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Abstract

The structure of the Galois group of the maximal unramified p-extension of an imaginary quadratic
field is restricted in various ways. In this paper we construct a family of finite 3-groups satisfying these
restrictions. We prove several results about this family and characterize them as finite extensions of certain
quotients of a Sylow pro-3 subgroup of SL2(Z3). We verify that the first group in the family does indeed
arise as such a Galois group and provide a small amount of evidence that this may hold for the other
members. If this was the case then it would imply that there is no upper bound on the possible lengths of a
finite p-class tower.
© 2006 Elsevier Inc. All rights reserved.

MSC: primary 11R37; secondary 11R32, 11R11, 20D15, 20F05, 20F14, 20G25

1. Maximal unramified p-extensions and Schur-σ groups

Let k be an imaginary quadratic number field and p be a prime. The p-class tower of k is the
sequence of fields

k = k1 ⊆ k2 ⊆ k3 ⊆ · · ·
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where kn+1 is the maximal unramified abelian p-extension of kn. By Galois theory the fields kn

correspond to the subgroups in the derived series of G = Gal(knr,p/k) where knr,p = ⋃
n�1 kn is

the maximal unramified p-extension of k. If we let Clp(F ) denote the p-Sylow subgroup of the
class group of a number field F then by class field theory Gal(kn+1/kn) ∼= Clp(kn) for n � 1. In
particular G/[G,G] ∼= Gal(k2/k1) ∼= Clp(k) and so is finite.

Now assume also that p �= 2. In [11] the notion of a Schur-σ group is introduced. It encapsu-
lates various properties that the Galois group G is known to satisfy in this case. These are:

1. The generator rank and relation rank of G (as a pro-p group) are equal;
2. G/[G,G] is finite;
3. There exists an automorphism σ of order 2 on G which induces the inverse automorphism

a �→ a−1 on G/[G,G].

Several structural results are proved there about the presentations of such groups. One conse-
quence of their work is that if d(G) � 3 then the extension knr,p/k is infinite. It follows that all
such extensions which are finite and non-abelian must have d(G) = 2.

In general it is exceedingly difficult to compute the Galois group G. For those examples in
which the group is known to be finite the length of the derived series is usually small. Indeed to
date the largest length observed is 3 and in all these examples p = 2, see [5]. In the next section
we will define a family of finite Schur-σ groups with p = 3 and then show that the derived
length for groups in this family is unbounded. In the last section we show that the first group in
the family is isomorphic to Gal(knr,p/k) for several different choices of k.

2. A family of Schur σ -groups of unbounded derived length

Let F be the free pro-3 group on two generators x and y. Let Gn be the Schur-σ group defined
by the pro-3 presentation

Gn = 〈
x, y

∣∣ r−1
n σ (rn), t

−1σ(t)
〉

where rn = x3y−3n
, t = yxyx−1y and σ :F → F is the automorphism defined by x �→ x−1 and

y �→ y−1. We will prove the following result.

Theorem 2.1. For n � 1 the following hold:

(i) Gn is a finite 3-group of order 33n+2;
(ii) Gn is nilpotent of class 2n + 1;

(iii) Gn has derived length �log2(3n + 3)	.

The remainder of this section is devoted to the proof. We first define some auxiliary groups
which are easier to study than Gn. Let Hn be given by the pro-3 presentation

Hn = 〈
x, y

∣∣ x3, y3n

, t−1σ(t)
〉
,

and let H be given by the pro-3 presentation

H = 〈
x, y

∣∣ x3, t−1σ(t)
〉
.
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Lemma 2.2. Gn is a central cyclic extension of Hn; and all Hn’s are natural quotients of H .

Proof. The first relation of Gn is x6 = y2·3n
, so x6 is central in Gn. Now the relator x6 is

equivalent to the relator x3 in a 3-group; and the same argument holds for the relator y3n
. It

follows that the kernel of the natural map Gn → Hn is generated by x3. The second assertion of
the lemma is obvious. �

The next lemma exhibits an explicit, matrix representation of H . Let α ∈ Z3 satisfy α2 = −2.

Lemma 2.3. The map ρ :H → SL2(Z3), given by

x �→
(

0 −1

1 −1

)
, y �→ α

(
0 1/2

1 −1

)
,

is an isomorphism between H and a pro-3 Sylow subgroup of SL2(Z3).

We recall the recursive definition of the lower p-central series of a pro-p group G: a series of
closed subgroups of G

G = P1(G) � P2(G) � P3(G) � · · ·
defined by Pk(G) = Pk−1(G)p[G,Pk−1(G)] for each k � 1. Here the group on the right-hand
side is the closed subgroup generated by all pth powers of elements in Pk−1(G), and commuta-
tors of elements from G and Pk−1(G).

