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We suggest baryon–baryon correlations as an experimentally accessible signature for a first-order phase
transition between a baryon-rich phase, like quarkyonic, and a baryon-suppressed hadronic phase in the
QCD phase diagram. We examine the consequences of baryon-rich bubble formation in an expanding
medium and show how the two-particle correlations vary in the transverse and longitudinal direction
depending on the strength of the radial flow, the bubble temperature, and the time when the baryons
are emitted.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction and motivation

Exploring the Quantum-Chromodynamics (QCD) phase diagram
has been the focus of significant experimental and theoretical re-
search in the last few decades. In particular, the effect of heat-
ing and compressing nuclear matter on confinement and chi-
ral symmetry breaking has been studied, new phases of matter
have been suggested, and the existence of a critical endpoint pre-
dicted [1]. Relativistic heavy-ion experiments also aim to explore
the temperature-baryon density plane and to provide evidence for
a critical endpoint or a first-order phase transition. Therefore, it
is important to define reliable signatures for identifying a critical
point, a new phase, or a first-order transition line.

In attempting to understand QCD, it has often proven instruc-
tional to explore QCD-like theories in which some of the parame-
ters of the Lagrangian (quark mass mq , number of colors Nc , num-
ber of flavors N f ) are varied [3]. McLerran and Pisarski used such a
study to argue that at large Nc and sufficiently small temperature
to baryon chemical potential ratio T /μB the phase diagram ex-
hibits a strongly first-order phase transition to what they termed
quarkyonic matter [2]. For large Nc and all N f , baryon number
has been suggested as an order parameter for the transition [4]:
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In large Nc the baryon mass is of the order MB ∼ NcΛQCD. For
moderate temperatures, T ∼ ΛQCD, the expectation value of baryon
number is nB ∼ exp(μB/T − MB/T ) ∼ e−Nc . This is negligibly small
(identically zero at large Nc), and it remains that way as long as
μB � MB . For larger μB the baryon number density becomes non-
zero. In the deconfined quark–gluon plasma phase there are no
baryon masses, so that there is no baryon-number suppression [4].
Fig. 1 shows the phase diagram with a hadronic (mesonic) phase
and a high energy density quarkyonic phase. At small tempera-
tures the transition from the mesonic to quarkyonic phase should
be first order [4]. Although large Nc is not QCD, it is not excluded
that the QCD phase diagram bears some resemblance to the large
Nc diagram. For realistic Nc and N f the boundary of these regions
may be crossovers.

The question we asked ourselves was, if there is a first-order
transition between the quarkyonic and mesonic phase, what are
the observable consequences? The arguments laid down in the rest
of the Letter are, however, more general, because they only require
the existence of a baryon-rich and a baryon-poor phase. Phase con-
version between these can happen either by bubble nucleation or
by spinodal decomposition. Here we explore the phenomenolog-
ical consequences of bubble nucleation in QCD matter. Spinodal
decomposition has been addressed in [5]. It has been suggested
by Voloshin [6] that correlations in coordinate-space can be trans-
ferred to momentum-space through radial flow. Baryon number
fluctuations were discussed in [7], but the effects of radial expan-
sion and azimuthal correlations were not considered in that work.
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Fig. 1. Possible phase diagram of QCD.

Fig. 2. Evaporating quarkyonic bubbles Qy in the hadron gas H.

We focus on the transfer of spatial correlations between baryons
confined to baryon-rich regions, into baryon–baryon correlations
in momentum space via radial flow.

2. Baryon-rich bubbles

In this work we consider a bubble nucleation scenario, simi-
lar to the one proposed for strangelet condensation in the early
universe [9]. Imagine an expanding system in which the initial
temperature is higher than that of the transition between quarky-
onic and mesonic matter. Initially there is non-zero baryon number
density. As the system cools a small amount below the phase tran-
sition temperature, bubbles of stable mesonic phase start to nu-
cleate. It has been shown in a dynamical calculation by Paech and
Dumitru [8] that baryon inhomogeneities do form. The mesonic
bubbles expand rapidly, reheating the system back to the transi-
tion temperature. The system then is in a mixed phase, which at
first is mostly quarkyonic with small droplets of hadron gas. Then
these mesonic droplets increase in size. At the time when roughly
half the matter is in the quarkyonic phase one can think of bubbles
of quarkyonic matter evaporating in the hadron gas, as shown in
Fig. 2. The ratio of baryon densities of the hadronic phase and that
of the quarkyonic phase nH/nQy ∼ e−Nc is tiny (identically zero in
large Nc). Because of this exponential suppression of the baryon
density in the mesonic phase, all of the baryon number remains
trapped inside the bubbles of quarkyonic phase, and at later times
it can concentrate in the evaporating droplets of quarkyonic mat-
ter.

