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Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Com-

parative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the uni-

fying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to
analyze the available experimental models in HCC research and to correlate data from human populations with them in

order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different

subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular

pathways in future preclinical studies.
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1. Introduction

Hepatocellular carcinoma is one of the world’s dead-
liest cancers, ranking third among all cancer-related
mortalities. Most cases occur in Asia and sub-Saharan
Africa, where viral hepatitis is endemic. The incidence
is rising in the West, likely due to the increase in patients
infected with hepatitis C during the latter half of the last
century [1]. The liver, unique in its capacity for regener-
ation following injury, also gives rise to this malignancy
commonly associated with the inflammatory state of
advanced fibrosis, or cirrhosis. Potentially curative ther-
apies can be offered to approximately 30% of patients,
but are complicated by a high rate of recurrence [2].

Encouraging progress has been made in understand-
ing the molecular pathogenesis of cancer [1,2]. The dis-
coveries of the signal transduction pathways, cascades
of protein–protein interactions transmitting information
from the cell surface to the nucleus, and of their link to
tumor biology, are particularly impressive.

Several key mouse models have been instrumental in
defining the pathogenesis of HCC by introducing genetic
Published by Elsevier B.V. All rights reserved.
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alterations into one or more aetiologic pathways that
can be targeted exclusively to the liver. Moreover, these
programmed manipulations can be introduced systemat-
ically, not only in this specific organ but also at defined
times during development, growth and aging of the
liver.

Nonetheless, substantial challenges persist in model-
ing liver diseases whose natural history requires a
chronic inflammatory milieu. For example, infectious
(hepatitis C virus), toxic (alcohol), metabolic (non-alco-
holic steatohepatitis), or congenital (hemachromatosis)
diseases share inflammation and fibrosis as precursors
to cancer, yet none is easily mimicked in animals. There
are few rodent models of HCC arising spontaneously
within a background of regenerative nodules and cirrho-
sis, and most depend on the administration of hepato-
toxic and/or carcinogenic agents to recreate the
injury–fibrosis–malignancy cycle seen in chronic human
liver diseases.

Comparative genomic studies in human HCC sam-
ples have begun to identify molecular subgroups with
characteristic mutations, gene expression profiles and
chromosomal gains and losses [3]. Moreover, since there
is no single dominant molecular pathology underlying
all HCCs, it is increasingly clear that different models
will be required to mimic different subclasses of the neo-
plasm. These models will be instrumental as pre-clinical
tools to evaluate compounds targeting specific molecu-
lar pathways.

With these challenges in mind, the objective of this
review is to assemble and evaluate the available models
of both cirrhosis and HCC, to provide a blueprint for
understanding the pathogenesis of HCC and for opti-
mizing preclinical models for drug testing.
2. Experimental models in cancer research

Although many experiments focusing on liver physi-
ology have been conducted in rats due to their propen-
sity for the development of fibrosis, the laboratory
mouse (Mus musculus) is considered among the best
model systems for cancer because of the availability of
gene targeting methods, as well as the animal’s size
and breeding capacity, its lifespan of 3 years, and its
physiologic and molecular similarities to human biology
[4]. Significant advances have been made in modeling
cancer genetics in mice, along a spectrum that ranges
from simple xenograft models to more complex, geneti-
cally modified mice. Examples of each of the following
are illustrated in Table 1.

2.1. Xenograft models

The demonstration that concentrated cancer cells
grown in vitro could form tumors when implanted sub-
cutaneously into an immunocompromised mouse was
first established in 1969 [5]. This xenograft model has
since demonstrated several advantages that explain its
persistence as the mainstay of pre-clinical studies of
anti-neoplastic drugs in vivo: the tumors are rapidly
and easily induced, and their subcutaneous location
enables direct measurement of tumor growth. More
recently, however, several critical differences between
xenograft- and patient-derived specimens have become
apparent, as discussed below. In addition, cancer is
now appreciated as a complex disease dependent upon
the interaction between transformed cells harboring
oncogenic mutations, referred to as the ‘cell autono-
mous compartment’, and their surrounding tumor envi-
ronment, the ‘non-cell autonomous constituents’ made
up of normal cells, stromal cells, and immune cells [4],
features that are not part of the xenograft approach.

Mouse models of cancer were first introduced over 60
years ago. Shortly after its inception in 1955, the Devel-
opmental Therapeutics Program at the National Cancer
Institute (NCI) adopted the use of three transplanted
rodent models of sarcoma, carcinoma, and leukemia,
for the purposes of selecting agents for clinical use in
cancer patients. Thousands of molecules were tested in
mice bearing murine leukemias during the first decades
of modern cancer drug development, circa 1945–1969
[6]. This tumor panel was later expanded to include
human tumor xenografts, with the intention to study
drug activity against solid tumors [7]. In 1990, the
NCI focused on the development of in vitro assays in
60 different cell lines in order to screen pharmaceutical
agents for their potency and their selective activity
against either a particular disease category or specific
cell line [8,9], the most promising of which were to be
subsequently evaluated in the nude mouse xenograft
model.

The validity of xenografts as a predictive indicator
of probable clinical activity is limited, with the most
success seen in cytotoxic agents. A retrospective anal-
ysis performed by the NCI for 39 compounds in
which both xenograft testing and Phase II clinical
data were available showing that less than 50% of
agents with activity in more than one-third of xeno-
grafts showed clinical activity (p = 0.04) [6]. The same
study demonstrated that activity in a particular histol-
ogy in a tumor model did not closely correlate with
activity in the same human cancer histology [10], with
the exception of non-small cell lung and ovarian can-
cer [11].

There are several variables inherent to the xenograft
experiments which may impact on the divergent out-
comes compared to human disease, including growth
properties and size at initiation of treatment of xeno-
graft tumor, ectopic versus orthotopic location of
tumor, local versus metastatic disease [12], tolerance
for high doses of chemotherapeutic agents in mice [13],
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and variability in selected endpoints. These variables can
be minimized if given due consideration in the design of
preclinical cancer drug experiments. However, the great-
est discrepancies between success of cancer therapies in
xenograft models and in human clinical trials are likely
due to critical differences in both the tumor cells and
their microenvironment. Natural tumor progression is
a micro-evolutionary process during which increasingly
aggressive clones, generated through genetic instability,
emerge from an initially monoclonal lesion. Autochtho-
nous tumors, those that evolve in situ from normal cells,
tend to have a diminished genetic heterogeneity com-
pared to tumor xenografts, although selective pressures
of cell culture or tissue explantation can cause a rapid
expansion of a certain clonal constituent of polyclonal
tumors [14,15].
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One solution to this disparity between cancer cell
lines and human tumors is surgical orthotopic implan-
tation, in which intact fragments of human cancer
taken directly from the patient are transplanted into
the corresponding organ of immunodeficient rodents,
as reviewed by Hoffman [16]. This technique has been
applied to breast, lung, and prostate cancer among
others.

Additional advances have been made in the xenograft
model through the addition of mesenchymal stem cells
to weakly metastatic cancer cell lines, which enhances
the ability of the cell lines to form tumors and to metas-
tasize [17]. Wu et al. were able to isolate a side popula-
tion (SP) from 29 sarcomas which preferentially formed
tumors when grafted into immunodeficient mice; only
cells from tumors that developed from the SP cells had
the ability to initiate tumor formation upon serial trans-
plantation [18].

Our deepening appreciation of the non-cell autono-
mous constituents of the tumor microenvironment,
including the stroma and immune cells relevant to liver
pathology in particular, provides further evidence that
the xenograft model is more appropriately termed ani-

mal culture, as suggested by Tuveson and Frese [4].

2.2. Genetically engineered mouse models (GEM)

The most sophisticated animal models of human can-
cer are those that have been genetically engineered to
mimic the pathophysiological and molecular features
of human malignancies [4]. Such models enable the
investigation of a range of discrete molecular stages that
occur during tumor progression both within tumor cells
and within their microenvironment; additionally, mice
harboring multiple mutations provide information
regarding pathway cooperativity and dependency
in vivo [19].

Despite these strengths, there are a number of impor-
tant limitations in mouse models of cancer, such as var-
iation in basic cellular processes, as well as in telomere
length and telomerase expression [20,21]. It is also well
documented that identical genetic lesions can produce
different pathologies in mice than in humans [22].
GEM can be categorized as either transgenic or endog-
enous models.

