i < j <n, then we have a surjection Ext), (X,Y) — DExtiA(Y,
T X).
Proof. By Auslander—Reiten duality, we have
DExt, (Y, 7,X) ~ DExty (27, 72" 'X) ~ Hom, (2" "' X, 2"~ ').
Since we assumed Extix (X, A)=0forn —i < j <n,itis easily checked (e.g. [6, 7.4]) that
Hom, (£2"7'X, 27'Y) ~ Hom (2" 7' X, Y).
Since in general we have a surjection
Ext’ (X, Y) — Homu (2" X, Y),

we have the desired surjection. O
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Now we shall prove Proposition 2.5. We only have to show (a).

(i) Let X,Y € M. We shall show that, if Exti[‘ (X,Y) =0 for any 0 < i < n, then
Ext, (Y, 7,X) =0 and Ext', (1, X, 7,Y) =0 for any 0 <i < n.

We can assume that X € Mp. Then we have ExtQ(X, A) =0 for any 1 < j <n by our
assumption. Thus we have ExtiA (Y, 1, X) =0forany 0 <i < n by Lemma 2.6. Replacing (X, Y)
by (Y, t, X), we have Exti‘(tnX, 7,Y)=0forany 0 <i <n.

(ii) Let 0 < j, k. Since Exti, (] (DA), DA) =0 forany 0 < i < n, we have Exti, (zJ (D A),
t,’,‘(DA)) =0 and Ext"A(r,]f(DA), r,{+k+l(DA)) =0 for any 0 <i < n by (i). Thus we have
Exty(M,M)=0forany0 <i <n. O

Now we shall prove Proposition 1.7. It follows from Proposition 2.5(b) and the following
result.

Lemma 2.7. Assume gl.dim A < n. Then there exists an n-cluster tilting object in mod A if and
only if M is n-rigid and A € M.

Proof. ‘Only if” part is clear from Theorem 1.6. We shall show ‘if” part.

(i) Since A € M, we have that M satisfies the condition (C,) in Definition 1.11. Thus
7, : Mp — M is an equivalence by Lemma 2.4(a). A bijection from isoclasses of indecompos-
able objects in Z(M) to those in P(M) is given by I — r,f "I, where £; is a maximal number
£ satisfying t,fl # 0. In particular, r,f(DA) = 0 holds for sufficiently large ¢, and M has an
additive generator M. Moreover, we have that th =0 holds for any X € mod A by a similar
argument as in the proof of Proposition 1.3(c).

(ii) We shall show that ExtiA (X, M) =0forany 0 <i <n implies X € M.

We know ExtiA (7 X, ;M) =0 for any 0 < i < n by Lemma 2.6. By our construction of M,
we have Ext"/‘(rnX ,M) =0 for any 0 < i < n. Consequently we have Ext’A(r,fX , M) =0 for
any £ > 0and O <i < n. By (i), we can take a maximal number ¢ > O satisfying ¥ := r,fX #0.
Since 7,Y =0, we have pd Y4 < n. Since we have Ext"A(Y, A)=0forany0 <i <nby AeM,
we have that Y is a projective A-module. Thus we have ¥ € M. By Lemma 2.4(a) again, we
have X ~7,7'Y e M.

(iii) By a dual argument, we have that Ext‘A (M, X) =0 for any 0 <i < n implies X € M.
Consequently M given in (i) is an n-cluster tilting object of mod A. O

3. Proof of Theorems 1.14 and 1.18

Throughout this section we assume that A is n-complete with the t,-closure M = add M of
D A and P(M) = add T unless stated otherwise. We put

I' :=End(M).
We have the following result immediately from Theorem 1.10(a) = (b).

Lemma 3.1. gl.dimI" <n + 1.
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This allows us to put

Tyl 1= DEXt’}:H(—, I):modI” — mod T,
T, =Extfh (D—, ') :mod I' — mod I".
Clearly 7,41 (respectively, 7, ;) preserves monomorphisms (respectively, epimorphisms) in

mod I". Moreover X € mod /" satisfies 7,41X = 0 (respectively, 7, ;X = 0) if and only if
pd X <n+ 1 (respectively, id X < n + 1). We denote by

N = M,1(DIN) =add{z., (DI |i >0}
the 7,41 -closure of DI".
3.1. (n+ 1)-Rigidity of N
The aim of this subsection is to show that A/ is (n + 1)-rigid. As usual, we put

Z(N):=add DT,
PN)={XeN|pdXr<n+1}={XeN|1,11X =0},
N :={X € N'| X has no non-zero summands in Z(\)},
Np :={X € N'| X has no non-zero summands in P(\)}.
For X € M, put
Ux = sup{i >0 | r,l;X 7&0}.
Let us start with the following easy observation.
Proposition 3.2.
(a) £x < oo forany X € M.
(b) A bijection from isoclasses of indecomposable objects in M to pairs (I . 1) of isoclasses of
indecomposable objects 1 € (M) and 0 <i < Ly is given by (1,i)— 7, 1.
Proof. (b) By Lemma 2.4(b) and the definition of M, any indecomposable object in M can be
written uniquely as 7, I for indecomposable / € Z(M) and 0 <i < ¢;.
(a) Since M contains only finitely many isoclasses of indecomposable objects, we have
{1 < oo for any indecomposable I € Z(M). Since Kr’él = {; — i, we have the assertion. O
We put
Gry1:={X emod I' | Ext;-(X, ) =00 <i<n+1},
Hus1:={X €emod I | Ext{-(DI, X) =0 (0<i <n+ 1}

We need the following observation.
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Lemma 3.3.

(a) We have functors

Tup1 = DExUsT (=, ) imod I' — Hyy1 and

T =Ext}5 (D=, ) :mod I" — G, 11

which give mutually quasi-inverse equivalences

Tut1 :Gny1l = Hpy1  and Tl;+1 :Hp1 —> Gu1.
(b) Gn+1 and H, 11 are Serre subcategories of mod I'.

Proof. We use the properties Theorem 1.10(b)(ii) and (iii).
(a) We have the desired functors since 7,41 X € H;,+1 and T, X€ G4 for any X € mod I”

by [43, 6.1(1)]. They give equivalences between G, and H,, | by Lemma 2.3.
(b) This follows from [42, Prop. 2.4]. O

Define functors
F' :=Ext,(M,—):mod A — mod I’
G = DExt"A(—, M) :mod A — mod .

Put F :=F? and G := GO for simplicity. They induce equivalences

F:M—addlI” and G: M —addDI CN.

A crucial role is played by a monomorphism

o:7+1G — G,
of functors on M given by the following proposition.
Proposition 3.4.

(a) There exists an isomorphism Fv, >~ G of functors on add A.

(b) There exists an isomorphism vrF >~ G of functors on M.

(c) There exist isomorphisms ¥t, >~ G" and Gt,” ~F" of functors on M.

(d) There exists a monomorphism « : t,41G — G, of functors on M.

() ax : th+1GX — G, X is a minimal right H,1-approximation for any X € M.
(f) We have a functorial monomorphism

- -2 o o1

T o T o
€.t et -1 ntl%m g2 2 -1 _ ™ ¢
o« 7, G—— 1, 6, ——> 1, G, > - > 111G, ——> G1,.
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Proof. (a)(b) Immediate.
(c) We only show Fr, >~ G". Since gl.dim A < n, any X € M has a projective resolution

0> P,—>---— PHh— X—0. @)
Applying G, we have an exact sequence

0-G"X->GP,—»---—-GP)— GX -0, (8)
where we use n-rigidity of M. On the other hand, applying v, to (7), we have an exact sequence
0— X —>vaP, > vaP,_.
Applying F, we have an exact sequence
0— Ft,X - Fv P, — FvsP,_. )
Comparing (8) and (9) by using (a), we have a commutative diagram
0—- G'X - GP, - GP,.y — --—>GPHh)—>GX—0,
0— Fr,X — Fv;| P, — FVAZJDn,l
of exact sequences. Thus we have Fr, X ~ G" X.

(d) Since GP; >~ Fv 4 P; and gl.dim A < n, the sequence (8) gives a projective resolution of a
I'-module GX. Applying v, we have an exact sequence

0—> 1,.1GX - vrG"X - vrGP,. (10)

Since v G" ~ v F1, >~ G, by (¢) and (b) respectively, we have the assertion.

(e) We have 7,11GX € H,+1 by Lemma 3.3(a). By (10), we have that (Gt,X)/(7,+1GX)
is a submodule of v GP,. By Lemma 3.3(b), we only have to show that soc v G P, does not
belong to H,+1. Since

socvrGP, =socvrFvs P, =socGvy P,
has injective dimension at most n by Theorem 2.2(a)(ii), we have that soc v G P,, does not belong
to Hn-i—l .
(f) Since the functor 7,11 preserves monomorphisms, we have the assertion by (d). O

We need the following general observation, which is valid for arbitrary A with gl.dim A <n.

Lemma 3.5. Let n > 1 and A a finite-dimensional algebra with gl.dim A < n. Let X € mod A
and

0 Xo 2% x; L x, xS0

an exact sequence in mod A with X; € add X.
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(a) If W e mod A satisfies ExtiA(W, X) =0 forany 0 <i < n, then we have an exact sequence

0 — Homy (W, Xo) NN Hom, (W, Xy41)

N Extr/L‘(W’ Xo) ﬁ> .. i) Extr/ll(W, Xn+1) = 0.

(b) If Y € mod A satisfies Ext"A (X,Y)=0forany 0 <i < n, then we have an exact sequence
In fo
0— Homy (X;41,Y) — -+ —> Hom4 (Xo, Y)

s Ext (Xpp1, Y) 25 L% Ext (Xo, Y) — 0.