If bubbles of quarkyonic matter have baryon number larger
than one, large variation will exist in the spatial baryon number-
density. In the following we study how inhomogeneous the cor-
responding distribution in momentum space will be. The longi-
tudinal position inhomogeneities will be translated into inhomo-
geneities in rapidity because of the familiar correlation between
momentum- and coordinate-space rapidity. In the transverse space
there should be a similar correlation due to transverse flow [6].

Baryon correlations due to transverse flow are not likely to
be washed out by thermal noise. The momentum imparted to
a hadron due to flow depends on the mass and flow velocity
pflow ∼ M vflow while the thermal noise depends on the mass and
temperature pnoise ∼ √

MT . Since pflow/pnoise ∼ vflow
√

M/T and
since the baryon mass is at least a factor of five larger than the
temperature, we expect space inhomogeneities for baryon num-
ber to be observable as baryon–baryon correlations in momentum
space. We investigate these by constructing a bubble Monte Carlo
blast-wave model similar to Ref. [10].

3. Bubble Monte Carlo blast-wave model

Our model has two components: One is the bubble Monte
Carlo, in which the spatial distribution of baryon number and bub-
bles is generated; The other is a Monte Carlo blast-wave which
provides the momentum distribution of baryons. We study how
spatial correlations in the source function are translated into mo-
mentum space and examine the effect of baryonic bubble forma-
tion on the two-particle correlation functions.

In our bubble Monte Carlo, we first make an assumption for the
average number of baryons per bubble and the distribution of the
baryon number per bubble. We generate baryon number NB for
each event according to a Gaussian distribution

dN/dNB ∼ exp
{−(NB − N̄B)2/2N̄B

}
, (1)

in a finite window of rapidity within which we know the average
baryon number, N̄B . We then distribute the baryons into bubbles
with the number of baryons per bubble nB taking the form

dN/dnB ∼ exp
{−(nB − n̄B)2/2n̄B

}
. (2)

We sample this baryon-per-bubble distribution to generate bubbles
until we have generated the total number of baryons within the
given window. This fixes the number of bubbles. Our treatment of
NB and nB is somewhat arbitrary, but in this analysis rather than
focusing on number fluctuations sensitive to this implementation,
we will study the shape of the two particle correlations in rapidity
and azimuth (φ).

The bubbles are then distributed in space with two different
transverse density profiles: The Center Weighted Source profile, as-
sumes a bubble density given by a Woods–Saxon distribution in-
tegrated along the longitudinal z-direction. This distribution yields
a density largest at the center of the system. The Surface Weighted
Source gives a preference to bubble formation near a surface, moti-
vated by the picture of an expanding system where bubble nucle-
ation happens preferentially at a freezeout surface, near the edge
of the system. Transverse projections of both source functions are
shown in Fig. 3. For both cases, we take the distribution to be flat
in z. Baryons are then distributed inside the bubbles using again a
Woods–Saxon distribution of the form

dN/dx dy dz ∼ 1/
(
1 + exp

{−(rb − R)/a
})

. (3)

The bubble radius is taken to be rb = 0.6 fm(nB)1/3, so that the
volume per baryon remains constant, the radius of the system R =
12 fm, and the width of the distribution a = rb/8. In this way we
obtain the positions (x, y, z) for each baryon. This discrete set of
coordinates is later taken as the source function Ω . Fig. 4 shows
the baryon- and bubble-distribution in the transverse plane of one
event.

Each bubble is then assigned a radial boost velocity as is
done in the blast-wave model. To construct a blast-wave Monte
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Fig. 3. The source functions with emission weighted most heavily from the center (left) or from the surface (right).
Fig. 4. Transverse spatial baryon- and bubble-distribution for a Center Weighted
source. The circles representing the bubbles are drawn with a fixed radius that does
not reflect the variable bubble size rb .