2.3. Transgenic models

Transgenic mice are those that are engineered to
express either oncogenes or dominant-negative tumor
suppressor genes in a non-physiologic manner due to
ectopic promoter and enhancer elements [4,19]. Microin-
jection of recombinant DNA directly into the pronu-
cleus of a fertilized mouse egg is the classic method for
generating transgenic mice [23], but transgenic mice
can also be produced through gene targeting (‘‘knock-
in”) and lentiviral transduction in embryonic stem
cells.

Constitutive expression of cellular and viral onco-
genes and germline disruptions of tumor suppressor
genes were the first approaches used to create strains
of cancer-prone mice [19,24]. The cDNA constructs
can contain promoter elements designed to restrict tissue
tropism, so although the effect of the oncogenic gain will
be constitutive, its expression can be limited to specific
tissues by the use of tissue-specific promoters [19], for
example the albumin promoter in liver transgenic
models.

Germline tumor suppressor cell mutant mice were ini-
tially developed to parallel human inherited cancer pre-
disposition syndromes. However, although many of
these heterozygous mice were tumor-prone and demon-
strated loss of the wild-type allele in their tumors, few of
them developed the clinical features of the cognate
human syndrome. For example, loss of the retinoblas-
toma gene product Rb in humans leads to retinoblasto-
mas, osteosarcomas, and small cell lung cancer; whereas
Rb heterozygote mice develop thyroid and pituitary
tumors but no retinoblastomas [25]. Rb heterozygotes
are able to compensate for loss of Rb, a finding that
highlights the existence of shared and predictable cellu-
lar process within both species [20,26]. So, although
identical genetic lesions may not perfectly recapitulate
the human disease in mice, there is no doubt that these
genetically engineered mice are valuable tools for under-
standing the underlying biological mechanisms of
tumorigenesis [22]. Their ability to recapitulate the
genetic features of amplified proto-oncogenes, such as
c-myc [27], has contributed greatly to our understanding
of cancer biology.

There are, however, additional weaknesses of these
models that have spurred the development of more
advanced methods. For example, because the genes
affected may be vital to normal development, over-
expression or ablation may lead to embryonic lethality
or infertility [24]. Promoter fragments typically repre-
sent the minimal sequence required for tissue-specific
expression and do not necessarily allow the same con-
trol conferred by endogenous regulatory elements [28];
for example, a typical transgene would not include all
transcription factor and microRNA binding sites
[4,29]. And, although the DNA fragments are thought
to associate by homologous recombination before inte-
gration and in most cases insert at a single chromo-
some site [23], there is little control over site of
integration and copy number [22]. This can result in
pronounced variability of expression patterns, as the
exogenous gene can affect genes near its insertion site
or can be affected by endogenous control elements
[22,30–32]. Also, although conventional mouse mutants
may be useful for modeling familial forms of cancer,
they do not mimic sporadic tumorigenesis because the
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initiating mutation is present in all cells of the body,
including those that constitute the tumor microenviron-
ment [33].

2.4. Inducible systems of oncogene expression

Bujard and colleagues developed a strategy for tem-
porally controlled and reversible transgene expression,
using a tetracycline (tet-) inducible system [34]. These
drug- or ligand-inducible systems involve the use of a
chimeric transcriptional activator that reversibly acti-
vates a target gene in response to the administration of
the inducing agent.

The Escherichia coli tetracycline resistance operon
has been applied widely to generate cell lines and murine
models with tightly regulated gene expression in
response to tetracycline [35]. The tet transactivator func-
tions either as a constitutive repressor that is inducibly
inhibited by ligand to allow expression from the tet

operon (tTA), or it acts as an inducible activator of
the tet operon upon ligand addition (rtTA) [19]. This
system has been particularly useful to study the concept
of oncogene addiction; nearly all oncogenes tested thus
far seem to be required not only for tumor initiation,
but also for tumor maintenance [33].

2.5. Endogenous GEM: knock-out models

Endogenous GEM are those that lose the expression
of tumor suppressor genes (TSG) or that express domi-
nant-negative tumor suppressor genes or oncogenes
from their native promoters [4]. The original ‘knockout’
mouse model entailed disruption of an allele in endoge-
nous embryonic stem cells using a targeting vector.
Biallelic disruption of TSG often results in embryonic
lethality, but heterozygous mice can be used to deter-
mine the tumorigenic potential of the genes, such as
the retinoblastoma tumor suppressor gene (Rb) [25].
These germline mutations are present throughout the
mouse and are constitutively expressed, unlike the spo-
radic mutations occurring in human tumors that are sur-
rounded by normal tissue.

2.6. Endogenous GEM: conditional gene targeting

As reviewed by Maddison et al. [22], model systems
have now been developed which allow both spatial
and temporal control of gene expression. These are pre-
dominantly dependent on the creation of bi-transgenic
mice: those carrying a tissue-specific, inducible transacti-
vator gene are crossed to mice carrying the allele of
interest which has been engineered to be controlled by
the transactivator. Offspring that carry both transgenic
elements are treated with the inducer to express the
transactivator gene in a specific tissue, which then acts
on the desired allele. This system requires the exogenous
delivery of the cre gene (usually by an adeno- or retrovi-
rus), and the induction is irreversible.

Conditional inactivation of tumor suppressor genes
relies on the ability of a viral or prokaryotic site-specific
recombinase to recognize a pair of target DNA
sequences and catalyze recombination at these sites,
which results in either deletion or inversion of the inter-
vening DNA sequence [19]. A commonly used tool is the
Cre-Lox system, wherein Cre (Causes recombination)
recombinase, isolated from bacteriophage P1, catalyses
site-specific recombination between defined 34 bp Lox
P sites (Locus v of crossover P1) [36,37]. If gene v is
placed between two Lox P sites and then exposed to
Cre, it will be excised, or ‘floxed out’. An alternative sys-
tem to Cre-Lox uses the FLP recombinase, which recog-
nizes the 48 bp Frt site [38]. Transgenic mice that express
recombinase from a specific promoter are bred to mice
carrying conditional tumor suppressor gene mutations,
so that the TSG can be bi-allelically inactivated to allow
the generation of organ- and cell-lineage-specific tumors
models [19].

Conditional activation of oncogenes is created by the
insertion of a LoxP flanked transcriptional silencing
element between the promoter and the mutant onco-
gene-encoding sequence. Conditional oncogenes are
constructed using classic transgenic technology, but
expression of the oncogene is only activated by the
recombinase-mediated removal of the transcriptional
silencer. This allows for tissue-specific oncogene expres-
sion [39].

This second generation of GEM, which more faith-
fully recapitulates sporadic tumor formation by the
induction of somatic mutations in a time- and tissue-
specific fashion, has provided great insight into the con-
tribution of genes in the initiation, progression, and
treatment of cancer. We will now discuss how each of
these systems has been used to further our understand-
ing of liver cancer.
3. Experimental models of hepatocellular cancer

Hepatocellular carcinoma universally arises upon a
background of inflammation and fibrosis. Creation of
animal models of HCC presents a particular experimen-
tal challenge because of the difficulty in modeling
chronic inflammation without using carcinogens to
induce liver injury, and because of the heterogeneity of
molecular pathways that are dysregulated during this
transition from cirrhosis to cancer.

HCC is preceded in both rodents and humans by the
development of premalignant lesions including foci of
altered hepatocytes and dysplastic nodules, which exhi-
bit a higher risk of malignant evolution than normal
cells [40,41]. Various genetic alterations and exposures
to chemical carcinogens have been studied in animals
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in order to recapitulate the phenotypic, biological, and
molecular events that occur during this transformation.

3.1. Xenograft models of HCC

In a recent attempt to characterize primary human
xenografts in liver cancer, seven different primary
HCC cell lines were injected into SCID mice. The mice
were then treated with common chemotherapeutic
agents such as cisplatin and gefitinib. There were signif-
icant differences in tumor growth inhibition between
xenografts, which reinforced the concern for high inter-
nal variability of this model in human cancer. Interest-
ingly, the study concluded that most of the
chemotherapeutic agents currently used in the treatment
of HCC have little or no anti-neoplastic activity in these
models [42].

Ma et al. have examined HCC cells expressing CD133
[43], which exhibit stem cell properties and are chemore-
sistant: purified CD133(+) HCC cells isolated from
human HCC cell lines and harvested from xenograft
mouse models survived chemotherapy in increased pro-
portions relative to most tumor cells which lack the
CD133 phenotype [44]. The inclusion of stem cell-
enriched HCC cell lines will likely enhance future pre-
clinical studies in HCC therapeutics (see Table 1).