Proof. We only prove (a). We can assume n > 1. Put L; := Im f;_;. Then we have an exact
sequence

0—->Li—>Xi—>Li+1—>0 (<i<n).
Applying Hom 4 (W, —), we have exact sequences

0 — Hom, (W, L;) - Homs (W, X;) - HomA (W, L;y1) — Exth(W, L;)— 0,
0— Ext’A_l(W, Li+1) — Ext, (W, L;) — Ext', (W, X;) — Ext, (W, Li4+1) — 0,

and an isomorphism
Ext) (W, Liy)) ~Ext/;T\(W, L)) (0<j<n—1).
Since L1 = X and L,+1 = X,,4+1 belong to add X, we have

Ext,(W,L))=0 (1<i<n),

Extl (W, L;) ~Ext}(W, Li_1) -~
AW L) =BG (W Ly {Ext";%vv,Lz) i =n),

Ext" (W, Lit1) @ Ext,2(W, Lijg) = - ~Ext/ T (W, Ly 1) =0 (1 <i <n).
Thus we have exact sequences

0 — Homu (W, L;) > Homs (W, X;) > Hom (W, L;y1) > 0 (1<i <n),
0 — Ext (W, L;) — Ext’, (W, X;) — Ext; (W,L;41) > 0 (1 <i<n),
0 — Homx (W, L,) - Homu (W, X,,) > Homu (W, L,+1) — Ext’; (W, Ly)
— Ext’y (W, X1) = Ext}, (W, Lp) — 0.

Connecting them, we have the desired exact sequence. O

The following result is crucial to study properties of I".
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Lemma 3.6. Let

0—>M0L>M1i> f—)M i>Mn+]—>0

be an exact sequence in mod A with M; € M. Put X := CokF f,, and Y := Ker G f.

(a) We have exact sequences

Ff, Ff, Ff_ ;
0—FMy L% Fary 205 X e B E, > x>0,
G G G fu_ G fn
0— Y — GMo —2% ey &5 . 8L gm, S 6, — 0.

(b) We have X € Gpt1, Y € Hpt1, i1 X Y and 7, | Y ~ X.
(c) We have exact sequences

G" fo G"fi  Gaot n G" f

0—-G'My — G"M| —— - ——= G"M;, —> G"M,;1 > Y — 0,
n Fn Frl n Fl'ln
0— Fr,Mo —25% Fr, i, 20 0 o v, o My — Y — 0.

(d) If M; € Mp for any i, then we have an exact sequence

O-)TnM() ™ fo Tan T f1 .“7nfn M T fn 'L'nM”+1 0.

(e) We have exact sequences

F F F o F" "
0— X — F'M, Jo F' M, froo /i anMn fHFnMn_H—)O,
7, o Gf,l N Gf Ju—1
0— X —Grt, M0—>Gt M — - GrM—>Gr My+1 — 0.

) If M; € My for any i, then we have an exact sequence

0— 1, My T fo, T, M, i e M, Jn T M1 — 0.

n
Proof. (a) Since M is n-rigid, we have desired exact sequences by Lemma 3.5.

(b) We apply v to the upper sequence in (a) and compare with the lower sequence in (a)
by using Proposition 3.4(b). Then we have X € G,41 and 7,41 X >~ Y. We have Y € H,4+1 and

T, Y =X by Lemma 2.3(a).

(c) The upper sequence is exact by Lemma 3.5(b). Since Fr, >~ G” holds by Proposi-
tion 3.4(c), the lower sequence is exact.

(d) We have ExtiA (Mp, A) =0 for any 0 < i < n by Lemma 2.4(c). Thus the sequence is
exact by Lemma 3.5(b).

(e)(f) These are shown dually. O

We need the following easy observation.
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Lemma 3.7. Let

M()AMli)Mzﬁ)ou

be a complex with M; € M. Assume My € M p and that each f; is left minimal. Then M; € M p
for any i and we have a complex

™ fo T f1
T, My —> t,M| = - --

such that each t, f; is left minimal.

Proof. We have Hom 4 (M p, P(M)) = 0 by Lemma 2.4(d). Since any f; is left minimal, we
have M; € M p inductively. Since 1, : Mp — M/ is an equivalence by Lemma 2.4(a), each
T, fi is also left minimal. O

We shall use the following special case in inductive argument.

Lemma 3.8. Let

0 Mo 2% my L o I g, P M >0

be an exact sequence in mod A with M; € M. Assume My € M p and that each f; is left minimal.
Then M; € Mp for any i and we have an exact sequence

™ fo ™ f1 Tn fu—1 Wf
0— .My = t,M] == ... S oM, =5 1, M, 1 — 0

such that each t, f; is left minimal.
Proof. Immediate from Lemma 3.7 and Lemma 3.6(d). O
We are ready to show the following key observation.
Proposition 3.9. Let X € M be indecomposable and £ > 0. Put I := GX.

(@) If ¢ > Ex, then T} 1 =0.
(b) If £ =Ly, then rrf 411 is an indecomposable object in PWN).
(©) IfO< e <ly, then Tl |1 €Guyi andpd(z)  Hr=n+1.

Proof. (a) Since tf 41/ 1s a submodule of Gr,fX = 0 by Proposition 3.4(f), we have tf 1=0.
(c) r,fX € M p holds for any 0 < ¢ < x. Take a minimal injective resolution

O—>tnX£>10£)>~--b>In—>O. (1

Since each f; is left minimal, we have an exact sequence
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Tt foy

Tt fo tt fum

0—gitlx Iy ttr, -0

for any 0 < £ < £x by applying Lemma 3.8 to (11) repeatedly. Applying F, we have a I"-module
X, with an exact sequence

Ty S Fr fo Ft Jn-1

OeF#HX Frlly —5 . S F, > X — 0

by Lemma 3.6(a). We have Xo =F" rnX ~GX = I by Proposition 3.4(c). Using Lemma 3.6(b)

and (c) repeatedly, we have r = fn+1X0 ~T n+1X1 ~Xp € g,,+1 forany 0 < ¢ < £y.

(b) Since r,f ﬁ’ll =0 by (a) we have r I e P(N). We have that r I is indecomposable
by (c) and Lemma 3.3(a). O

Summarizing with Lemma 3.1, we have the following conclusion.
Lemma 3.10. I" is 7,41 -finite and satisfies the condition (Cy,41) in Definition 1.11.

We have the main results in this section.

Theorem 3.11.

(@) Nis (n+ 1)-rigid.
(b) We have full functors

Tyt = DBt (= )N >N and , =Bxtfl(D—, )N —> N
which give mutually quasi-inverse equivalences

Tur1:Np = N;  and Tt

N] —>./\/p.

(¢) Th11 gives a bijection from isoclasses of indecomposable objects in N'p to those in N.
(d NpC gn+1 and N1 C Hy 1.

(e) Homp (7} +1(DF), rnH(DF)) =0foranyi < j.

() Ext-(PW),N) =0 foranyi > 0.

Proof. I is 7,4 1-finite and N satisfies the condition (C,,11) by Lemmas 3.1 and 3.10. Thus (a)
follows from Lemma 2.5(a), and (b)—(e) follow from Lemma 2.4. By (a) and pd X <n + 1 for
any X € P(N), we have (f). O

We also have the following description of indecomposable objects in .
Corollary 3.12.
(a) There exist bijections among

e isoclasses of indecomposable objects in N,
e pairs (X, i) of isoclasses of indecomposable objects X € M and 0 <i < Uy,
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e triples (1,1, j) of isoclasses of indecomposable objects 1 € T(M) and 0 < i, j satisfying
i+ </ '
They are given by T, Gty < (t,1, j) < (1,1, ).
(b) Under the bijection in (a), Tr{+l Gt I belongs to P(N) if and only ifi + j = ¢;.
(¢) N has an additive generator.

Proof. (a) By Theorem 3.11(c), any indecomposable object in N can be written uniquely as
t,{ +1GX for an indecomposable object X € M and 0 < j. By Proposition 3.9, r,{ +1GX is non-
zero if and only if 0 < j < £x. By Proposition 3.2, X can be written uniquely as /1 for an

indecomposable object 1 € Z(M) and 0 <i < ¢;. Since £x = £; — i, we have the assertion.
(b)(c) Immediate from (a). O

3.2. Tilting I'-module in P(N)

By Corollary 3.12, there exists a I'-module U such that P(N) = add U. In this subsection,
we shall show that U is a tilting I"-module.

We have pd Ui < n + 1 by definition of P(/N). By Theorem 3.11(f), we have Ext‘f(U, U)=
0 for any 0 < i. By Theorem 3.11(c), we have that U and I" have the same number of non-
isomorphic indecomposable direct summands. For the case n = 1, these imply that U is a tilting
I'-module [4,34]. But we need more argument for arbitrary n.

Lemma 3.13.

@ 15,,Gt, ' X € PW) for any 0 < € and X € P(M).

(b) T:;+1Gl'n_lX e Np forany 0 <i < £ and X € M.

Proof. (a) We can assume 7, £X = 0. Since £ -ty = ¢, the assertion follows from Corol-
lary 3.12(b).

(b) Any indecomposable summand Y of 7, tX satisfies £y > £. Thus the assertion follows
from Corollary 3.12(b). O

We shall often use the following result.

Lemma 3.14. Let

0—>X£)>N1ANZE"'ﬁ)Nn-&-I@INn-FZ_)O

be an exact sequence in mod I" with N; € Np and X € G, 1. Then the sequence

Tu+1f0 Tt f1 Tt f2 Tnt1 S Tt futl
0= 141X —> 141Nl —=> Ty 1 N2 — -+ —= Ty 1 Nyt1 —— T4 1Ny42 — 0

is exact.

Proof. We have Ext’}«(]\/' p, ') =0 for any 0 <i < n + 1 by Theorem 3.11(d). We have the
desired exact sequence by applying Lemma 3.5(b), where we replace n thereby n + 1. O
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Lemma 3.15. Let [ € Z(M) be indecomposable.

(a) There exist exact sequences

0—>vAI—>T0£)> f"—)T 1— 0,
Gn
0= FI -Gy 25 .26, >0

with T; € P(M).
(b) Forany 0 < £ < £y, there exist exact sequences

0T, L Ly L% -1y o, (12)

r‘: G f Tn Gtrfefl
0—>Ft I—>r 1G1:_£T H A

er]Grn_zTo -0
with T; € P(M).