Carlo we calculate the emission function, S . The emission func-
tion is the probability of emitting a baryon of transverse mass

mT =
√

p2
T + m2

B , transverse momenta pT , and rapidity Y B , at an
azimuthal angle φB from a boosted source of Ω at temperature T .
We use the discrete set of points generated with our bubble Monte
Carlo as our source function Ω . Following [11], we write the emis-
sion function as

S = mT cosh(η − Y B)Ω(r, φs)e−(τ−τ0)2/2�τ 2

×
∞∑

n=1

(−1)n+1ena cos(φb−φB )e−nb cosh(η−Y B ), (4)

where:

a ≡ pT

T
sinh β(r, φs) and b ≡ mT

T
cosh β(r, φs). (5)

Here we will consider central collisions, which implies the di-
rection of the boost β is identical to the spatial azimuthal angle
φb = φs . Generalization to finite impact parameter presents no ma-
jor technical difficulties. We allow the bubbles to decay isotrop-
ically in their flow boosted rest frame. Assumption of boost in-
variance manifests in the equality of the longitudinal flow rapidity
to the space–time rapidity η. For simplicity, we assume that the
emission is instantaneous and replace the Gaussian in (4) with
δ(τ − τ0). We are left to specify the transverse rapidity boost
β = r[β0 +β2 cos(2φb)]. The parameter β0 is the transverse rapidity
in the outward φs direction. We take β2 to be zero. We will inves-
tigate different values for β0 taking guidance from the fits in [11],
which reproduces well the experimental data.

4. Baryon–baryon correlation results

We investigate how baryon–baryon correlations in terms of rel-
ative angle (azimuth �φ and rapidity �y) vary with the freeze-out
temperature T , average flow velocity 〈β〉, number of baryons per
event NB , number of baryons per bubble nB , time at which bubbles
decay τdecay , and source function (Surface vs Center Weighted). We
present the correlations in terms of a per particle correlation mea-
sure [12]

�ρ√
ρref

= d2N/(dφ1 dφ2) − (dN/dφ1) · (dN/dφ2)√
(dN/dφ1) · (dN/dφ2)

. (6)

Here ρ is the pair density and ρref the product of single parti-
cle densities. This normalization of the correlation measure means
that for all other parameters kept fixed �ρ/

√
ρref is independent

of the total number of baryons per event NB [12]. This is because
normalizing by

√
ρref instead of ρref removes the dilution factor of

one over the number of particles analyzed. This was confirmed to
be true in our Monte Carlo (the variation of rb with NB does not
seem to influence the correlation function). We generate our refer-
ence spectrum by sampling the single particle dN/dφ and dN/dy
distributions generated in our Monte Carlo enough times so that
the same number of pairs are created in our reference distribution
as in our real distribution. This ensures that �ρ/

√
ρref will inte-

grate to zero. For this reason we are insensitive to a global offset
and focus instead on the shape of the correlation, which is easier
to measure experimentally. The variable �ρ/

√
ρref as a function

of the azimuthal angle between baryons from the decayed bubble
for a variety of different model inputs is shown in Fig. 5. Bubble
nucleation and radial flow leads to small angle correlations. We
find that all correlation shapes can be reasonably well parameter-
ized by a Gaussian centered at �φ = 0 and a constant offset. The
correlation can therefore be summarized in terms of the Gaussian
amplitude A and root mean squared width σ . By construction the
quantity �ρ/

√
ρref is independent of the total number of baryons

per event [12]. We confirmed this in our simulation, and then fixed
NB = 100.

The top left panel in Fig. 5 shows results with a Surface Source
and T = 100 MeV, 〈β〉 = 0.75, and nB = 2,4,8. The width of the
correlation is narrowest for nB = 2, since this corresponds to the
smallest bubble size, but the variation of σ with nB is very weak
(only changing from 0.487 for nB = 2 to 0.499 for nB = 8). The
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Fig. 5. Proton–proton correlations in terms of azimuthal angle between them for different model parameters. For details see the text.
dominant effect of varying nB is on the amplitude of the correla-
tion, which changes from 1.3 to 8.9, respectively. This dependence
can be understood in the following way: The number of pairs that
can be formed from one bubble is nB(nB − 1)/2. So the number of
correlated pairs in an event is nB(nB − 1)/2 times the number of
bubbles, which is the number of baryons NB divided by the num-
ber of baryons per bubble nB . Thus the number of correlated pairs
in an event is NB(nB − 1)/2. Recall, that the variable �ρ/

√
ρref

measures the number of correlated pairs per particle. For our sim-
ulation �ρ√

ρref
∝ NB (nB −1)√

N2
B

= nB − 1. Thus the correlation amplitude

scales with nB − 1. Accordingly, the nB = 8 amplitude is approx-
imately 7 times larger than for nB = 2. We note here that this
amplitude only applies to the case that the correlation is formed
only with baryons produced from bubbles. Any background con-
tribution (for instance from baryons produced outside of bubbles)
will dilute the signal.