A group of investigators at the University Hospital
Bonn created an orthotopic xenograft model in which
hepatoma 129 cells originating from C3H mice were
injected into fibrotic livers of mice pretreated with thi-
oacetamide by intraperitoneal injection and alcohol
per oral [45]. They found that tumors in fibrotic livers
grew significantly larger and more rapidly than those
in normal livers, and were able to metastasize and form
satellite nodules. Gene expression analysis revealed
greater intratumoral expression of vascular endothelial
growth factor (VEGF) and its receptor (VEGFR), and
of MMP-2 and MMP-9 in the fibrotic liver tumors. This
useful model provides a unique tool for testing drug effi-
cacy in orthotopic hepatoma xenograft within the con-
text of liver fibrosis.

3.2. Viral models of HCC

Infection causing latent or chronic viral hepatitis is
the most common aetiology of HCC, comprising 80%
of cases worldwide. Hepatitis B virus (HBV) is endemic
in China, Southeast Asia, and sub-Saharan Africa;
there, vertical transmission of the virus results in high
rates of HCC. Hepatitis C (HCV) viral infection is more
prevalent in the United States and Europe than either
HBV or HIV [46]. The woodchuck hepatitis virus
(WHV) induces a liver inflammation, injury and repair
process in woodchucks similar to those of HBV-positive
patients and has therefore proven to be a useful model
of the disease.
3.2.1. Hepatitis B virus

HBV is a DNA virus that causes acute and chronic
hepatocyte injury, inflammation, and HCC. During pro-
longed infection, viral DNA sequences integrate into the
host cell genome, where they and the flanking cellular
sequences are commonly rearranged [47], a phenomenon
that can activate an adjacent cellular oncogene. In addi-
tion, viral infection can induce hepatocyte injury medi-
ated by the antiviral cellular immune response and, to
a lesser extent, by direct injury to the cells. Although
most cases of HBV-associated HCC arise in a back-
ground of inflammation and fibrosis, the virus is notori-
ous for also causing HCC in the absence of cirrhosis,
most likely by integrating into the host chromosome
and thereby promoting transcriptional transactivation
of mitogenic factors.

The HBV virus is a circular DNA molecule contain-
ing four open reading frames encoding four HB viral
proteins: preS/S, preC/C, P and X protein (HBx). The
most common viral marker in HCC is the integration
of HBV genomic DNA encoding HBx. In 1994, Koike
et al. published their description of a transgenic mouse
model demonstrating that high levels of HBx expression
were sufficient to generate HCC in 84% of male trans-
genic mice at age 13–24 months [48] (see Table 2). Anal-
ysis of proliferation and DNA content in these mice
suggested that the continued expression of HBx gene ini-
tiated tumor formation by inducing DNA synthesis and
placing large numbers of hepatocytes subjective to sec-
ondary events for transformation [48]. Yu et al. also
confirmed the development of HCC in HBx transgenic
mice [49]. Although another research group did not
see spontaneous HCC development, those HBx trans-
genic mice were more susceptible to chemical carcino-
genesis than control mice [50]. The reason for this
discrepancy is unclear, but the difference in genotype
of HBV should be noted: HCC tumors arose in geno-
type C HBx transgenic mice but not in other genotypes
[51].

Chisari et al. described a transgenic model that
overproduces the hepatitis B virus large envelope poly-
peptide and accumulates toxic quantities of hepatitis B
surface antigen (HBsAg) [52]. This hepatocellular
injury initiates a programmed response within the
liver, characterized by inflammation, regenerative
hyperplasia, transcriptional deregulation, aneuploidy
and eventually HCC. Inappropriate expression of a
single structural viral gene was thereby shown to be
sufficient to cause malignant transformation. The pro-
cess of oncogenesis seen in this model also supports
the theory that severe, prolonged cellular injury can
induce a proliferative response that fosters secondary
genetic events that lead to unrestrained growth [47].
However, the level of viral protein expression in this
model may well surpass the expression in human
infection.



Table 2

Genetically engineered models of hepatocellular carcinoma

Gene Type of mutation or tissue
promoter/construct

Phenotype (+/� and �/�) Chemically induced/
metastasis

References

Viral models

Hepatitis B virus large
envelope protein

BgIII-A fragment of HBV
encoding large envelope
protein under control of
albumin promoter and
enhancer

Focal necrosis, inflammation,
and subsequent HCC in 72%
males

No metastases; rare local
invasion

[47,52]

Hepatitis B virus X protein EcoRI–BglII fragment of
HBV including the X gene
under its own promoter and
enhancer

HCC in 84% after 13–24 months
in mice with high HBx expression

Lung metastasis [48,175,176]

Hepatitis C virus HCV core-E1–E2 transgenic
under albumin promoter and
HCV core transgenic under
HBV X promoter

No DEN: No HCC in either
strain by 21 months. +DEN:
100% HCC at 32 weeks; HCV
core-E1–E2 with largest tumors
(p = 0.008)

DEN injected weekly �
6 weeks

[56]

Hepatitis C virus HCV core under HBV X
promoter; HCV E1–E2
under HBV X promoter

Core transgenics: 32% HCCs in
male mice at 16–23 months; E1–
E2 transgenics: no HCC. No
evidence hepatitis

None reported [56,59]

Hepatitis C virus HCV core-E1–E2 transgenic
under albumin promoter and
the entire HCV transgenic
under albumin promoter

HCC in core-E1–E2 transgenic
and entire HCV transgenic after
13 months

None reported [60]

Cell cycle models

p53 germline knockout and
liver-specific viral
receptor TVA, injected
with PyMT oncogene

p53 germline knockout [177]
crossed with mice expressing
viral receptor TVA under
albumin promoter (Alb-
TVA), injected at age 3 days
intrahepatically with mouse
polyoma virus middle T
antigen

HCC in 42% of p53 null mice, in
37% of p53+/�, and in 66% of
p53+/+ mice expressing TVA
injected with PyMT at 4 months.
No TVA-negative littermates
developed HCC

Metastases in p53 null
mice (6/16); less in p53+/�

(1/14)

[67,177]

Trp53 and INK4a/ARF
conditional mutant mice,
injected with PyMT
oncogene

Albumin Cre mice crossed
with Trp53 conditional
mutant and INK4a/ARF
conditional mutant, injected
at age 3 days intrahepatically
with mouse polyoma virus
middle T antigen

>90% HCC in combined Trp53,
INK4a/ARF null mice injected
with PyMT compared to single
null gene

Metastases in Trp53 null
mice (30%) and in
combined Trp53,
INK4a/ARF mice (63%)
at 6 months

[68]

P53 conditional expression Hepatoblasts transduced
with oncogenic ras (Hras
V12) and a tet-responsive
P53 miRNA design short
hairpin RNA

Complete tumor regressions
when endogenous p53
reactivated in p53-deficient
tumors

None reported [69]

c-myc c-myc over-expression under
albumin enhancer/promoter
[74,90,178,179]; under a1
antitrypsin promoter
[180,181]

15 weeks: polyploidy cells,
dysplasia >60% [179]; 15 mos:
91% adenomas [74,178]; 54%
HCC [178,180,181];

None reported [74,90,178–181]

c-myc and E2F-1 Mouse c-myc and human
E2F-1 over-expression under
albumin promoter

6–8 mos: 100% HCC [171,178] None reported [90,171,178,179]

c-myc and TGFa c-myc over-expression under
albumin enhancer/promoter;
TGFa over-expression under
metallothionein 1 promoter

4 mos: 70% dysplastic nodules;
18% HCC [90]

Zinc in H2O accelerated
nodule formation by 6–8
weeks

[90,182]

(continued on next page)
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Table 2 (continued)

Gene Type of mutation or tissue
promoter/construct

Phenotype (+/� and �/�) Chemically induced/
metastasis

References

SV40 T-antigen conditional
and inducible expression

SV40 T-antigen expression
under albumin enhancer/
promoter [74]; under major
urinary protein enhancer/
promoter [183]; under
metallothionein 1 promoter
[184]; under a1 antitrypsin
promoter [185]; under
antithrombin III promoter
[186]; tetracycline-inducible
expression: mice expressing
tTa under albumin promoter
crossed with mice expressing
T antigen under tTa
promoter [75]

3–7 mos: adenomas and HCC
[74]; 10–12 weeks: HCC[185];
after 4–6 weeks: 100% HCC [186]

Lung metastases [186] [74,75,181,183–186]

E2F-1 E2F-1 over-expression under
control of albumin enhancer/
promoter

10 mos: 100% adenomas and
dysplastic nodules; 12 mos: 33%
HCC

None reported [71,90,179]