Proof. (a) Since v}/ is a projective A-module and T is a tilting A-module with pd T4 < n, we
have the upper sequence. Applying G, we have an exact sequence

G Gn
0—>GvAI—>GT0—fO> / GT 1—0

by Lemma 3.5 since ExtiA (A®T, M) =0foranyi > 0. Since Gv, I =F1I by Proposition 3.4(a),
we have the lower sequence.
(b) Since r,f_l I € M C T+, there exists an exact sequence

£>T1i>T ﬂ)fe lr 50

with 7; € P(M) and Im f; € T+, Since

Exth (Im f,,, Im f,41) = Ext (Im f,,—1, Im fr 1) = --- = Ext T (Im fo, Tm f,11) =0

by gl.dim A < n, we have that Im f;,, € P(M). Thus we have the sequence (12).
Clearly we can assume that each f; is right minimal. Applying 7, to (12) repeatedly, we have
an exact sequence

0 ot I L I g WU ety (13)

for any 0 <i < € — 1 by the dual of Lemma 3.8 since /.1 € M for any 0 <.
Applymg F to (13), we have a I"'-module X; with an exact sequence

Fo, ' fo

o ) . L
/ --~T—f;Ftn’To—>Frf =1 5 X, -0

O—>Ft_lT
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forany 0 <i < ¢ — 1 by Lemma 3.6(a), and for i = —1 by Lemma 3.6(c). In particular we have
X1~ Fr,fl. By Lemma 3.6(b), we have X; € G,41 and 7,41 X; ~ X;_| forany 0 <i <€ — 1.
Especially we have

T 1 Xe—1€Gu1 (0<i<€—1) and 7\ X1 ~X_j~Fgl (14)

On the other hand, applying Lemma 3.6(e) to the sequence (13) for i = £ — 1, we have an
exact sequence

Gt tfy Gt 7t fi

0— X¢ 1 — Gt 'T, G, ‘Ty — 0. (15)

We have r,iHGrn’eT € Np forany 0 <i < € — 1 by Lemma 3.13(b). Applying 7,41 to (15)
repeatedly, we have an exact sequence

Gr, ' fu TG th

. . Ti .
i i —L n+l i —L
0— r”+1Xg_1—>‘cn+lG‘cn T, Tn+1GTn To— 0

for any 0 < i < £ by Lemma 3.14 since we have (14). Putting i = £, we have the desired sequence
by (14). O

Summarizing above results, we have the following desired result.
Theorem 3.16. There exists a tilting I'-module U such that pdUr <n + 1 and P(N) =add U.

Proof. As we observed at the beginning of this subsection, we already have pd Ur <n + 1 and
Ext}»(U,U) =0 forany i > 0. By Lemmas 3.15 and 3.13(a), there exists an exact sequence

O—-TI'—->Uy— ---—U,—0
with U; € addU. Thus U is a tilting I"-module. O
3.3. Mapping cone construction of (n + 1)-almost split sequences

In this section, we complete our proof of Theorem 1.14. Our method is to construct source se-
quences in A and apply Theorem 2.2(b)(iii) = (i). A crucial role is played by a monomorphism

a:7+1G — G,
of functors on M in Proposition 3.4(d).

Lemma 3.17. Fix an indecomposable object X € M and £ > 0. Take a source morphism
fo: X — My in M.

(a) Any morphism erGX — t,’;H

GM withi > £ is zero.
(b) Any morphism rf 1 GX — rf +1GM which is not a split monomorphism factors through
r:fHGfo tt GX —> Tt

n+1 n—HGMl'
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(c) Any morphism erGX — t,l;HGM with 0 < i < £ factors through © +105X GX —

n+1GT"

n+1

Proof. (a) Immediate from Theorem 3.1 l(e)

(b) By Theorem 3.1 l(b) any morphism 'L’ 1GX — rn 1

Gg with a morphlsm g : X — M which is not a split monomor-

GM which is not a split monomor-

phism can be written as rn 1

phism. Since g factors through fj, we have that rn 41

(¢) By Theorem 3.11(b), any morphism Tn+ GX — r,iHGM can be written as ‘L’,l;_,'_lg

Gg factors through rn +1G fo.

for a morphism g : rz_iGX — GM. Since 7,41 preserves monomorphisms, we have that

L—i—1 o—i z i—1 . . . . P
T, OX:T, +]GX =T, GrnX is a monomorphism. Slnce GM is an injective I"-module,

g factors through /77!

nil  OX- Thus t

n+1g factors through rn+1 ax. O

Immediately we have the following conclusion.

Proposition 3.18. Fix an indecomposable object X € M and 0 < € < Lx. Take a source mor-

phism fo: X — My in M. Then a left almost split morphism of rn+] GX is given by

¢

G fo

<nf1 >:#HGX*f¢HGMQ (nHGW )
Tn+19X

Recall that any indecomposable object X € M has a source sequence by Theorem 2.2(a). By
using it, we shall construct source sequences of an indecomposable object t,f +1GX in N for
0<e<ey.

First we consider the case ¢ = 0.

Proposition 3.19. For an indecomposable object X € M, take a source sequence

XAM]L> fo M&M,H_]—)O

in M. Applying G, we have an exact sequence

Gfy

Gll n
Gx 8 Gary S Gy,

GM,; GM, -5 GM,41 — 0

which is a source sequence of GX in N.

Proof. Clearly the sequence is exact. Since each f; is left minimal and G is a fully faithful func-
tor, each G f; is left minimal. Moreover G fj is a source morphism in A/ by Proposition 3.18. O

Next we consider the case 0 < £ < £x. Recall that any indecomposable object in M is a left
term of an n-almost split sequence by Theorem 2.2(a). Let us start with the following observation.

Lemma 3.20. For an indecomposable object X € Mp, take the following n-almost split se-
quence,

0—>rnXﬂ>M1$~ fayg 5 M, i>X—>O
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(a) We have the following source sequence in M,

PN Y AR e Iy VAR G} (16)

n

(b) socGX € G4 and 1, 41(soc GX) >~ soc(GT, X).

Proof. (a) Any term in (16) belongs to Mp. Since we have Hom,(Mp, P(M)) = 0 by
Lemma 2.4(d) and we have an equivalence 7, : M; — M p, we have the assertion.
(b) Applying G to source sequences of X and t, X, we have exact sequences

GTn_fO _ G, fi an_fn—l _ an_fn _
0—socGX - GX — G, M| — --- —— G, M, — G1, X = 0,

Gfo Gfi . G fu-1 G fn

0 — soc(Gt, X) —> G, X GX — 0.

GM;

GM,
Comparing these sequences by Lemma 3.6(a)(e), we have the assertions. O
We also need the following information.

Proposition 3.21. For an indecomposable object X € M and £ > 0, let S := r}f 41 (soc GX).

(a) We have S ~ soc(Gr,’fX ).
(b) If0< L <Ly, then S € Guy1. If =1Ly, then S ¢ Gu11. If £ > £x, then S =0.

Proof. (a) We only have to show the case £ = 1. If X € M p, then the assertion follows from
Lemma 3.20(b). Assume X € P(M). Since 7, X = 0, the right-hand side is zero. Since soc GX =
top FX has projective dimension at most n by Theorem 2.2(a)(iii), the left-hand side is also zero.

(b) Immediate from (a) and Lemma 3.20(b). O

For X € M, define a morphism ty : 7,7, X — X by taking an isomorphism X ~ Y @ [ with
Y € M; and I € Z(M) and putting

1
Lx:rnrn_X:Yﬁ)Y@I:X.

We denote by Sx the morphism

o —
Bx 111G, X BN Gr,7, X ﬂ) GX.
Although ¢y depends on the choice of decomposition of X, we have the following.

Lemma 3.22. Bx is independent of the choice of decomposition of X. In particular, B gives a
monomorphism B : 1,41Gt, — G of functors on M.

Proof. By Theorem 2.2(a)(ii), we have id(socGI)r < n. Since we have 1,11G7t,; X € Hpu41
by Lemma 3.3(a) and H,4+; is a Serre subcategory of mod " by Lemma 3.3(b), we have
Homf(z,4+1Gt,; X, GI) =0. This implies the assertion. O
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Proposition 3.23. For an indecomposable object X € Mp and 0 < £ < Ly, take the following
n-almost split sequence in M,

0—>rnXﬁ>M1‘—fl>~-fL;Mn‘—ﬂ'>X—>O.

(a) We have the following commutative diagram of exact sequences.

. . reran_fo ¢ _ t’fHGr,,_f,,e B
0 — 7,,(50cGX) —> 17, | GX ———> 1, Gy M| — -+ ——> 17, G, X — 0
-1 -1 -1
lz l/ T,,_Hﬁrnx l/ T,H_lﬂM] l/ 7",,+1/3X
o—1 o—1 T,fllleO -1 rf;l]an -1
0 — rnH(socGr,,X) — Tn+|GT"X —_— ‘[”+]GM] —_ s rn+1GX — 0

(b) Taking a mapping cone, we have the following (n + 1)-almost split sequence in N,

<T11[+1GT)7f0> (‘E’f_'_lG‘L';f] 0

-1 e—1 1

T B, x TBm —7,1Glo
? n+1Fmn Y4 — —1 n+l 1 n+1
0— rn_HGX _ (Tn+1GTn Ml) ) (th GrnX)

¢ .
(rn Gty f 0 )
-1 -1
Tnt1 By ol G

Proof. (a) By Lemma 3.20(a), we have an exact sequence

-1 -1
P 700 gy o,

(Trf+1GTn_X) & (TeilGMn) n+1

n+1

G, fo - Gt, fi Gty fo-1  _ Gt fn -
0—socGX > GX — G, M| — - —— G, M, —> G7, X - 0. (17)

Since £ < £x, we have r};X € Mp forany 0 <i < £. By Proposition 3.21, we have
t,’;+1(socGX) ~ soc(Gt,’;X) 0<i<¥?) and r,’;H(socGX) €01 (0<i<?).
Since r,i +1GX e Np for any 0 <i < £ by Proposition 3.9(c), we have an exact sequence

i — i — i —
T)1+1GTVL fo Tn+thn fi rn+1GTVL I

0— r,’;+1(socGX)—>r,’;HGX—)r,iHGTn_Ml r,’;+1Grn_X—>O

for any 0 < i < ¢ by applying Lemma 3.7 (replace M there by N') and Lemma 3.14 to the
sequence (17) repeatedly.
By a similar argument, we have an exact sequence

i i 7,116 fo i 7,1 Gfi 711G i
0—1,,(s0cGt, X) - 7, |1 GTWX —— 7, | GM| —— - —— 1, |GX >0

for any 0 <i < €. Thus we have the desired exact sequences.