Proof. We first claim that ρ is a homomorphism. Let σ ′ : SL2 → SL2 be conjugation by
( −1 1

0 1

)
.

It is then easy to check σ ′ρ = ρσ and ρ(x)3 = ρ(t−1σ(t)) = 1.
We will now show simultaneously that ρ is injective, and that its image P is a pro-3 Sylow

subgroup of SL2(Z3).
Consider the subgroup K of index 3 in H that is the normal closure of yx−1. It is generated

by the zi = x−iyxi−1 for all i ∈ {0,1,2}. Its presentation, obtained by rewriting the presentation
of H with respect to the Schreier transversal {1, x, x2}, is given by

K = 〈
z0, z1, z2

∣∣ ziz
2
i+1z

2
i zi+1 for i = 0,1,2

〉
.

The relators of K may be written as [zi, z
−1
i+1]z3

i+1z
3
i ; therefore, inductively, every element

of [K,K] may be written as a cube (K is said to be “powerful,” see [6,12,13]). It follows that
the lower central series (γk(K)) coincides with (Pk(K)) for p = 3. Then γk(K) is generated,
modulo γk+1(K), by {z3k−1

i }0�i�2. We conclude that γk(K)/γk+1(K) has rank at most 3.
Recall that SL2(Z3) has congruence kernels Nk = 1 + 3kM2(Z3). The lower central series

of N1 is given by γk(N1) = Nk , and the rank of Nk/Nk+1 is 3.
All the claims will follow if we show that {ρ(z3k−1

i )} spans Nk/Nk+1 for all k � 1; indeed
then ρ(K) = N1, and since the ranks along the lower central series of K are bounded by 3, they
must equal 3 and ρ is then injective. We compute:

ρ
(
z3k−1

0

) =
(

α−3k−1
0

3k−1

)
;

0 α
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and α3k−1 ∈ 1+3kZ3 \1+3k+1Z3; or, in other words, α is a topological generator of the torsion-
free part of Z×

3 . Similarly,

ρ
(
z3k−1

1

) =
(

α3k−1
α−3k−1 − α3k−1

0 α−3k−1

)
,

ρ
(
z3k−1

2

) =
(

α3k−1
0

α−3k−1 − α3k−1
α−3k−1

)
,

and the off-diagonal entries are in 3kZ3 \ 3k+1Z3.
We conclude by considering P = N1〈ρ(x)〉, which is a pro-3 Sylow subgroup of SL2(Z3), and

noting that ρ(H) = P since they have isomorphic index-3 subgroups K and N1 respectively. �
Remark 2.4. (i) The proof is similar to a construction of presentations of congruence kernels
in [1].

(ii) The following simple and general argument was generously communicated to us by Nigel
Boston and Jordan Ellenberg, see [3]. Suppose f :T → U is a surjective homomorphism of pro-
p groups such that H 1f :H 1(U,Fp) → H 1(T ,Fp) is an isomorphism, and H 2f :H 2(U,Fp) →
H 2(T ,Fp) is injective. Then f is an isomorphism.

We may apply it to T = K and U = N1. It is not difficult to show that f is surjective and
that H 1f is an isomorphism. Now the cup product map

∧2
H 1(U,Fp) → H 2(U,Fp) is an

isomorphism, because U is uniform; so to prove injectivity of H 2f it suffices to show that∧2
H 1(T ,Fp) → H 2(T ,Fp) is injective; this holds because T/Φ(Φ(T )) is abelian.

We may now identify Hn with an appropriate quotient of P :

Lemma 2.5. Hn is the quotient of P by the subgroup of matrices
(

a b
c d

)
satisfying the congruences

a, d ≡ 1
(
mod 3n

)
,

b, c ≡ 0
(
mod 3n

)
,

a + d ≡ 2
(
mod 3n+2),

a + b ≡ 1
(
mod 3n+1),

a + b − c ≡ 1
(
mod 3n+2).

Proof. This amounts to computing the normal closure R of ρ(y3n
) in P . We note that y3 is con-

jugate to z2z1z0, which implies ρ(y3n
) ≡ ρ(z3n−1

0 z3n−1

1 z3n−1

2 ) in Nn/Nn+1, and so the intersection
of R with Nn/Nn+1 is one-dimensional.

Then, taking commutators with zi , we have [y3, zi] ≡ z3n

i−1z
3n

i /z3n

i z3n

i+1 ≡ z3n

i−1/z
3n

i in
Nn+1/Nn+2; so the intersection of R with Nn+1/Nn+2 is two-dimensional.