Telomere dysfunction models

mTERT�/� and p53+/� or
WT

Germline mTERT and p53
knockout over several
generations and CCl4 liver
injury

50 weeks: 100% HCC in p53+/�

both generations (G0 and G3/
G4); 44% in wild-type G0 versus
9% HCC in wild-type G3/G4

CCl4 by IP injection 3�/
week � 4 months

[66]

Pathway specific models

Wnt/b-catenin
Activating mutation in

b-catenin: truncated NH2

terminal transgenic

EAB/9K/D N131 b-catenin
construct under control of
liver-specific enhancer of
aldorase B gene (expressed
throughout embryonic and
post-natal development)

Death at 3 weeks from
hepatomegaly; no dysplastic foci
in liver

N/A [127]

Activating mutation in
b-catenin: exon 3
conditional knockout

Catnblox(ex3) knockout and
fatty acid binding protein
Fabpl-cre transgenic

Death at 5 weeks from liver
damage/mitochondrial swelling.
No dysplastic foci in liver;
+intestinal polyps

N/A [128]

Activating mutation in
b-catenin: exon 3
conditional knockout

Catnblox(ex3) knockout
injected with recombinant
adenovirus expressing Cre
from human CMV promoter

High multiplicity injection (109

pfu/mouse): death at 3 weeks
with hepatomegaly/
mitochondrial swelling. Low
multiplicity injection (107�8 pfu/
mouse): No dysplastic foci in
liver >6 mos

N/A [128]

b-catenin exon 3 knockout
and activated H-ras
(H-rasG12V)

double-transgenic
conditional

Catnblox(ex3) knockout and
H-ras (Tglox(pA)H-ras*)
double-transgenic with
recombinant adenovirus
expressing Cre from human
CMV promoter

Low multiplicity infection
(108 pfu/mouse): 100% HCC at 6
months

Intrahepatic invasion [131]

APC knockout liver-specific ApcDex14 knockout (�/�)
injected in tails with
recombinant adenovirus
expressing Cre (injections
infected primarily and
massively the liver)

High multiplicity infection
(109 pfu/mouse): Death within 2
months and hepatomegaly.
Lower multiplicity infection
(0.5 � 109 pfu/mouse): 67% HCC
at 9 months. Apc+/� had no liver
abnormalities

None reported [130]

b-catenin wild-type b-catenin over-expression
under control of albumin
enhancer/promoter

Hepatomegaly (15% increased
liver/body weight ratio); no
dysplastic nodules at 24 months

N/A [129]
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Table 2 (continued)

Gene Type of mutation or tissue
promoter/construct

Phenotype (+/� and �/�) Chemically induced/
metastasis

References

PI3K/Akt pathway

PTEN�/� Albumin cre/PTENlox/lox Steatohepatitis; Adenomas at 44
weeks and 66% HCC at 78 weeks
[108]; HCC in 66% of males at 44
weeks and in 83% of males and
50% of females at 78 weeks [109]

Lung metastases [108,109]

Insulin growth factor pathway

IGF2 transgenic IGF2 over-expression under
control of urinary protein
promoter

HCC in <10% at 18–24 months;
also lymphomas, sarcomas, and
thyroid carcinomas

None reported [187]

IGF2 knockout and TGFa
transgenic

TGFa over-expression under
metallothionein 1 promoter
[86] crossed with IGF2
heterozygous knockout mice
(paternal null allele; maternal
wild-type, normally imprinted)

(1) IGF2wt/wt: no HCC; 4%
adenoma; (2) IGF2+/�: dwarves,
normal liver phenotype; (3)
TGFa � IGF2wt/wt and (4)
TGFa + IGF2wt/�: 100% HCC
at 18 months

None reported. Zinc in
drinking water starting
at age 10 months

[188]

Epidermal growth factor pathway

EGF transgenic Double-transgenic of the
liver construct Alb-DS4 that
encodes autocrine growth
factor IgEGF crossed with
AAT-myc mice

EGF transgenic (Alb-DS4):
mortality from HCC by age 7.1
months; EGF/myc double-
transgenic: accelerated mortality
to 4.4 months

[115]

Ras signaling

H-ras Mutant c-H-ras over-
expression under albumin
promoter

Hepatomegaly, lung tumors [74] None reported [74]

HGF/c-Met and TGF-a
HGF transgenic Mouse HGF expression

driven by metallothionein
promoter [95]; by albumin
promoter[189]

Hepatomegaly; >17 months:
adenomas and rare HCCs [95];
rapid recovery after partial
hepatectomy, no dysplasia [189]

Most animals not given
zinc because transgene
expression adequate

[95,189]

HGF over-expression +/�
b-catenin conditional
knockout

Hydrodynamic injection of
plasmid containing HGF
under CMV promoter
(pCMV-HGF) into wild-type
and into AFP-enhancer
albumin promoter-Cre floxed
b-catenin knockout mice

HGF over-expression:
hepatomegaly and increased
Wnt/b-catenin signaling; no
dysplastic nodules. HGF over-
expression in b-catenin
knockout: no alterations in liver

N/A [96]

HGF + c-myc Double-transgenic mouse
c-myc driven by albumin
promoter/enhancer and
human HGF driven by
albumin regulatory elements

Inhibition of
hepatocarcinogenesis by HGF in
c-myc transgenic mice: 0% HCC
in HGF/c-myc versus 60% HCC
at 16 months in c-myc single
transgenic, even with addition of
phenobarbital

Phenobarbital [97]

HGF + TGF-a Double-transgenic mouse
TGFa over-expression under
metallothionein 1 promoter
and human HGF driven by
albumin promoter

Increased proliferation and
c-myc expression in HGF over-
expressing mice. Diminished
hepatocarcinogenesis by HGF in
TGFa transgenic mice: 33% (3/9
mice) HCC in HGF/ TGFa
versus 60% (6/10) in TGFa single
transgenic

None reported [98]

Met transgenic Tetracycline-inducible
expressing human Met under
liver-specific promoter
crossed with mice expressing
tetracycline transactivator
under liver-specific liver
activating protein (MET-
TRE/LAP-tTA) [91,99]

12 months: 60% HCC; tumors
regressed when transgene was
inactivated [91]; by 4 months,
adenomas and HCC [99].
+Recurrence of HCC in mice
whose original tumors had
regressed on Doxycycline

None reported [91,99]

(continued on next page)
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Table 2 (continued)

Gene Type of mutation or tissue
promoter/construct

Phenotype (+/� and �/�) Chemically induced/
metastasis

References

Met and b-catenin Transposable vectors
containing wild-type human
MET, constitutively-
activated mutated form of b-
catenin (DN90-CTNNB1),
and dominant-negative TCF-
1 (DNHNF1), by
hydrodynamic transfection
into livers

Combination MET and DN90-

CTNNB1: 74% HCC within 1
month (no adenomas);
combination MET and
DNHNF1: 50% hepatic
adenomas within 1 month; each
one individually, no tumors

Death within 3 months [99]

c-Met conditional knockout c-Met conditional liver-
specific knockout
(MetLivKO) using floxed
Met (c-metfl/f)l and Cre
driven by albumin promoter
(AlbCre�/�)

100% HCC in MetLivKO at 6
months versus 44% in control;
greater number and size of
tumors in MetLivKO;
protumorigenic effects of c-Met
deficiency reversed by early
administration of antioxidants

N-nitrosodiethylamine [94]

TGFa TGFa over-expression under
metallothionein 1 promoter
[86,87,90]

10–15 mos: 50% HCC [87];100%
HCC [86] +mammary/pancreatic
hyperplasia [86,88]

Zinc in H2O increased
tumor formation; no
metastases

[86–88]
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The transgenic mouse expressing PreS, S and X pro-
teins (Tg (HBV Alb-1) Bri44) described by Chisari et al.
[52] has also been studied more extensively for its step-
wise accumulation of liver disease. Gene expression in
this model generates hepatocyte damage and inflamma-
tion early, generating dysplastic nodules by age 9
months, and macroscopic HCC nodules by age 18
months [53].

3.2.2. Hepatitis C virus

Hepatitis C virus (HCV) infects 170 million people
worldwide, and the recent increase in HCC in the United
States has been attributed to an increase predominantly
among patients with chronic HCV infection. HCV does
not cause insertional mutagenesis, but rather is thought
to produce HCC through the cumulative effects of
chronic infection, injury and repair. Most cases of
HCC occur after several decades of infection with
HCV and in a microenvironment of cirrhosis [54].