Using the morphism t}fifﬁ : tf 161 — tlelG of functors, we have the desired commuta-
tive diagram. The left-hand side morphism tf 41(s0cGX) — rf;ll (soc G, X) is an isomorphism
since it is a monomorphism between simple I"-modules.
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r’fHGT,,_f'()) .
tf_;: Brux )
t,fHGX — (r}fHGrn_M]) ® (r’fj_lth,,X) is left almost split. Since all morphisms in our se-
quence are contained in the Jacobson radical of the category A/, they are left minimal. By
Lemma 3.5(b) (replace n there by n + 1), our sequence gives a source sequence of r,f 1 GX.

Since source sequences are unique up to isomorphisms of complexes, it is an (n + 1)-almost split
sequence by Theorem 2.2(a)(i). O

(b) Clearly our sequence is exact. By Proposition 3.18, the morphism (

Consequently we have the following.
Proposition 3.24. Any indecomposable object X € N has a source sequence in N of the form
X—> N — = N2 — 0.
Proof. Immediate from Proposition 3.19 and Proposition 3.23. O
We have the following conclusion.
Theorem 3.25. N is an (n + 1)-cluster tilting object in U~
Proof. This follows from Theorem 2.2(b)(iii) = (i) and Proposition 3.24. O

Now we complete the proof of Theorem 1.14. We have that I is t,4-finite and satisfies
(Cp+1) by Lemma 3.10, (A, +1) by Theorem 3.16, and (B,,1) by Theorem 3.25. O

3.4. Description of the cone of I
The aim of this subsection is to give a description of the cone of I" and prove Theorem 1.18
as an application. For simplicity, we assume that our additive generator M of M is basic, so I"

is also basic.
For ¢ > 0, we denote by

sim® I (respectively, simy I")

the set of simple /"-modules S satisfying rf 115 # 0 (respectively, 7, _ f 1S # 0). Define subcate-
gories of mod I by

g,f 1= {X emod I’ | any composition factor S of X belongs to sim* F},

Hfl 41 ={XemodI" ‘ any composition factor S of X belongs to sim, I"}.
We have the following preliminary properties.
Lemma 3.26.

(a) sim’ I (respectively, simy I') consists of soc GX for any indecomposable X € M satisfying
r,fX # 0 (respectively, r,jeX #0).
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(b) We have giH =Gny1 and H}H_l =Hy+1-
(c) Forany { > 0, we have equivalences

0 Tn+l H0—1 1 Tn+l (-2 2 Tn+l T+l 51 0—1 Tn+l 0
gn+1 7 gn+l NHyi gn—H NH o gn+1 N Hn+l Hyia

whose quasi-inverses are given by T, ;.

Proof. (a) Immediate from Proposition 3.21(a).
(b) We only show Q}l = Gn+1. By Proposition 3.21(b), we have that a simple I"-module S
belongs to g; 4 if and only if it belongs to Gn+1. Since G rll 41 and Gn+1 are Serre subcategories
by Lemma 3.3(b), we have the assertion.
(c) By (b) and Lemma 3.3(a), we have an equivalence 7,1 : g; +1—> 'H

the desired equivalences. O

1

nil: This restricts to

There exist idempotents ¢ and e, of I' such that the factor algebras I'* := I'/(e) and I :=

I'/{ey) satisfy
Gl =modI'* and H! ,=modIy.
We have surjections
r=r’-r'sr?-... and r=nR>nN->n-—---

of algebras. We have the following description of e;.
Lemma 3.27. add(e; M) = add{z/ (DA) | 0 < i < £} holds for any € > 0.
Proof. For an indecomposable object X € M, we put S := soc GX. By definition of e¢;, we have
that X € add(e; M) if and only if S ¢ sim, F . By Lemma 3.26(a), we have that S ¢ simy I if and
only if rn_ZX =0ifand only if X € add{7.,(DA) |0<i<{}). O

Now we need the functorial monomorphism o : tf 1G— Gr,f given in Proposition 3.4(f).
The following result generalizes Proposition 3.4(e).

Lemma 3.28.

a) Oy . T d T, s a mumumal rig t —approxlmatlono T or any S

@ af 1 GX > Gr/X i inimal right H imati Gt'X XeM
and £ > 0.

(b) We have t‘, |G =Homp (I';, Gti-).

Proof. (a) Fix £ > 0 and assume that the assertion is true for £ — 1. By Lemma 3.26(c), any object
in Hle can be written as ‘Cf+1 Y withY € gﬁH. Take any morphism f : er Y — Ger. We
write af( as a composition

-1 o g—
Tn+10y T,f Ix

[’ -1 [’
T,.16X — 5+1G67,” X —— Gt X.
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By Proposition 3.4(e), there exists g : erY — 7,416t 71X such that f = (Oltyttf—lx)g. By
Lemma 3.26(c), there exists £ : rf;llY — Gt,f_lX such that g = t,41h. By the inductive hy-
pothesis, we have Imh C tf;fGX. Thus we have Im f C t,fHGX.

(b) Since Hf; 41 =mod Iy, the assertion follows immediately from (a). O

Lemma 3.29. For £ > 0, we have tfH(DF) ~ DIy as I'-modules.

Proof. Clearly the inclusion DIy — DI is a minimal right Hfl 41-approximation of the
I'-module DI".
On the other hand, tf 1 GM C Gt/ M is aright 'Hﬁ 1-approximation by Lemma 3.28. Since

we assume that M is basic, we have M ~ X @ rfM as A-modules, where X and t,fM have
no non-zero direct summands in common. Then 7, *X = 0 holds. Since soc GX ¢ 'Hﬁ 41 holds

by Lemma 3.26(a), we have Homr(Hf; Jrl,GX ) = 0. Consequently, the minimal right Hfl 11"

approximation of DI" >~ (GX) & (Gr,’fM) is given by tfHGM = er (Dr'y. o
We have the following description of the cone of I".

Proposition 3.30. The cone of I is Morita equivalent to

r o o ... In 1IN I»
rt rt o ... 0 I I

rz rz o2 | oad g o

Proof. We only have to show that Endp (@420 t’f 4+1(DI)) has the desired form. By Lem-
ma 3.29, we have

Homp(t.,,(DI), 7,.,(DI)) =Homp (DI}, DI}) =Hompo (I, I;) = T;

for any i > j. By Theorem 3.11(e), we have Homp(r,’;H(DF), 1:,{+1(DF)) =0foranyi < j.
Thus the assertion follows. O

The following crucial result gives a sufficient condition for A such that I" is absolutely
(n 4+ 1)-complete.

Lemma 3.31. Let A be an absolutely n-complete algebra. Assume that there exist surjections

A=Ag—> A —> Ay — -+

of algebras such that r,f(DA) >~ DAy as A-modules for any £ > 0. Then the cone I' of A is
absolutely (n + 1)-complete.
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Proof. (i) First we shall show the following assertions.

o (1 —ep)M is a Ay-module,
(] HomA(egM, DA@) = 0,
[ egM = (eg)M.

Since r,’;(DA) ~ D A;, the first assertion follows from Lemma 3.27. By Lemmas 2.4(e)
and 3.27 again, we have Hom4 (e, M, D Ay) =0 and Homy (e M, (1 — e¢) M) = 0. This implies
that eg M is a sub I"°P-module of M, and we have e, M = (e;) M.

(i1) Next we shall show the assertion.

We only have to show that P(N) = add I". By Corollary 3.12, any indecomposable ob-
ject in P(N) can be written as r}f +1GX for some indecomposable object X € M such that

P := 1 X belongs to P(M). Since A is absolutely n-complete, P is a projective A-module. By
Lemma 3.28(b), we have rf +1GX =Homp (I, GP), which is a direct summand of

Homp (I, GA) =Homp (I, DM) = D(I't @ M) = D(M/{es)M).
Using observations in (i), we have

D(M/(ec)M) =D(M/egM) = D((1 —e))M) =Homy, ((1 — e)) M, D Ay)
=Hom (M, DAy).
This is a projective I'-module, and we have the assertion. 0O
Now we are ready to prove Theorem 1.18.
By Lemmas 3.29 and 3.31, we only have to show that the m x m triangular matrix ring

A= T,,(ll)(F) satisfies the condition for n = 1 in Lemma 3.31. Let {fi, ..., fiu} be a complete
set of orthogonal primitive idempotents of A such that

fiJa > finA
for any 1 <i <m as A-modules. Put
Ag:=A/{fr +--+ fo).
Then one can easily check that
‘DA =T (F)~DA,
holds as A-modules. Thus A satisfies the condition for » = 1 in Lemma 3.31. O
4. Absolute n-cluster tilting subcategories

In this section we shall study algebras with absolute n-cluster tilting objects and prove Theo-
rem 1.19 as an application. Let us start with the following easy observations.
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Lemma 4.1. Let A be a finite-dimensional algebra with an absolute n-cluster tilting object M
(n>1).

(@) Hom (M, I) is a projective-injective End 4 (M )-module for any injective A-module I.

(b) We have gl.dim A =id M 4.

(c) For any indecomposable direct summand X of M, we have either X is projective or
pd X4 > n.

Proof. (a) Hom,(M,I) is projective by I € addM. It is injective by Homu(M,I) =
DHom (v~ I,M)and v~ [ € add M.
(b) Since any X € mod A has an exact sequence

O->M,—> --->M —>X—->0

with M; € add M by [46, Prop. 2.4.1(2-¢)], we have that id X 4 <id M 4.
(c) Immediate from Ext'y (X, A) =0forany 0 <i <n. O

Now we prove the following key result.

Proposition 4.2. Let A be a finite-dimensional algebra with an absolute n-cluster tilting ob-
ject M (n > 1). Let I' = Endp(M). Then Ext\-(DI", I") = 0 for any 0 < i < n if and only if
gl.dim A < n.