Finally, taking a commutator again, we have

[
z3n

i−1/z
3n

i , zi+1
] ≡ z−3n+1

i+1

in Nn+2/Nn+3, so the intersection of R with Nn+2/Nn+3 is three-dimensional, and the same
holds for Nk/Nk+1 for all k � n + 2.

Writing out the matrices ρ(z3n
) then proves the lemma. �
i
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Finally, we identify better the relation between Gn and Hn:

Lemma 2.6. The kernel of the natural map Gn → Hn is cyclic of order 3.

Proof. The kernel is cyclic by Lemma 2.2. The order of y3n
in Gn is at most 3, since y3n =

z3n−1

0 z3n−1

1 z3n−1

2 and the relations in Hn force cubes of z3n−1

i to be commutators, and therefore to
vanish in any central extension.

On the other hand, construct the Z/3Z-extension E of Hn by the central element z, with
relation y3n = z. Then it is easy to see that the relations of Gn are satisfied in E; so there exist
images of Gn in which y has order 3n+1, which is therefore the order of y in Gn. We conclude
|Gn| = 3|Hn|. �

We are finally ready to prove the main theorem of this section:

Proof of Theorem 2.1. (i) We have |Gn| = 3|Hn| by Lemma 2.6, and |Hn| = 33n+1 because the
normal closure Rn of y3n

in H has index 33n in N1, and therefore has index 33n+1 in P .
(ii) We first compute the lower central series of Hn. It is obtained from that of P , as

follows: γ1(P ) = P ; and for k � 1, γ2k(P ) = Nk+1〈(z0/z1)
3k

, (z1/z2)
3k 〉 and γ2k+1(P ) =

Nk+1〈(z0z1z2)
3k 〉. The last index k such that Rn is not contained in Nk is n + 1, so the nilpo-

tency class of Hn is 2n + 1. Finally, the action by conjugation of x on y3n ≡ (z0z1z2)
3n−1

is
trivial, so the nilpotency class of Gn is the same as that of Hn, namely 2n + 1; the last quotient
γ2n+1(Gn)/γ2n+2(Gn) = 〈x, y3n〉.

(iii) The derived length of Gn can also be obtained from the derived series of P : one has
P (2k) = γ(22k+2−1)/3(P ) and P (2k+1) = γ(22k+3−2)/3(P ) using [Nk,N�] = Nk+�, which comes
from the identity

[
1 + 3mA,1 + 3nB

] ≡ 1 + 3m+n(AB − BA)

and the fact that the Lie algebra sl2 is simple.
By (ii), we have γ2n+1(P ) > Rn > γ2n+2(P ), so P (k) > Rn > P (k+1) for k = �log2(3n + 3)	.

The same argument as above shows that the derived length of Gn is equals that of Hn. �
Remark 2.7. The groups Gn are finite 3-groups with the same number of relations as generators
in their pro-3 presentations. It is an open question as to whether or not this implies that such
groups must have an abstract presentation with equal numbers of generators and relations. Finite
groups with this latter property are said to have deficiency zero. It is also open whether or not
there exist abstract groups of deficiency zero with arbitrarily large derived length. To date the
maximum length achieved is 6 (see [10]). If Gn has deficiency zero then this question will be
resolved.

We note that examples similar to ours have appeared in the literature before. In [1] a family of
finite 3-generated p-groups (for odd prime p) with increasing nilpotency class and derived length
is constructed. However our family of groups are the first 2-generated candidates to appear in the
literature, as far as we know.

3. Explicit computations of Gal(knr,3/k)

In [4] and [5] the p-group generation algorithm is used to compute the Galois groups of
several p-extensions with restricted ramification. Here we use it to verify that Gal(knr,3/k) ∼= G1
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for several different imaginary quadratic fields k. For the reader’s convenience we recall some
definitions and give a brief description of the method.

Recall that (Pk(G)) denotes the lower p-central series of G. If G is a finite p-group then
this series is finite and the smallest c such that Pc+1(G) = {1} will be called the p-class of G.
A p-group H is called a descendant of G if H/Pc(H) ∼= G where c is the p-class of G. It
is an immediate descendant if it has p-class c + 1. The p-group generation algorithm [14] finds
representatives (up to isomorphism) of all the immediate descendants of a given finite p-group G.
Starting with the elementary abelian p-group on d generators (for some fixed d) the algorithm
allows one to compute a tree containing all finite d-generated p-groups. The p-class of a group
determines the level of the tree in which it occurs.