Several models have attempted to emulate HCV viral
infection in hepatocytes in order to better understand its
oncogenicity. Transgenic mice encoding the core, E1
and E2 structural proteins under control of the albumin
promoter did not develop hepatic disease [55], although
when the same strains were exposed to diethylnitros-
amine (DEN), there were significantly larger HCC
tumors in core-E1–E2 transgenic mice relative to the
core and non-transgenic strains [56]. Koike et al.
described two different mouse strains expressing HCV
core protein under control of the HBV promoter; these
mice developed steatosis after several months [57] and
HCC in 32% of animals after 16–23 months [58,59].
The same study found no adenomas or carcinomas in
transgenic mice over-expressing HCV envelope genes.
Lerat et al. also described the development of HCC in
mice transgenic for the entire HCV genome or core-
E1–E2 structural genes under the control of albumin
promoter [60].

The mechanism by which HCV core protein pro-
motes oncogenesis is unclear. HCV core transgenic mice
have been studied for their gene expression patterns,
revealing that interleukin-1 (IL-1) and tumor necrosis
factor (TNF) are transcriptionally activated in these
models. Reactive oxygen species (ROS) are produced
in HCV core transgenic mice even in the absence of hep-
atitis and inflammation [61]. Alcohol can act synergisti-
cally to produce ROS in HCV-core protein transgenic
mice [62]. Clinically, heavy alcohol use is known to
enhance the development of cirrhosis and HCC [60] in
patients chronically infected with HCV; thus, produc-
tion of ROS may be the common instigator.

3.2.3. Woodchuck hepatitis virus

Woodchucks develop cirrhosis and HCC from
chronic Woodchuck Hepatitis Virus (WHV) infection.
During the course of infection, WHV DNA is stably
integrated into the DNA of 1–5% of hepatocytes [63],
and causes HCC within the first 2–4 years of life [64].
Over 50% of these HCCs contain integrations of WHV
DNA within, or immediately adjacent to, a unique
and functional N-myc 2 retroposon, and are associated
with increased IGF-2 expression [65].

3.3. Experimental models recapitulating molecular events

of hepatocarcinogenesis

3.3.1. Cell cycling pathways: p53, Rb, E2F, SV40 T

antigen

Cancer is a disease of the cell cycle in the majority of
cases, as most tumors contain defects in cell cycle
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machinery. Fundamental to our understanding of can-
cer biology have been models simulating loss of tumor
suppressors p53 and Retinoblastoma (Rb), key regula-
tors of cell cycling and frequent targets of carcinogens.
There is a large body of evidence indicating a pivotal
role for cell cycle deregulation during hepatocarcinogen-
esis [41].

Tumor suppressor p53 acts to restrict proliferation in
response to DNA damage or deregulation of mitogenic
oncogenes, by leading to the induction of various cell
cycle checkpoints, to apoptosis, or to cellular senes-
cence. p53 heterozygous mutant mice appear to be sus-
ceptible to HCC formation in the context of liver
injury, but only in the absence of intact telomerase [66].

Trp53 knockout mice develop larger, more invasive
tumors than wild-type mice when mouse polyoma virus
middle T antigen (PyMT) viral oncogene is introduced
into the liver under an albumin promoter [67]. Liver-spe-
cific knockout of Trp53 when combined with liver-spe-
cific PyMT expression also results in an invasive,
metastatic phenotype. Concomitant loss of Ink4a/Arf
tumor suppressor locus accelerates this process [68].

Lowe and colleagues assessed the extent to which p53
loss is required for maintaining established tumors [69].
To do so, they first transduced hepatoblasts in vitro with
oncogenic ras (HrasV12) and a tet-responsive p53
shRNA (miR30 design short hairpin RNA), and then
injected the cells into the spleen of nude mice. Next, they
used RNA interference (RNAi) to conditionally regulate
p53 expression in the nodules that had formed by trans-
duced hepatoblasts seeding in the liver. The authors
concluded that p53 loss can be required for the mainte-
nance of aggressive carcinomas, and that the cellular
senescence program can act together with the innate
immune system to potently limit tumor growth.

The retinoblastoma (Rb) pathway plays its role in cell
cycle regulation by guarding and triggering DNA repli-
cation and cell cycle division in late G1. Rb binds mem-
bers of the E2F family, and in doing so represses
transcription of E2F regulated genes, which mediate
DNA synthesis and cell cycle regulation [70]. After
noting upregulation of E2F in liver tumors from their
c-myc/TGF-a double-transgenic mice, Conner et al.
generated E2F transgenic mice under control of the
albumin enhancer/promoter [71]. All of these mice
formed adenomas after 10 months, and a minority
developed HCC (2/6). When crossed with c-myc trans-
genic mice, HCC development was accelerated, with
100% tumor formation within 6–8 months. Further
investigation of this model revealed activation of the
Wnt/b-catenin pathway in a majority of the tumors, as
demonstrated by accumulation of nuclear b-catenin; this
occurred in the absence of mutations of b-catenin [72].

SV40 (Simian Vacuolating Virus 40) large T antigen
(TAg) is an oncoprotein derived from the polyomavirus
SV40 which is capable of transforming a variety of cell
types. The transforming activity of TAg is due mainly
to its perturbation of the retinoblastoma (pRB), p53
and p105 tumor suppressor proteins. This causes the
cells to leave G1 phase and enter into S phase, which
permits DNA replication of both the cell and the viral
genome [73]. In addition, TAg binds to several other cel-
lular factors, including the transcriptional co-activators
p300 and CBP, which may contribute to its transform-
ing capacity. SV40 T-antigen expression under the albu-
min enhancer/promoters provoked the appearance of
adenomas and HCC within 3–7 months [74]. A tetracy-
cline-inducible binary transgenic mouse model of SV40
was found to develop hepatic neoplasia in 60% of cases
(3/5); no neoplasia was observed in mice with suppres-
sion of transgene expression by tetracycline administra-
tion [75].

3.3.2. Telomere dysfunction

Telomeres are regions of DNA near the ends of
eukaryotic chromosomes that act to prevent loss of
genetic information during chromosomal replication.
They are synthesized and maintained by telomerase,
part of a group of enzymes called TERT (telomerase
reverse transcriptases). Because of cell division mecha-
nisms and because telomerase expression is repressed
in most human cells (with the exception of stem cells
and some leukocytes), telomere length decreases with
each cell division. Once telomeres reach a critically short
length, they unfold; this uncapping is detected and the
cell undergoes senescence (the ‘‘Hayflick limit”) [76].
Neutralization of p53 or Rb function results in contin-
ued telomere attrition, culminating in chromosomal
instability and cell death [77]. Low levels of telomerase
are associated with aging and tumorigenesis in some
tumors such as colorectal cancer [78] but levels are typ-
ically increased in HCC [79,80].

Telomere attrition has been documented in hepato-
cytes from cirrhotic patients [81,82]. It is thought that
repeated rounds of hepatocyte injury and regeneration
may promote telomere shortening, which would ulti-
mately lead to chromosomal instability (CIN), a com-
mon feature of HCC. Indeed a correlation between
CIN, telomere shortening, and HCC was demonstrated
in a series of 39 patients with HCC by analysis of liver
biopsies for ploidy and telomere length [83].

In mice, reduction in telomere length is not observed,
probably due to long initial telomere length and active tel-
omerase expression [84]. However, in p53-mutant mice,
deficiency of telomerase promotes formation of non-reci-
procal translocations and epithelial cancers [85]. The
cooperative roles of telomerase-induced chromosomal
instability and attenuated p53 function in the liver was
illustrated by a study which showed enhanced HCC for-
mation in p53-mutated telomerase knockout mice
(mTERT�/�). In the setting of intact telomeres, however,
p53 mutation had no effect on tumor formation [66].
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3.3.3. Growth factor signaling pathways

3.3.3.1. TGF-a and c-myc. Transforming Growth Factor
(TGF)-a binds and activates EGFR and is mitogenic
toward hepatocytes. In most organs, metallonein-driven
over-expression of TGF-a causes epithelial hyperplasia
[41]. In liver and breast tissue, the phenotype extends
to neoplastic transformation. Tumor incidence is 100%
in susceptible mice strains after a substantial latency
[86–88]. Gefitinib, an EGFR inhibitor, significantly
reduces HCC development in rats with cirrhosis induced
by DEN administration [89].

Co-expression of TGF-a and c-myc can occur in
HCC. Liver-specific c-myc over-expression induces per-
sistent hepatocyte proliferation and eventual HCC.
When c-myc and TGF-a are co-expressed, this process
is accelerated [90].