Proof. Take an injective resolution

00 M— g2 . I I gmn=tpr o, (18)

Applying F = Hom 4 (M, —), we have an exact sequence

O—-TI—->Fly—---—F,—-C—>0 (19)

where we use Ext"A (M, M) =0 for any 0 < i < n. By Lemma 4.1(a), each FI; is a projective-
injective I"-module. Since we have gl.dim /" < n + 1 by Theorem 1.10, we have that C is
injective. Conversely any indecomposable injective non-projective I"-module / is isomorphic
to a summand of C since any indecomposable injective I"-module appears in the minimal in-
jective resolution of the I'-module I" by gl.dimI" < co. Hence we only have to show that
Ext’f (C, I') =0 holds for any 0 < i < n if and only if gl.dim A < n.

Applying Homp(—, I') to the projective resolution (19) of C and using Yoneda’s Lemma, we
have an isomorphism

Homp(¥I1,,I") - ---— Homp(Fly,I') - Homp(I',I")
U Lt Lt
Hom,(l,,, M) — ---— Homu(lyp, M) — Hom(M, M)

of complexes. Thus ExtiF(C, I') =0 for any 0 < i < n if and only if the complex
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Hom 4 (I,. M) =% - .. % Hom , (1o, M) — Hom (M. M) (20)

obtained by applying Hom (—, M) to (18) is exact.
Using the condition Ext',(DA, M) =0 for any 0 < i < n, one can easily check that the
following conditions are equivalent.

° (20)_ is exact at Homy (I;, M) for any 0 <i < n.
° Ext’A(.Q’”*lM, M)=0forany 0 <i <n.

Since M is an n-cluster tilting object in mod A, this is equivalent to
e 27" M ecaddM.

Again using the condition ExtiA (DA, M)=0forany 0 <i < n, one can easily check that the
following conditions are equivalent.

(20) is exact at Hom» (1o, M).
Ext! (Im £, M) = 0.

Ext’, ' (Im f,,_1, M) = 0.

Ext", (7'M, M) LN Ext’}y (I, M) is injective.

Using Auslander—Reiten duality, this is equivalent to

e Homu(z, M, 1) i> Hom, (7, M, 7" I1M) is surjective.

Since we have add M = add(A @ 7,7 M) by Proposition 1.2(a), this is equivalent to
e Hom, (M, I,,) i) Hom(M, 27"~ M) is surjective.

Consequently (20) is exact if and only if 27" 'M € addM and Hom,(M, I,) A
Hom (M, 27"~ M) is surjective. This occurs if and only if f, is a split epimorphism if and
only if id M4 < n if and only if gl.dim A <7n by Lemma 4.1(b). O

Now we prove the following crucial result, which gives the inductive step in our proof of
Theorem 1.19.

Proposition 4.3. Let A be a finite-dimensional algebra with an absolute n-cluster tilting object
M (n>1).If ' =End (M) has an absolute (n + 1)-cluster tilting subcategory, then gl.dim A <

n < dom.dim A.

Proof. We have shown gl.dim A < n in Proposition 4.2. Take a minimal injective resolution

(P Sy R ML AN 1)
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of the A-module A. Applying F = Hom 4 (M, —), we have an exact sequence

F Ff,— Ff,—
fo /i ZFI,,_l /i IFIn

0—-FA—>FI

of I"'-modules since we have Ext‘A (M,A)=0forany 0 <i <n.

Now we put X := Cok(F f,,—1) and Y := 1,41 X. We have gl.dim I" < n+ 1 by Theorem 1.10.
Since each FI; is a projective-injective I"-module by Lemma 4.1(a), we have that X is an injec-
tive I"-module. Hence both X and Y belong to our absolute (n + 1)-cluster tilting subcategory
by Proposition 1.2(a).

Applying Lemma 3.6(b) and (c) (replace n there by n + 1) to the sequence (21), we have an
exact sequence

F n F nJjn— F n ;1—
0=Fr, A — Fr lo—2fo . Kb gy Xl g 1 v S0, 22)

which gives a projective resolution of the I'-module Y. Thus we have pdYr < n. By
Lemma 4.1(c) (replace n there by n + 1), we have that Y is a projective I"-module.

Since each f; in (21) belongs to Jmod 4, €ach Fz,, f; in (22) belongs to Jyoq - Hence (22) is
a minimal projective resolution of Y. Consequently we have 7,/; = 0 for any 0 < i < n. Thus
we have pd(/;) 4 < n for any 0 < i < n. Again by Lemma 4.1(c), we have that /; is a projective
A-module for any 0 <7 < n. Thus dom.dim A > n holds. O

Now we are ready to prove Theorem 1.19.

By Theorem 1.18, we only have to show ‘only if” part. The assertion for n = 1 follows auto-
matically from Proposition 1.17.

We assume n > 2 and put A — A, By Theorem 1.10, there exists a finite-dimensional
algebra A®~D and an absolute (n — 1)-cluster tilting object M®~1 in mod A~V such that
A®™ is isomorphic to End An-n (M (=) Clearly A®~V is also ring-indecomposable. Applying
Proposition4.3to (A, I') := (A(”_l), A(”)), we have gl.dim AD <51 <dom.dim A®—D,

Repeating similar argument, we have a ring-indecomposable finite-dimensional algebra A®)
(1 <i < n) satisfying the following conditions:

(a) gl.c_limA(i) <i < dom.dim AD, .
(b) A® has an absolute i-cluster tilting object M @,
(¢) AU+ is isomorphic to End 4 (M ®).

Since gl.dim AD <1 < dom.dim AWM, we have that AV is Morita equivalent to T,,(,l)(F) for
some division algebra F and m > 1 by Proposition 1.17.

Using the conditions (b) and (c) inductively, we have that A®D s Morita equivalent to our
absolutely i-complete algebra T,,(J) (F) for any 1 < i < n since any add M@ is a unique absolute
i-cluster tilting subcategory by Theorem 1.6. Thus we have the assertion. O

5. n-Cluster tilting in derived categories

Throughout this section, let A be a finite-dimensional algebra with idy A =id A4 < co. We
denote by D := KP(pr A) the homotopy category of bounded complexes of finitely generated



O. Iyama / Advances in Mathematics 226 (2011) 1-61 41

projective A-modules, and we identify it with °(in A). We consider the following subcategories
of D, which form a ¢-structure of D if gl.dim A < oo.

DSV:={X eD| H'(X)=0forany i > 0},
D>%:={XeD|H (X)=0 foranyi <0}.
Let us start with the following simple observation.

Lemma 5.1. Let A be a finite-dimensional algebra with gl.dim A < oo.

(a) Forany X € D, there exist only finitely many integers i satisfying Homp(mod A, X[i]) # 0.
(b) mod A is a functorially finite subcategory of D.

Proof. (a) Take a sufficiently large integer k such that H'(X) = 0 holds if i < —k or k < i. Then
we have Homp(mod A, X[i]) =0 if eitheri < —k or k + gl.dim A < i.

(b) We only show contravariant finiteness. Any X € D is isomorphic to a bounded complex
(---— I' = 't — ...) of injective A-modules. It is easily checked that the natural map Z° —
X is aright (mod A)-approximation of X. O

The following easy observation is quite useful.
Lemma 5.2. Let A be a finite-dimensional algebra with gl.dim A < n.

(@) If X € D satisfies H (X) =0 for any 0 < i <n, then X ~Y @& Z for some Y € DS° and
Z e D",

(b) If X € D satisfies H (X) = 0 for any integer i ¢ nZ, then X is isomorphic to
Dz H(X)[—tn].

Proof. (a) We can assume that X is a bounded complex (--- — I LN '+t — ...) of finitely
generated injective A-modules. Put

Y = (--~—>I"_2—>I”_1—>Imd"_1—>0—>~--)eD<0.

By our assumption, we have an exact sequence

n—1
02151 ... 2! d—)[".

It follows from gl.dim A < n that Imd"~! is an injective A-module. Thus the inclusion map
f :Imd"~! — I" splits, so there exists g : I — Imd"~! such that gf = L an-1- We have the
following chain homomorphism.

Y=(C-—I"!" > Imd" !> 0 — ...

I e s
n—1
X=( oS g ot
I 18 !

Y=(C—>I"1" 5 Imd" "> 0 — -
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Thus Y is a direct summand of X, and we have the assertion.
(b) Immediate from (a). O

Now we are ready to prove Theorem 1.21. Put B := C[nZ].

(1) We shall show that B is a functorially finite subcategory of D.

We only show contravariant finiteness. Fix X € D. By Lemma 5.1(a), there exist only
finitely many integers £ such that Homp(C[£n], X) # 0. Since C is a functorially finite sub-
category of mod A, we have that C[£¢n] is a contravariantly finite subcategory of D for any £ by
Lemma 5.1(b). Thus there exists a right B-approximation of X.

(i1) We shall show that B is n-rigid. We only have to show Homp(C[kn],C[¢n 4+ i]) =0
fork, eZ and i (0 <i <n). If k > ¢, then this is clearly zero. If k < ¢, then this is zero by
gl.dim A = n. If k = £, then this is again zero by n-rigidity of C. Thus B is n-rigid.

(iii) Assume that X € D satisfies Homp (B, X[i]) =0 for any 0 < i < n. Since A[—¢n] € B
for any ¢ € Z, we have

H*" (X) ~Homp(A[—¢n], X[i]) =0

for any £ € Z and 0 < i < n. Thus H'(X) = 0 holds for any integer i ¢ nZ. Applying
Lemma 5.2(b), we have X ~ @kl H™(X)[—£n]. Moreover we have

Ext) (C. H'" (X)) ~ Homp(C. H (X)[i1) =0

for any 0 < i < n. Since C is an n-cluster tilting subcategory of mod A, we have H*"(X) € C for
any £ € Z. Thus X € B.

(iv) Dually we have that if X € D satisfies Homp (X, B[i]) =0 forany 0 < i < n, then X € B.
Thus we conclude that B is an n-cluster tilting subcategory of D. O

In the rest of this section we shall prove Theorem 1.23.
Our question whether U, (A) forms an n-cluster tilting subcategory of D is closely related to
the following conditions for A.