For the Galois groups we are interested in we have additional information about the maximal
abelian quotients of various subgroups of small index. This information is obtained by computing
class groups of various extensions and applying the Artin reciprocity isomorphism from class
field theory. This information is sometimes sufficient to eliminate all but finitely many groups
from the tree of descendants described above, in which case we are left with a finite number
candidates for the Galois group. A more precise formulation of the method and several examples
in the case p = 2 can be found in [5].

In the case p = 3 we have obtained the following result using the symbolic computation
package MAGMA [2]. (Note: we describe abelian groups by listing the orders of their cyclic
components. So for instance [3,3] is the direct product of a cyclic group of order 3 with itself.)

Proposition 3.1. Let G be a pro-3 group and suppose G/[G,G] ∼= [3,3]. Then G has four closed
subgroups of index 3. If these four subgroups have maximal abelian quotients [3,9], [3,9], [3,9]
and [3,3,3], then G is a finite 3-group.

In fact, after starting the p-group generation algorithm on the 2-generated elementary abelian
3-group [3,3] with the restrictions described in the proposition, the computation terminates hav-
ing found two candidates for G. These will be denoted by Q1 and Q2 and are generated by
{xi}5

i=1 subject to the following power-commutator presentations.

(Q1) x3
1 = x4, [x2, x1] = x3,

x3
2 = x4, [x3, x1] = x4,

[x3, x2] = x5,

(Q2) x3
1 = x2

4 , [x2, x1] = x3,

[x3, x1] = x4,

[x3, x2] = x5.

Q1 and Q2 are the groups (243,5) and (243,6) respectively in MAGMA’s or GAP’s Small-
Groups database [2,7].

Remark 3.2. Note that in these power-commutator presentations if a power x3
r or commutator

[xr , xs] does not occur on the left-hand side of the given relations then it is assumed to be trivial.

Corollary 3.3. For discriminants d satisfying −50 000 � d � 0, the field k = Q(
√

d ) has
Gal(knr,3/k) ∼= G1 if and only if
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d ∈ {−4027,−8751,−19 651,−21 224,−22 711,−24 904,−26 139,−28 031,−28 759,

−34 088,−36 807,−40 299,−40 692,−41 015,−42 423,−43 192,−44 004,

−45 835,−46 587,−48 052,−49 128,−49 812}.
Proof. For each of these fields Cl3(k) ∼= [3,3]. MAGMA’s class field theory package can be
used to construct and verify that the four unramified extensions {ki}4

i=1 of degree 3 over k have
Cl3(ki) ∼= [3,9] for three choices of i, and Cl3(ki) ∼= [3,3,3] for the remaining choice. By Propo-
sition 3.1, Gal(knr,3/k) is isomorphic to Q1 or Q2. The group Q2 has non-trivial Schur multiplier
and hence can be eliminated (see [11]) leaving Q1 as the only possibility. One can verify (by hand
or by machine computation) that G1 satisfies the conditions in Proposition 3.1. Hence we must
also have Q1 ∼= G1. �
Remark 3.4. Since G1 has derived length 2 the fields described in the corollary all have 3-class
towers of length 2. In [15] the field Q(

√−4027 ) is shown to have 3-class tower of length 2 by
different means.

The following question remains to be answered:

Question 3.5. Is it possible, for all n � 1, to find an imaginary quadratic field k such that
Gal(knr,3/k) ∼= Gn?

If the answer is yes then this would imply that the lengths of finite p-class towers are un-
bounded. As a first step towards answering this question one might compute the abelian quotient
invariants of the index 3 subgroups in Gn for various n � 2, and then search for fields k which
have unramified extensions with matching 3-class groups. Using standard methods [8,9] one can
compute the abelian quotient invariants and it turns out that the result is independent of n. More
precisely one obtains the following proposition.

Proposition 3.6. For n � 2 the group Gn has four subgroups of index 3 with abelian quotient
invariants [3,9], [3,3,3], [3,3,3], and [3,3,3].

Moreover when one looks for examples of imaginary quadratic fields having unramified exten-
sions with matching 3-class groups they seem relatively easy to find. The discriminants d with
|d| < 50 000 for which there is a match are d = −3896, −6583, −23 428, −25 447, −27 355,
−27 991, −36 276, −37 219, −37 540, −39 819, −41 063, −43 827, −46 551.

At this point it becomes difficult to make further progress. Clearly one cannot use the abelian
quotient invariants of the index 3 subgroups to separate out any of the groups Gn for n � 2 as we
did with G1. If one restricts attention to the smallest groups G2 and G3 then differences in the
abelian quotient invariants only show up when one looks at subgroups of index at least 27. The
corresponding class group computations that one would need to carry out do not seem feasible
currently.
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