3.3.3.2. Hepatocyte growth factor and c-Met pathway.

When stimulated by its ligand, hepatocyte growth factor
(HGF) elicits multiple biological responses including
proliferation, migration, invasion, and morphogenesis
[91]. Over-expression, amplification, and mutation of
the MET proto-oncogene which encodes protein tyro-
sine kinase receptor Met have been demonstrated in
human HCC samples [92,93]. Nevertheless, experimen-
tal mouse models of HCC have revealed that the net
outcome of HGF/c-Met activation could be either stim-
ulation or inhibition of hepatocarcinogenesis [94].
Transgenic mice over-expressing HGF driven by the
metallothionein promoter developed HCC [95], but
when HGF expression was driven by the CMV pro-
moter, mice developed hepatomegaly but not dysplasia
[96]. Inhibition of hepatocarcinogenesis by HGF in c-
myc transgenic mice was demonstrated by Thorgeirsson
et al. in 1996: none of the liver-specific HGF/c-myc
over-expressing mice developed HCC and only 30%
developed adenomas, versus HCC in 60% of the c-myc
single transgenic, even with addition of phenobarbital
[97]. Similarly, HGF co-expression inhibited tumor for-
mation in TGF-a transgenic mice [98].

The paradoxical effects of HGF ligand expression are
mirrored in Met receptor expression. Bishop and col-
leagues demonstrated that over-expression of wild-type
Met in hepatocytes of transgenic mice leads to the devel-
opment of HCC [91]. Interestingly, these mice were
found to have frequent activating mutations of b-cate-
nin, and it was subsequently discovered that there was
a correlation between MET activation and b-catenin
mutations in human HCCs. Spurred by these findings,
vectors of human MET and b-catenin with activating
mutations were hydrodynamically cotransfected: these
mice developed larger HCCs with short latency periods,
confirming a cooperative relationship between MET

over-expression and b-catenin mutations [99].
Recently, however, Takami et al. reported that loss of

c-Met signaling enhanced rather than suppressed the
early stages of chemical hepatocarcinogenesis [94]: C-
met conditional knockout (MetLivKO) mice treated
with N-nitrosodiethylamine developed significantly
more and bigger tumors and with a shorter latency com-
pared with control mice. These knockout mice had
increased oxidative stress demonstrated signs of was
reversed by administration of antioxidant N-acetyl-L-
cysteine. The authors concluded that intact HGF/c-
Met signaling is essential for maintaining normal redox
homeostasis in the liver. Further studies will be needed
before definitive conclusions can be drawn regarding
the role of HGF/c-Met signaling in HCC.

3.3.3.3. PTEN/Akt/mTOR signaling pathway. The ser-
ine/threonine kinase Akt (PKB) was first isolated as
an oncogene transduced by the acute transforming ret-
rovirus [100,101]. Its role in human cancer was estab-
lished shortly thereafter by demonstration of its
frequent amplification and over-expression in various
cancers, including breast and ovarian [102]. Akt acts
as a cytoplasmic central regulator of numerous signals
related to cell cycling (Cyclin D1), cell survival
(Mdm2/p53), cardiovascular homeostasis (eNOS), and
cell growth (mTOR), among others [103]. PTEN is a
negative regulator of the pathway and its loss activates
Akt.

Tissue-specific knockout models of PTEN in pan-
creas develop tumors with high penetrance [104]. Trans-
genic animals over-expressing Akt develop a hyperplasic
but not malignant phenotype, typically requiring a sec-
ond hit to generate cancer [105,106]. Notably, mTOR
inhibition can reverse these phenotypes, suggesting the
presence of an mTOR-dependent survival signal down-
stream of Akt [107]. Liver-specific deletion of PTEN
results in hepatomegaly and steatohepatitis by 10 weeks
and HCC in a majority of male mice by 20 months
[108,109].

3.3.3.4. IGF and EGF signaling pathway. The insulin
growth factor (IGF1 and IGF2) signaling pathways reg-
ulate cell growth, differentiation and survival, and play a
central role in embryogenesis and regulation of lifespan.
IGF-2 possesses both mitogenic and metabolic proper-
ties; 16–40% of human HCCs demonstrate over-expres-
sion of IGF-2 [110].

The coordinated expression of IGF-2 and its receptor
suggests a role for IGF-2R in regulation of extracellular
IGF-2 concentration; alterations in the expression of
IGF-2R in human tumors suggest it may act as a tumor
suppressor gene [111].

Transcriptional activation of IGF2 has been demon-
strated in HCCs arising in HBV-associated human sam-
ples [112] and in HBV transgenic mice [41]. To
investigate whether IGF-2 has a promoter role in a
slowly developing HCC model, TGFa transgenic mice
were crossed with IGF-2 hemizygous knockout mice
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containing either only one maternal allele or two alleles.
Imprinting usually blocks IGF-2 expression from the
maternal allele in liver. However, IGF-2 re-expression
occurred in all 4 of these models, and was chronologi-
cally associated with late stages of progression toward
HCC [113].

Epidermal growth factor (EGF) is a potent mitogen
to hepatocytes. Unlike in other malignancies, the EGF
receptor is rarely mutated in HCC, and several reports
suggest an EGF-mediated autocrine growth stimulation
of hepatoma cells [114]. This was further supported by
the accelerated liver tumor formation after constitutive
over-expression of a secretable form of EGF (IgEGF).
All double-transgenic mice with liver-specific IgEGF
over-expression in cooperation with AAT-myc died
by 4.4 months from HCC, whereas only 44% of
ATT-myc mice had developed HCC by age 14 months
[115].

3.3.3.5. Wnt/b-catenin pathway. A key pathway impli-
cated in hepatic tumorigenesis is the canonical Wnt
pathway, in which b-catenin acts as a co-activator of
the TCF/LEF family of transcription factors and regu-
lates the expression of several genes related to cell prolif-
eration and apoptosis. The Wnt/b-catenin signaling
pathway normally functions in cellular differentiation,
proliferation, and apoptosis, and has a fundamental role
in embryogenesis. Liver development in xenopus, zebra-
fish, and mouse embryogenesis has been shown to be
dependent on functional Wnt signaling [116,117].

There is general agreement that Wnt signaling is
upregulated in a subset of HCCs [118]. Mutations of
genes encoding several components of the Wnt pathway
have been described, including b-catenin (19–44%),
AXIN1 and AXIN2 (5–14% and 3–10%) [119–123].
The mutations of b-catenin identified in HCC are
located in exon 3 of the CTNNB1 gene, the phosphory-
lation site for GSK3a/b. In addition, immunohistologi-
cal studies have demonstrated abnormal cytoplasmic
and nuclear accumulation of b-catenin in 17–40% of
human HCCs [124,125]. In addition to accumulated
mutations, stimulation of proliferation in liver cancer
cell lines transfected with Hepatitis C core viral protein
is at least partially mediated by upregulation of Wnt-1
protein expression [126]. This correlation between
HCV and the Wnt pathway needs to be verified by
in vivo studies.

Although mutations in b-catenin are thought to be
tumorigenic in human HCCs, transgenic mouse models
over-expressing either a stable mutant form of b-catenin
[127,128] or a constitutively activated, non-mutated
form of b-catenin exhibit hepatomegaly, but no HCC
[127–129]. Surprisingly, although mutations in the
tumor suppressor APC are very rarely seen in HCC
and patients with germline APC mutations do not typi-
cally develop HCC, it has been found that liver-targeted
loss of APC in mice can lead to HCC through activation
of b-catenin signaling [130].

It seems that a second hit from an additional muta-
tion is required to generate tumors in b-catenin trans-
genic mice. Simultaneous co-expression of a Wnt-
activating b-catenin mutation (Catnblox(ex3)) and muta-
tion in H-ras introduced by adenovirus-mediated Cre
expression resulted in HCC in 100% of the double-trans-
genic progeny [131]. The interplay between the growth
factor signaling pathways and the Wnt/b-catenin path-
way was amply illustrated in the simultaneous over-
expression of HGF and b-catenin knockout mouse
model generated by Monga and colleagues [96]: the pro-
liferative effects of HGF over-expression were mediated
by b-catenin stabilization, and were negated in b-catenin
null mice.