Definition 5.3. Define the conditions (S,,) and (T,) for A as follows:

(Sn) S, D> c D30,
(Tyn) SfLD>0 c DZ! for sufficiently large £.

It is easily shown that (S,) is equivalent to S, IDSO = DO, and (T,) is equivalent to
S, ¢DS? ¢ DS~! for sufficiently large £.
We have the following sufficient conditions for (S,) and (T},).

Proposition 5.4. Let A be a finite-dimensional algebra.

(a) idg A =1d A4 < n holds if and only if (S;) holds.
(b) A is 1,-finite if and only if gl.dim A < n and (T,) hold.

Proof. (a) To show ‘only if* part, take any object X € D>, Then X is isomorphic to a bounded
complex
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X(>0-0>10>1"—..)

of injective A-modules. Since pd(D A) 4 < n, we have that X is isomorphic to a bounded com-
plex

X:(-~-—>O—>O—> P pln )
of projective A-modules by taking a projective resolution. Applying S,;, we have

0 1
SuX (=0 0—v(P™)—v(P'™)—...) e D"

Conversely, assume id A, > n. Take X € mod A such that Ext'/'{*'l(X ,A) # 0. Since
H™'(S,X) =~ DExt;"' (X, A) #0, we have S, D> ¢ D>
To prove (b), we need the following relationship between two functors 7, and S,,.

Lemma 5.5. Let A be a finite-dimensional algebra satisfying gl.dim A < n.

(a) Forany £ >0, we have an isomorphism tfHO(—) — HO(S,L;—) of functors DZ° — mod A.
(b) For any £ > 0, we have an isomorphism tn_lHO(—) — HO(S;K—) of functors DS0 —
mod A.

Proof. (a) We only have to show the case £ = 1. We have a morphism y : H%(—) — id of
endofunctors DZ% — D>%. We shall show that H%(S,y) gives the desired isomorphism. For

any X € D>% we have a triangle Y[—1] — HO(X) X X — Y with ¥ € D>!. Since (S;) holds

Sy
by gl.dim A < n and Proposition 5.4(a), we have a triangle S, Y[—1] — S,,HO(X) 2nvx S, X —

S.Y with S, € DZ!. Applying H°, we have an isomorphism

HO(Suyx)
J

1, H*(X) ~ DH"(RHom (H°(X), A)) ~ H°(S, H*(X) H°(S, X).

(b) This is shown dually. O

Now we shall show Proposition 5.4(b). Both conditions imply gl.dim A < n. By (a), we have
that A satisfies (S,). By Lemma 5.5(a), we have that t,f = 0 holds for sufficiently large ¢ if and
only if (T,,) holds. Thus the assertion holds. O

Now we can prove Proposition 1.24.
This is a direct consequence of Proposition 5.4(b) since both global dimension and the condi-
tion (T,) are left-right symmetric. O

We give easy properties of the condition (T,,).
Lemma 5.6. Let A be a finite-dimensional algebra satisfying (T,).

(a) Forany X,Y €D, there exist only finitely many integers £ satisfying Homp (X, Sﬁ Y)#NO.
(b) If a finite-dimensional algebra I' is derived equivalent to A, then it also satisfies (T,).
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Proof. (a) Since we have Homp (X, Dg_k) =0 =Homp(X, D>k) for sufficiently large k, we
have the assertion.

(b) We identify D = KP(pr A) with P (pr I"). We denote by Djo and D?O the subcategories
of D given by A and I" respectively. We have I" € ka and A € D?k for sufficiently large k.
Then we have Dﬁo C ka and Dfo € Dﬁk. Then we have

S, {@+DpR? c 5 Pt c DT e DR
Thus I" also satisfies (T,). O

We also need the result below. The assertion (b) was independently given by Amiot in [1,
Prop. 5.4.2] (see also [2, Th. 4.10]) and Barot, Fernandez, Platzeck, Pratti and Trepode [16] for
the case n = 2.

Proposition 5.7. Let A be a finite-dimensional algebra.

(a) If A satisfies (Sy), then Uy, (A) is n-rigid.
(b) If A satisfies gl.dim A < n and (T,), then U, (A) is an n-cluster tilting subcategory of D.

Proof. (a) Since A € DS, we have S;“A € DS for any ¢ > 0 by (S,). This implies
Homp (A, S;EA[i]) =0forany £ >0and 0 <i <n.

On the other hand, we have SfZA = Sfl’l (DA)[—n] € D" for any £ > 0 by (S,,). This implies
Homp (A, SEA[i]) =0 forany £ >0and 0 <i <n.

(b) By (a) and Proposition 5.4(a), we have that U, (A) is n-rigid. By Lemma 5.6(a), we have
that U, (A) is a functorially finite subcategory of D.

Fix any indecomposable object X € D. Since U, (A) is closed under S,jf], the following con-
ditions are equivalent (e.g. [51, Prop. 3.5]).

e Homp (U, (A), X[i]) =0 holds forany 0 <i < n,
e Homp (X, U, (A)[i]) =0 holds for any 0 <i < n.

Thus it remains to show that, if these conditions are satisfied, then X € U, (A). By (T,), there
exists an integer £ such that S{ X € DS? and S X ¢ DSO. Put Y :=S/*!X. Then S, 'Y € DS?
is isomorphic to a bounded complex

S, V~(>P 'SP 50-50->-)

n
of projective A-modules, and Y is isomorphic to a bounded complex

n—1 n

Y:(~~-—>U(P_1)—>U(P0)—>O—>O—>-~-) (23)

of injective A-modules. On the other hand, since Homp(A, Y[i]) = 0 for any 0 < i < n,
we have H'(Y) =0 for any 0 < i < n. Since Y is indecomposable and does not belong to
DS we have Y € D>" by Lemma 5.2(a). Thus the complex (23) is exact except v(PY).
This implies Y = H"(Y)[—n] and that H"(Y) is an injective A-module. Consequently we have
Y € add(DA)[—n] CU,(A) and X =S, 'Y e U, (A). O
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Now we are ready to prove Theorem 1.23.

We only have to show the latter assertion. By Proposition 5.4(b), we have that A satisfies
(T,). Let T € D be a tilting complex of A such that I" = Endp(7T) satisfies gl.dimI" < n.
Since I" is derived equivalent to A, we can identify D with ICb(pr I'), and we have that I"
satisfies (T,) by Lemma 5.6(b). Thus U, (T) = U, (I") is an n-cluster tilting subcategory of D by
Proposition 5.7(b). O

6. Auslander-Reiten quivers and relations

Throughout this section, we assume that the base field & is algebraically closed for simplicity.
For an arrow or a path a in a quiver Q, we denote by s(a) the start vertex and by e(a) the end
vertex.

Definition 6.1.

(a) A weak translation quiver Q = (Qo, Q1, T) consists of a quiver (Qg, Q1) with a bijection

T:0p—> 0y

for fixed subsets Q p and Q; of Q. Here we do not assume any relationship between t and
arrows in Q. We write tx = 0 symbolically for any x € Qo\Qp.

(b) Let A be an n-complete algebra and M = M,, (D A) the t,,-closure of D A. Define a weak
translation quiver Q = (Qo, Q1, 7,,) called the Auslander—Reiten quiver of M as follows:

e Qo (respectively, Qp, Q) is the set of isoclasses of indecomposable objects in M (re-
spectively, M p, M).

e For X, Y € Qo, put dxy := dimg (Jaq (X, Y)/JJZ\A(X, Y)) and draw dxy arrows from X
to?Y.

e 7,: Qp — Qj is given by the equivalence t, : Mp — M.

(c) Again let A be an n-complete algebra and U = U,,(D A) the S,,-closure of D A. Define a
weak translation quiver Q = (Qo, Q1,S,,) called the Auslander—Reiten quiver of U sim-
ilarly, where we put Qp = Q7 := Qo and we define S,, : Qo — Qo by the equivalence
S,:U—-U.

For the case n = 1, the Auslander—Reiten quivers of M = mod A and U = D’(mod A) are
usual one [13,4,34].

In the rest, let C be either M or I in Definition 6.1. By the following well-known fact, all
source morphisms in C give the Auslander—Reiten quiver.

Lemma 6.2. Let X,Y € C be indecomposable objects and fy: X — My a source morphism.
Then dxy is equal to the number of Y appearing in the direct sum decomposition of M.

Proof. The source morphism fo : X — M induces an isomorphism
Home (M1, ¥)/Je(M1, Y) = Je(X, ¥)/JE (X, Y).
Since we assumed that k is algebraically closed, we have that dimg (Hom¢ (M1, Y)/Je(M1,Y))

is equal to the number of ¥ appearing in the direct sum decomposition of M. Thus we have the
assertion. 0O
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We consider a presentation of the category C by its Auslander—Reiten quiver with relations.

Definition 6.3. For a quiver Q, define an additive category P (Q) called the path category of Q
as follows.

e The set of indecomposable objects in P(Q) is Qyp.
e For any x,y € Qo, Homp(p)(x, y) is a k-vector space with the basis consisting of all paths
from x to y in Q.

The presentation of C can be decided similarly to algebras. By (a) below, the category C is
equivalent to some factor category P(Q)/I of the path category P(Q) of the Auslander—Reiten
quiver Q of C. By (b) below, the first two terms of source sequences in C describe generators
of I.

Lemma 6.4. Let Q be the Auslander—Reiten quiver of C.

(a) Assume that we have a morphism P(a) € Jo(X,Y) for any arrow a : X — Y in Q, and
that {P(a) | s(a) = X, e(a) =Y} forms a k-basis of Jo(X, Y)/JCZ(X, Y) forany X, Y € Q.
Then P extends uniquely to a full dense functor P: P(Q) — C.

(b) Assume that we have a full dense functor P : P(Q) — C, and that any x € Qq has the source
sequence with the first two terms

P(x) % P(e(a)) 202 D Pleta).

aeQy,s(a)=x 1<i<my
Then the kernel of P is generated by {Zate,s(a):x rgialx € Qp, 1 <i <myl}.