3.3.4. Other HCC models

3.3.4.1. Fibroblast growth factor in muscle. While most
mouse models of HCC express growth factors and onco-
genes under liver-specific promoters, liver-specific
expression is not a requirement for development of
HCC. For example, a transgenic model over-expressing
fibroblast growth factor 19 (FGF19) in skeletal muscle
develops HCC in 53% of mice by age 10–12 months
[132]. Interestingly, unlike the vast majority of both
human tumors and murine models, these tumors are
more common in female progeny. Hepatocellular prolif-
eration was significantly increased in these mice and in
non-transgenic mice injected with FGF19 protein. Fur-
thermore, immunostaining for b-catenin revealed
nuclear staining in 4/4 female mouse tumors, and subse-
quent sequencing of the GSK3b phosphorylation site of
b-catenin revealed mutations in 16%, which implicates
activation of the Wnt/b-catenin signaling pathway as a
potential mechanism for hepatocellular transformation
in this model.

3.3.4.2. Urokinase-type plasminogen activator. Not all
genetically modified models of HCC arise from pre-
dicted oncogene over-expression, tumor suppressor loss,
or liver injury. In a transgenic model over-expressing
the urokinase-type plasminogen activator (uPA) trans-
gene under the albumin promoter, for example, most
mice died from liver hemorrhage within 4 days of birth;
in the two transgenic lineages developed from surviving
founder mice, there was a surprising 100% incidence of
HCC at 8–20 months of age. Moreover, the surviving
mice regained normal clotting function, and their livers
were repopulated by clonal, regenerative nodules that no
longer expressed the transgene. Tumor progenitor cells
were found to contain transgene-deleting chromosomal
rearrangements which likely extended into flanking
DNA. Therefore, the initiating event in this HCC model
was likely extensive DNA rearrangements occurring
during rapid regeneration [133].
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3.4. Chemically-induced fibrosis and hepatocarcinogenesis

Cirrhosis is a major cause of mortality as both a pre-
cursor to malignancy and a cause for liver failure. As a
disease with clear environmental non-hereditary compo-
nents to its aetiology, liver fibrosis and cancer is well
suited for modeling using chemical induction. Experi-
mental models of liver disease can be categorized as
cholestatic, nutritional, alcoholic, immunological, and
toxic, and have been reviewed elsewhere [134].

Briefly, several hepatotoxic agents have been used
both in the induction of generalized liver disease and
HCC (see Table 3). Chemical models of hepatocarcino-
genesis often involve initiation by a carcinogen followed
by a growth stimulus promoter to induce clonal
expansion of initiated cells, such as partial hepatectomy
(Solt–Farber method [135]) or phenobarbital [136].
Alternatively, rodents are subjected to repeated adminis-
tration of carcinogens such as DEN, DMN, or CCl4
over a prolonged period [136]. Most initiated cells
accrue damage and ultimately undergo apoptosis, but
the small number that respond to promoters evolve into
dysplastic foci and later to dysplastic nodules. These foci
and nodules can disappear following the removal of
promoters in a process termed remodeling, which typi-
cally involves apoptosis of the preneoplastic cells [41].
Nodules which have acquired the capacity for autono-
mous growth progress to neoplastic nodules and HCC,
an irreversible process involving the accumulation of
genomic damage [137].

The most commonly employed model for liver disease
is carbon tetrachloride (CCl4) administered in drinking
water, in inhaled gases, or by intraperitoneal injection.
The reactive metabolite trichloromethyl radical is pro-
duced during the oxidative metabolism of CCl4 by cyto-
chrome p450, and causes liver damage by eliciting
production of reactive oxygen intermediates and by per-
Table 3

Toxic models of liver fibrosis and HCC

Diet or chemical Mechanism of action Phen

Choline-deficient and ethionine
(CDE) diet

Oxidative DNA damage, DNA
strand breaks and chromosomal
instability [41]

30–35

Ciprofibrate Synthetic peroxisome
proliferators, non-genotoxic
carcinogen

60 we

Diethylnitrosamine (DENA) Genotoxic hepatocarcinogen 100%
chrom

Thioacetamide (TAA) Metabolites induce oxidative
stress

100%

2-Acetylaminoflouren (2-AAF) Genotoxic Used
proto

Phenobarbital Non-genotoxic Used
increa
mice
[197]
oxidative degradation of membrane phospholipids [138].
Compounds like phenobarbital, ethanol, and acetone
induce microsomal cytochrome p450 and therefore
potentiate the hepatotoxicity of CCl4, as does hypoxia;
therefore, hepatocellular injury and necrosis are pre-
dominantly seen in the centrolobular zone where the
oxygen tension is low [134,138].

Dimethylnitrosamine (DMN) is a carcinogenic agent
which causes liver injury by covalent binding and meth-
ylation of nucleic acids and proteins in hepatocytes
[139]. Animals administered DMN either per oral or
by intraperitoneal injection develop cirrhosis within 3–
4 weeks, and can continue to have stable or progressive
disease for several months after discontinuation of the
agent [140].

Diethylnitrosamine (DEN) induces pericentral foci of
small dysplastic hepatocytes and acts by ethylating
nucleophilic sites in DNA [141,142], causing cirrhosis
and multifocal HCC within 18 weeks [89,143]. Frequent
b-catenin mutations have been found in HCCs induced
by DENA in mice [144], and when combined with a
methyl-deficient diet, DEN administration generates
p53 mutation or rearrangement in rats [145].

Thioacetamide (TAA) in drinking water (0.03%) or
by intraperitoneal injection induces fibrosis in rats and
mice over a period of 2–3 months, which may be second-
ary to the oxidant properties of TAA and the induction
of hepatic oxidative stress [134,146,147]. Acute liver
injury and subsequent fibrosis can be created by admin-
istration of D-galactosamine (GalN), a hepatotoxin that
induces liver damage by depleting uridine nucleotides
and therefore diminishing RNA and protein synthesis
[148].

Cholestatic cirrhosis has been induced by extrahe-
patic bile duct ligation (BDL) in rats, rabbits, dogs,
and monkeys. Histologically, the BDL model is charac-
terized by infiltration of connective tissue in the portal
otype References

weeks: 100% HCC [135,190–192]

eks: 100% HCC [193] [90,193,194]

HCC in males, 30% in females. Extensive
osomal damage

[90,168,194,195]

HCC [134,146]

primarily as promoter in initiation/promotion
cols

[194,196]

as promoter in initiation/promotion protocols;
ses HCC by 500%. Can inhibit tumor formation in

given DEN. Associated with b-catenin activation

[197,198]
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zone and proliferation of bile duct epithelial cells and
hepatocytes. This methods allows rapid four-week
induction of cirrhosis, and the mortality is high [134].

Choline-, methionine-deficient diets administered
over 3–12 week periods induce cirrhosis and HCC in
rats and mice, even when followed by an adequate diet
[41]. Injury in these diets is most likely attributable to
depletion of hepatic antioxidant mechanisms, such as
reduced glutathione, which leads to oxidative DNA
damage, inflammation and fibrosis [41,149]. Histologic
changes seen in rodents fed this diet include periportal
fatty liver, focal hepatocyte necrosis, oval cell prolifera-
tion, infrequent cirrhosis [150] and HCC [151]. The var-
iation in animal susceptibility to choline deficiency is a
disadvantage to this model [134].

3.5. Models of liver fibrosis and HCC: creating a tumor

environment

The tumor microenvironment is emerging as a funda-
mental determinant of oncogenesis and metastasis. The
liver presents an ideal organ in which to study the inter-
action between tumors and their microenvironment, as
hepatocellular carcinoma (HCC) develops in a back-
ground of liver fibrosis in about 90% of cases. While
the notion that the tumor microenvironment may help
Table 4

Genetically modified models of liver fibrosis, inflammation, and HCC

Gene Type of mutation or tissue
promotor/construct

Phenotype

TGF-b Porcine TGF-b over-expression
under albumin promoter

Early death d
intestinal man
mild fibrosis

TGF-b inducible
transgenic

Fusion CRP/TGF-b1 under CRP
promotor, induced by LPS
injection

Collagen dep
weeks

ELF+/� knockout ELF+/� knockout mice Steatosis
PDGF-B PDGF-B over-expression using

Cre-LoxP under albumin
promoter; made Tamoxifene-
inducible by breeding with mice
expressing Cre under
transthyretin receptor promoter

100% liver fib
weeks

PDGF-C Human PDGF-C expression
driven by albumin promoter

Fibrosis and

IL-6 knockout IL-6 knockout (IL-6�/�) Hepatocyte n
compensatory
decreased in I

MyD88 knockout MyD88�/� Diminished p
MyD88�/� m

Alpha-1-antitrypsin
(AAT)

Transgenic mice using AAT Z
genomic clones

High copy Z
accumulation
reticulum; he

Mdr-2 Mdr-2 gene knockout Early: non-su
inflammatory

Acox1�/� Fatty acyl-CoA oxidase null
(AOX�/�) [167]

Steatohepatit
regeneration
instigate tumor formation is gaining acceptance, the
manner in which this occurs remains a mystery. In addi-
tion to the traditional toxic method of inducing fibrosis
in rodents, there are numerous transgenic models that
have been designed to recapitulate the phenotype of
chronic inflammation leading to fibrosis and HCC seen
in humans (see Table 4).

Stellate cell transactivation is a hallmark of hepatic
fibrogenesis. Many genetic models of liver fibrosis have
focused on the over-expression of TGF-b, a major fibr-
ogenic factor that drives matrix deposition from acti-
vated stellate cells [152]. Sanderson et al. generated
transgenic mice containing a fusion gene (Alb/TGF-
b1) under the control of the regulatory elements of the
mouse albumin gene; these mice developed mild fibrosis
by 12 weeks, and rarely developed cirrhosis [153]. Simi-
lar mild to moderately fibrotic phenotypes have been
demonstrated by other investigators [154,155]. When
exposed to thioacetamide, TGF-b1-over-expressing
transgenic mice develop fibrosis at an accelerated rate
[155], and develop HCC more frequently than wild-type
mice (9/9 versus 4/10 mice at 9 months) [156].

Intracellular signaling from TGF-b occurs through
signaling members TGF-b receptor type II (TBRII),
SMAD2, SMAD4, and SMAD adaptor, which are
tumor suppressors in gastrointestinal cancers. None of
Dysplasia or HCC References

ue to extra-
ifestations [153];

[155,156]

100% HCC in transgenic mice
treated with TAA [156]

[153,155,156]

osition at age 6 None reported [154]

40% HCC at >15 months [157,199]
rosis at age 4–6 None reported [159]

steatosis 80% HCC at 12 months [160]

ecrosis and
proliferation both

L-6�/� mice

<10% HCC in IL-6�/� mice
compared to 100% HCC at 8
months in male WT mice; 13%
HCC in female WT mice

[162,163]

roduction of IL-6 in
ice

Suppression of DEN-induced
HCC: MyD88�/� mice had fewer
smaller HCCs than WT mice

[162,163]

lineage: AAT
in endoplasmic

patitis and HCC

82% HCC at 16-18 months [164]

ppurative
cholangitis

HCC at 6–12 months with +lung
metastasis [166]

[165,166]

is followed by 100% HCC at 15 months [167] [167]
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the SMAD mutant models have developed HCC, how-
ever. SMAD function is dependent upon adaptor pro-
teins such as embryonic liver fodrin (ELF), a b-spectrin
protein. ELF associates with SMAD3, SMAD 4, and
the TGF-b receptor complex, and ultimately leads to
their translocation to the nucleus. Mishra et al. report
that ELF+/� knockout mice develop steatosis and spon-
taneous HCC. Loss of ELF in these mice results in cell
cycle disruption with significant increases in Cdk4, cyclin
D1 and pRb hyperphosphorylation [157].

In addition to TGF-b, activated stellate cells produce
a number of other profibrotic cytokines such as platelet
derived growth factor (PDGF). Induction of PDGF
receptor mRNA is one of the earliest events in stellate
cell activation, and its over-expression has been linked
to fibrosis [158]. Kanzler’s group developed a model in
which the PDGF-B ligand is inducibly over-expressed
in the liver. They found that PDGF-B expression caused
hepatic stellate cell activation and collagen deposition
[159]. Campbell et al. have described a PDGF-C trans-
genic model expressing human PDGF-C driven by the
albumin promoter. These mice develop fibrosis and ste-
atosis, and 80% develop HCC by 12 months of age [160].
Interestingly, no cirrhosis or regenerating nodules were
observed in either of these models.

Interleukin-6 (IL-6) is the cytokine largely responsible
for hepatic response to infections and inflammation. IL-6
serum concentrations are increased in patients with HBV
and HCV infections and with HCC [161]. Naugler et al.
induced liver disease with DEN in IL-6 knockout (IL-
6�/�) mice to determine whether gender bias in IL-6 pro-
duction accounts for the sex difference seen in HCC
development in both humans and in rodent models
[162]. The carcinogenic effects of DEN were suppressed
in IL-6�/�male mice: <10% developed HCC by 8 months
of age, compared to 100% in wild-type male mice. No dif-
ference was seen in IL-6�/� versus WT female mice.
Estrogens inhibit IL-6 promoter activity by decreasing
activity of the transcription factors NF-jB and C/EBPb,
a process dependent on IKKb and toll-like receptor
(TLR) adaptor Myd-88. In the same study, Myd-88
was found to be required for IL-6 induction by necrotic
hepatocyte debris, and Myd-88 knockout (Myd-88�/�)
male mice developed fewer and smaller HCCs in response
to injury by DEN than did WT male mice. The results of
this experiment provide a potential explanation for the
gender differences in the incidence of liver cancer, which
ranges between 2:1 and 4:1 male to female ratio [163].

Alpha-1-antitrypsin (AAT)-deficient transgenic mice
express the transport-impaired Z variant of the human
disease. These mice accumulate AAT and form foci of
hyperplasia surrounded by inflammatory infiltrates
[41], developing hepatitis, adenomas after 12 months,
and HCC after 16–20 months [164].

The Mdr-2 gene encodes a protein involved in trans-
port of phosphatidylcholine into the bile. Mdr-2 knock-
out mice accumulate toxic bile salts in their intrahepatic
biliary system, which causes a non-suppurative inflam-
matory cholangitis and ductular proliferation and even-
tually nodules and HCC at 6–12 months [165,166]. A
similar pathogenesis occurs in acyl-CoA oxidase
(AOX) knockout mice, which develop steatohepatitis
followed by a complete liver regeneration; this sequence
of inflammation followed by proliferation results in the
formation of HCCs by the age of 15 months [167].
4. Integrating functional genomics in HCC: from mice to

humans

The progression from dysplastic foci to HCC involves
the accumulation of genetic changes which can be mon-
itored with cytogenetic studies that show karyotypic
alterations in various chromosomes [137]. This type of
chromosomal gains and losses are particularly numer-
ous in lesions from rodents subjected to the carcinogen
initiator–promoter protocol, or in SV40/T antigen
transgenic mice. Various genes involved in hepatocarci-
nogenesis such as c-H-ras, met, HGF, myc, and p53 are
located on rat chromosomes exhibiting frequent aberra-
tions [41].

Thorgeirrson et al. applied a genome-wide micro-
array analysis to three transgenic mouse models of
HCC, and found that although gene expression profiles
in tumors derived from the three transgenic lines were
highly similar, it was possible to identify oncogene-spe-
cific gene expression signatures at an early dysplastic
stage of hepatocarcinogenesis [168]. In a related study,
gene expression patterns of HCC tumors from seven dif-
ferent mouse models and 91 human HCCs from prede-
fined subclasses were measured to compare the
molecular features of mouse and human HCCs [90].
The authors found that gene expression patterns in
tumors from Myc, E2f1 and Myc/E2f1 transgenic mice
were similar to those of the better survival group of
human HCC, whereas the expression patterns in HCCs
from Myc/Tgfa transgenic mice and from DEN-treated
mice were most similar to those of the poorer survival
group of human HCC. Gene expression patterns in
HCC from Acox1�/� mice and in ciprofibrate-induced
HCCs were least similar to those observed in human
HCCs. This study supports the notion that comparison
of gene expression between the two species can be used
to identify the mouse models of HCC that most closely
mimic the tumors in humans.
5. Conclusion

We have described both traditional models of carci-
nogenesis in which the expression of oncogenes and
tumor suppressor genes is genetically altered to produce
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HCC, and other models in which tumor formation is
dependent on inflammation. The natural history of
HCC development in humans, combined with the evi-
dence that genetic mutations alone sometimes do not
generate tumors unless initiated by a proinflammatory
agent, underscore the need to develop new models in
which HCCs develop spontaneously in an environment
of fibrosis, in order to best recapitulate the human dis-
ease process. In addition, integrative functional genomic
studies have suggested that human HCCs can be classi-
fied into subgroups based on molecular pathway activa-
tion. Comparison of gene expression between mouse
models and human HCC may allow us to create mouse
models in future which recapitulate the various sub-
groups, which would make ideal models for preclinical
studies.
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