Proof. Since Q is locally finite and acyclic, the path category of Q coincides with its complete
path category. We refer to [22, Prop. 3.1(b)] for (a), and to [22, Prop. 3.6] for (b). O

If Q is the Auslander—Reiten quiver of C, then we often identify objects of C with those of
P(Q), and we denote the image P(a) of a morphism a in P(Q) under P by the same letter a.

6.1. Cones and cylinders of weak translation quivers

Throughout this subsection, let A be an n-complete algebra with the t,-closure M =
My (DA) =add M of DA. We denote by O = (Qo, Q1, 7,) the Auslander—Reiten quiver of M.
Then I" := End 4 (M) is (n + 1)-complete by Theorem 1.14, so satisfies the conditions (A, +1)-
(Cn+1)a (Sn+1) and (Th41). We denote by

N =M1 (DT) and U =Uys 1 (DT)

the 1,,41-closure and the S, -closure of DI respectively. They are (n + 1)-cluster tilting sub-
categories of mod I" and K (pr I') respectively by Theorem 1.23. The aim of this subsection is
to draw the Auslander-Reiten quivers of N and U respectively by using Q. The key construction
is the following.
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Definition 6.5. Let Q = (Qp, Q1, ) be a weak translation quiver in general.

(a) We define a weak translation qu1ver Q' =(0;. 0.

o Oy:={(x,0)|xeQo, £20, T tx £ 0}.
e There are the following two kinds of arrows.
* (x,0)1:(x,€) > (tx,£—1) for any (x,¢) € Q6 satisfying £ > 0.
* (a,?):(x,£) — (y,¢) for any arrow a : x — y in Q satisfying (x, £), (y,£) € Q6.
o O i={(x,0)e Qy|(x,£+1)e Qy}and Q) :={(x,£) € Q; | £ > 0}.
e Define a bijection 7’ : Q' — Q) by v/(x, ) := (x, £+ 1).
(b) We define a weak translation quiver Q” = (Q(, Qf, t”) called the cylinder of Q as follows:
e 00=0,=07=00xZ={(x,0)|x€Qo, Lel}.
e There are the following two kinds of arrows.
* (x,0)1:(x,€) > (tx,£ — 1) for any (x,¢) € Qg satisfying x € Qp.
* (a,0):(x,€) = (y,¢) forany arrowa : x — yin Q and £ € Z.
e Define a bijection 7”7 : Qf — Qg by t”(x, £) := (x, £+ 1).

7’) called the cone of Q as follows:

To simplify our description of relations below, we use the following convention: When we
consider the path category P(Q’), we regard (x, £) as a zero object if it does not belong to Q,,
and regard (a, £) as a zero morphism if it does not belong to Q. We use the same convention for

P(Q").

Example 6.6. Consider the following translation quivers, where dotted arrows indicate t.

3 5 2

5
y
<

2 6

» 3
AN
<

/AN
/AN
AN /A

A
N

6 4 1 4 1

Their cones are given by the following, which coincide with the Auslander—Reiten quivers in
Section 1.1.

(3 0) 2,0
(5 0) (2 0)

(6, 0) (4 0) 3 (1 0)

IR

“, 1) (1 1)

N,

(1,2)

S0
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Their cylinders are given by the following.

3.1

To draw the Auslander—Reiten quivers of A" and U/, we introduce some notations. We use the
functor

G:=DHomy(—, M) :mod A — mod I

For any path p=aj ---a,, in Q and £ € Z, we define a path in Q" and Q” by

(P»E) = (al’z)"'(anhg)'

For any morphism r = Zp cpp in P(Q) with paths p in O and ¢, € k, we define a morphism
in P(Q’) and P(Q") by (r,¢) := Zp cp(p, £). For any arrow a : X — Y in Q, we choose a
morphism 7, a : 7, X — 1, Y in P(Q) whose image under the functor P : P(Q) — M gives

the image of a under the functor P(Q) X M I M.
We have the following presentation of the category N' = M, 1(DTI").

Theorem 6.7. Under the above circumstances, the Auslander—Reiten quiver of N is given by the
cone Q' = (Q(, Q1. Tuy1) of the Auslander—Reiten quiver Q = (Qo, Q1. Tn) of M. Moreover,
N is presented by the quiver Q' with relations

e (r,£) =0 for any relation r =0 for M and £ > 0,
o (Y. 0) -(r;a,8)=(a,t—1) - (X,£) foranyarrowa :1t,X — Y in Q and £ > 0.

Proof. For any object X € M and £ > 0, we put

(X, 0) =1, GXeN.
Under this notation, we have a bijection between Qy, and isoclasses of indecomposable objects
in NV by Corollary 3.12. Moreover Q’, (respectively, Q') corresponds to isoclasses of indecom-

posable objects in Np (respectively, N7), and the equivalence 7,41 : Np — N corresponds to
the bijection 7" : O, — 0.
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For any morphism a : X — Y in M (or an arrow a : X — Y in Q) and £ > 0, we define a
morphism

@)=t ,Ga: (X, 0) =1, ,GX > (Y, ) =15, ,GY
in V. For any object (X, £) € N with £ > 0, we define a morphism

(X,0): _r_HaX (X, Z)_t+1GX—>(t,1X £—1)= n_HGrn
in /. Under these notations, we shall describe all arrows and relations starting at each vertex
(X, ) € Q. We divide into two cases.

(i) Consider the case (X, £) with £ =0.

Let X ﬁi M, i> M, be the first two terms of the source sequence of X in M. By Proposi-

0 0
tion 3.19, we have the first two terms (X, 0) — (fo ) (My,0) (L)) (M3, 0) of the source sequence

of (X,0) in V. By Lemma 6.2, all arrows starting at (X, 0) are given by (a, 0) for each arrow a
in Q starting at X. By Lemma 6.4(b), all relations starting at (X, 0) are given by (r,0) = 0 for
each relation r = 0 in M starting at X.

(i1) Consider the case (X, £) with £ > 0.

Let 7, X E) M L M be the first two terms of the source sequence of t, X in M. By Propo-

sition 3.23, we have the first two terms
(T, f1,0) 0
T By —(fo.l—1)

(r; fo.0
Tr(l/lll ﬂTnX

(X, 0) ——— (1, M1, ) ® (., X, £— 1) (tp M2, 0) ® (M, £—1)

of the (n + 1)-almost split sequence of (X, £) in /. By our definition of 8 in Lemma 3.22, we
have r 1,3rnX =(X,¥£); and

f l
~ (tar My 1)@ (1 £ —1)

for a decomposition M| =~ (t,t,, M) & I with I € Z(M). By Lemma 6.2, all arrows starting at
(X, 0) are given by (X, £); and (a, 0) for each arrow a in Q starting at X. By Lemma 6.4(b), all
relations starting at (X, £) appear in equalities

(ty fo.0) - (5 f1.£)=0 and ((’n[‘f)l’g)l> At fo ) = (fo. b —1)- (X, 0.

The former equality gives relations (r, £) = 0 for each relation r = 0 in M starting at X. The
latter one gives relations (Y, £) - (1, a,£) = (a,£ — 1) - (X, £); for each arrow a : 7, X — Y
in Q. (Notice that (Y, £); which does not belong to Q’1 appears in the lower half of the mor-
phism ((Tn_Aglsz)l).)

Thus we have the desired assertions. O
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Next we shall give a presentation of the category U = U,41(DI"). We need the following
information, which is similar to Lemma 3.17.

Lemma 6.8. Fix an indecomposable object X € M and ¢ € Z. Take a source morphism
fo: X — My in M.

(a) Any morphism Sfl_HGX — SiH_lGM with i > £ is zero.

(b) Any morphism sz +GX — Sft +1GM which is not a split monomorphism factors through
S{.Gfo:S., ,GX —S! GM,. _

(¢) If X € Mp, then S;,+1GX =~ 1,4.1GX and any morphism SleGX — S;_HGM withi < ¥
factors through Sfllllozx : Sf;_HGX ~ Sﬁ;ll Tn+1 GX — Sf;lthnX.

(d) If X € P(M), then any morphism SflJr]GX — 8,1 GM with i < £ is zero.

Proof. (a) Since Sf;jrilGM = S,]lff"(l“[n +1]) € DS ! holds by (S,4+1), we have

Homp (S, ,GX. S}, GM) ~Homp (S, \GX, DI') ~ DH"(S!7 | GX) = 0.

(b) This is clear since the functor Sf; |G : M — U is fully faithful.

(c) Since GX € Np by Corollary 3.12(b), we have S, 1 1GX >~ 7,1 1GX by (C,11). Applying

S;i] , we only have to show that

DH (8! 'ax) : DH’(S' "' G, X) ~ Homp (S, 'Gru X, DI)

— DH(S!7 GX) ~Homp(SL, | GX, DI')

is surjective. By Lemma 5.5 (replace n there by n + 1), this is equal to the dual of

C—i—1_ . _t—i £—i—1
T4t ozx.tn+1GX—>r”+l G, X.

This is injective since ay is injective and the functor 7,4 preserves monomorphisms.
(d) We have pd(GX) < n by Corollary 3.12(b). Since S!7GM =S, 7" (I'ln + 1]) €
DS~ holds by (S,41), we have

Homp (S}, GX, S}, GM) ~Homp(GX,S.{GM) =0. O

Consequently, we have the result (a) below which is an analogue of Proposition 3.18, and the
result (b) below which is an analogue of Corollary 3.12.

Proposition 6.9.

(a) For any object X € M and € € Z, take a source morphism fy: X — My in M.
() If X € P(M), then a left almost split morphism of S¢,,GX in U is given by

n+1
l 4 4
S¢,1Gfo:St, ,GX — SL, GM,.
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(i) If X € Mp, then a left almost split morphism ofSﬁ_HGX inU is given by

G
< Sn+1 afo) S141GX = (S,1,GM1) © (5,71 GrX).
n+1

(b) A bijection from isoclasses of indecomposable objects in U to pairs (X, £) of isoclasses of
indecomposable objects X € M and £ € Z is given by sz+1GX < (X, 0).

Proof. (a) This is immediate from Lemma 6.8(a)—(d).
(b) Any indecomposable object in I/ is isomorphic to Sﬁ +1GX for some X € M and ¢ € Z.

If SﬁHGX SﬁHGX’, then £ = ¢’ holds by Lemma 6.8(a), and X =~ X’ holds since the functor
Sﬁ 4+1G : M — U is fully faithful. Thus we have the desired bijection. O

We have the following presentation of the category U = Uy, 41 (D).

Theorem 6.10. Under the above circumstances, the Auslander—Reiten quiver of U is given by the
cylinder Q" = (Qg, QF,Sn+1) of the Auslander—Reiten quiver Q = (Qo, Q1, t,) of M. More-
over, U is presented by the quiver Q" with relations

e (r,£) =0 for any relation r =0 for M and £ € Z,
o (Y,0)-(a,f)=0foranyarrowa:X — Y in Qwith X € Q\Qp and L € Z,
o (Y, 8)-(r;a,8)=(a,t—1) - (X,£) foranyarrowa :t, X — Y in Q and L € ZL.

Proof. The proof is similar to that of Theorem 6.7. For any object X € M, we put
(X, 0):=S,,,GX el.

Under this notation, we have a bijection between Qg and isoclasses of indecomposable objects
in U by Proposition 6.9(b). For any morphism ¢ : X — Y in M (or an arrow a : X — Y in Q)
and ¢ > 0, we define a morphism

@0 :=8"Ga:(X,0)=8S;,,GX > (¥,0) =S, GY.
For any object (X, £) € U, we define a morphism

(X, 0 =S jax (X, 0) =S5, ,GX — (1,X, £ — 1) =S'|Gr, X

n+ n+1

Under these notations, we shall describe all arrows and relations starting at each vertex (X, £) €
Qg . Since S, 11 is an autoequivalence of U/, we only have to consider two cases (i) and (ii) below.

(i) Consider the case (X, 0) with X € P(M).

Let X ﬁ) M, i> M, be the first two terms of the source sequence of X in M. By Proposi-

tion 6.9(a) and Lemma 6.8(d), it is easily checked that the first two terms of the source sequence
of (X, 0) in U is given by

(f1.0)
0 ((M 0) )
X, 0) L2 My, 0) Y (Mo, 0) @ (1, M. 1),
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By Lemma 6.4(b), all relations starting at (X, 0) are given by equalities

(f1,0)- (f0,0)=0 and (M1,0); - (fo,0)=0.

The former equality gives a relation (r, 0) = 0 for each relation r = 0 in M starting at X. The
latter equality gives a relation (Y, 0); - (a,0) =0 for each arrow a : X — Y in Q.
(ii) Consider the case (X, 1) with X € Mp.

Lett, X ﬁi M, ﬁ) M be the first two terms of the source sequence of 7, X in M. By Propo-

sition 3.23, we have the first two terms

((r,:fo,l)) ((r,;fl,l) 0 )
Brux _ Buy  —(fo,0) _
X,1) — (rn My, 1) ®(1,X,0) —m8 > (rn M, 1) @& (M, 0) 24)

of the (n + 1)-almost split sequence of (X, 1) in V. We have 8, x = ax = (X, 1); and

B, = (O[T)E)Ml ) - (“17"/(1)1’ 1)‘) (T, My, 1) > (M1,0) = (tyt, M1,0) @ (I,0)

for a decomposition My = (v, 7, M1) ® I with I € Z(M).

By Proposition 6.9 and [51, Prop. 3.9], we have that (24) is the first two terms of a source
sequence of (X, 1) also in /. By Lemma 6.4(b), all relations starting at (X, 1) are given by
equalities

(e o) s ) =0 ana (D) ) = (o0

The former equality gives a relation (r, 1) = O for each relation r = 0 in M starting at X. The lat-
ter one gives arelation (Y, 1), - (zr,a,1) =(a,0)- (X, 1) foreacharrowa :7,X — Yin Q. O

6.2. Examples
Throughout this subsection, let Q = (Qo, Q1) be a Dynkin quiver and A := kQ the path

algebra of Q. Let n > 1. By Corollary 1.16, we have an n-complete algebra A™ with the cone
A®FD for any n > 1. We denote by

M® = M, (DA™) and U™ :=U,(DA™)
the 7,,-closure and the S,,-closure of DA™ respectively. They are n-cluster tilting subcategories
of mod A™ and KCP(pr A™) respectively. Let us draw the Auslander—Reiten quivers of A ™
and U™ . As usual, we denote by 7 = 7; : mod AV — mod A the Auslander—Reiten transla-

tion of A, Let I, be the indecomposable injective A1-module corresponding to the vertex
x € Qo and

Cx i=supl{€>0|7"L #£0}.

Since Q is a Dynkin quiver, we have £, < oo for any x € Q. For £ € Z, we put
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AP =1, ) €Z" |01, 0y 20, £y 4+ £, <€)

For 1 <i <n, we put

i=1,
1<i<n.

e,-::(O,...,O,l,0,...,6)6Z" and v,-::{_ei
ei_1—6€;

Definition 6.11. Let Q be a Dynkin quiver and n > 1

(a) We define a weak translation quiver Q(”) =( Q(()"), Q(”), T,) as follows:
o 0 :={(x.0)|xe Qo LA}
e There are the following (n + 1) kinds of arrows if their start and end vertices belong to
o’
* (a*,4): (x,€) = (w, £) for any arrow a : w — x in Q.
* (b,8):(x,£) > (y,€+ vy) for any arrow b : x — y in Q.
* (x,4);:(x,€) > (x,€£+v;) forany 1 <i < n.
o 08 :={(x,0) € 0" | (x,£+e,) € 0f"} and 0" :={(x,0) € Q" | (x.£ —€,) €
(n)
Oy '}
e Define a bijection 7, : Qg’) — Qg") by 7,(x,£) := (x, £+ e,).
(b) We define a weak translation quiver 0™ = ( é(”) Q<”) S,,) as follows:

¢ O =0W =0 = {(x. 1, t) X € Q0. (b1, bu) € AV, 0, € ).
e There are the following (n + 1) kinds of arrows if their start and end vertlces belong to
A
Q-

* (a*,4): (x,€) > (w, £) for any arrow a : w — x in Q.
* (b,0):(x,£) > (y,£€+ vy) for any arrow b : x — y in Q.
* (x,4);:(x,€) > (x,€£+v;) forany 1 <i < n.
e Define a bijection S,, Q(") Q(") by Sp(x,£) := (x, £ +e,).

To simplify our description of relations below, we use the following convention: When we
consider the path category P(Q™), we regard (x, £) as a zero object if it does not belong to
Q(()"), and regard (a*, £), etc., as a zero morphism if it does not belong to QE"). We use the same
convention for P(@(”)).

Now we have the presentations of M ™ and ¢/ as follows.

Theorem 6.12. Under the above circumstances, we have the following assertions.

(@) The Auslander—Reiten quivers of M and U™ are given by Q" and é(”) respectively.
(b) The categories M™ and U™ are presented by quivers Q"™ and Q™ with the following
relations respectively: Forany £ € Z" and 1 < i, j < n,

(w, £); - (a*,l) = (a*,l + v,-) - (x,8); foranyarrowa:w —> xin Q,
v, L+vy)i- b, )=(b,L+v;) - (x,£); foranyarrowb:x — yin Q,
(. 8+v)i - (x,8)j=(x,€+v;);-(x,€); foranyxe Qy,
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Yo @o-(at )= Y (b.t+v) (b0 foranyxe Qo

acQy, e(a)=x beQq, s(b)=x

We have the quiver with relations of A”*1 by taking the opposite of those of M ™ for any
n>l1.

Proof. It is well kn0\~)vn that the assertions are valid for n =1 [34].
Clearly Q" and Q™ are the cone and the cylinder of Q~1 respectively under the following
identifications for x € Qq, a € Q1 and £ € Z"~! and

(x, 8, L) <> ((x, ), £y), (@, 4,¢,) < ((@.0.¢,),

((xv‘e)isgn) 1<l<n,

(a*, 2, 4,) < ((a*,2), ¢,), (x,€,0,); <> {((X,f),ﬁn)l i

It is easily checked that our relations for Q™ and é ) are obtained from our relations of Q"—1
by applying Theorems 6.7 and 6.10 respectively. Thus the assertion follows inductively. O

Example 6.13. For simplicity, we denote by
xCy- -l (respectively, xp -« £; Ly, a*0y-- Ly, bl Ly)

the vertex (x,€) € QY (respectively, the arrow (x,);, (a*,£), (b,£) € Q\") for € =
1, ..., Ln).

(a) Let Q be the quiver 1 BN —b> 3-S5 40f type A4. In this case we have AW = T4(")(k)
in Theorem 1.18. Then the Auslander—Reiten quiver of M is the following.

S
=
/e
*

S

)
21 L0
PN

13 12 11 10

0

\S)
/-
\E)
/.
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The Auslander—Reiten quiver of M® is the following.

(12)7 \\i:?O
310 300
bfg/7 \\3:10 bEl}, \\i:OO
220 210 200
a30 a*20 a2 a*10 al0 a*00

103
The Auslander—Reiten quiver of M is the following.

4000

3100

7
2200 2100
N\

1003

3000

2000

55

1000
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On the other hand, the Auslander—Reiten quiver of /(! is the following.

32 3 30

[ ]
S

22 2 21 *

/ a*1

2 11 10

Q
w

*2
N
1

13

The Auslander—Reiten quiver of /% is the following.

400

200
al0 a*00
100
10i
a3l a*0
131 101
122
b22
222

132
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The Auslander—Reiten quiver of 2/ is the following.

4000

7
3100 3000
N

7 7
4001 2200 2100 2000
A AN AN

1000

1I22 2022
\ 1031
1032
a c
2—>1<«—4
(b) Let Q be the quiver 1b of type D4. The Auslander—Reiten quiver of M1 is

3
the following.

22 21 20
a*2 a2 a*l al a*0
A N N
12 %,;232 ?‘ 11 %;131 cﬁ- 10 %;k030

NN TN

40
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The Auslander—Reiten quiver of M® is the following.

220 210
a *y \aio a*ly \aio
b*20 b20 b*10 b10
120 320 0 310

200
a *Oy
b*00
0 300
\ct)O
400

11 10

201

2002

4
1002 3002

N
4002
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