In the top right panel in Fig. 5 we show the dependence of
the correlation on the temperature of the bubbles emitting the
baryons, for a fixed 〈β〉 = 0.75 and nB = 8. This temperature is
not necessarily the temperature at which the bulk of the hadrons
freeze-out, but could be closer to the value of the critical tem-
perature Tc , where the bubbles actually form. We vary this T
from 120 MeV to 180 MeV. It is clear that the shape of the
correlation changes appreciably with temperature: higher T lead
to a broader correlation function. In this temperature range and
for this flow velocity the r.m.s. width is given by the fit σ =
0.694 − 0.00639T + 0.0000435T 2. Since the random thermal boost
competes with the flow boost, a larger bubble decay temperature
washes out the correlation. Therefore, if the first-order phase tran-
sition is at a high Tc , correlations from bubbles will be harder to
detect.

Since we expect a competing effect of the radial flow and
the temperature, we now look at how flow influences the cor-
relation. We illustrate this for T = 100 MeV, nB = 8, and 〈β〉 =
0.75,0.55,0.40 on the bottom left panel of Fig. 5. The correla-
tion is strongly dependent of the mean flow velocity and is the
strongest for bubbles with larger boost. Remember, that flow is
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Fig. 6. Proton–proton correlation versus azimuthal angle and rapidity difference between the protons for bubble decay at times τdecay = 1 fm (left) and τdecay = 9 fm (right).
required to convert coordinate-space correlations to momentum
space. So again, if the phase transition happens early, before flow
builds up, bubbles will be hard to detect.

The bottom right panel of Fig. 5 displays the flow effects at
T = 100 and nB = 8, with either a Center or Surface Weighted
source function. The mean radial position of the source is larger
for the Surface Weighted source: 10.1 fm compared to 7.4 fm. This
leads to a larger average boost velocity: 〈β〉 = 0.75 compared to
〈β〉 = 0.55, respectively. A larger 〈β〉 leads to a more pronounced
correlation structure with the Gaussian narrowing from σ = 0.61
to σ = 0.50. We also compared a Surface Weighted source with a
reduced β0 such that the 〈β〉 is matched to the Center Weighted
case. The Surface Weighted correlation with 〈β〉 = 0.55 is only
slightly narrower than the Center Weighted correlation with the
same 〈β〉. The primary difference between Surface and Center
Weighting is caused by the change in 〈β〉, but some deviation oc-
curs due to the difference in geometry. Our interpretation is that
the Surface Weighted source has a smaller range of β values, while
the Center Weighted source has a broad distribution of β values. In
this case, even for the same 〈β〉 value, the Center Weighted source
gives a convolution of a broad range of β values which leads to
a broader correlation function. Also, a bubble near the center cov-
ers a larger solid angle. We investigated three 〈β〉 values for each
geometry. The widths within the ranges studied can be parame-
terized as follows: σ = 1.317 − 1.103β for the Center Weighted
source (see lower right panel) and σ = 1.357 − 1.367β for the
Surface Weighted source (see lower left panel). These parameteri-
zations of our model are valid for 0.29 < β < 0.75.

We also looked at correlations between baryons in the rapid-
ity y direction. Fig. 6 shows the proton–proton correlation as a
function of rapidity difference and azimuthal angle between the
protons at different proper times of bubble decay, i.e. τdecay = 1 fm
(left panel) and τdecay = 9 fm (right panel). We found that if the
time at which bubbles decay τdecay is long then narrow corre-
lations can build up both in �φ and �y directions. These cor-
relations are increased in amplitude and narrowed in width. We
conclude that if bubble decay happens near the beginning of the
system evolution (small τdecay) implying a high decay temperature
and low flow, baryon–baryon correlations will be broad in both
directions. For bubble decay near freeze-out (large τdecay), on the
other hand, strong correlations with narrow widths in both di-
rections can be expected. Our fit for the change in the width in
rapidity direction with time is σy = 0.37 + 0.47τ−1.58.

Our studies of �ρ/
√

ρref show that, the amplitude and width
of the correlation varies substantially within this bubble Monte
Carlo blast-wave model depending on the parameters assumed:
We have shown in Fig. 5. That correlation caused by baryonic bub-
bles emitted from a boosted source can change by a factor of two
even with reasonable values for the average boost velocity and
freeze-out temperature. The signature of a first-order phase tran-
sition will be strong if the transition happens near the freeze out
since then the flow will be largest and the temperature lowest. We
note, that the decay time is linked to the temperature and flow,
and with a dynamical model one could make this connection ex-
plicit.

We also consider how this correlation can affect measurements
of elliptic flow v2 [13] and it’s fluctuations [14]. One method for
estimating v2 = 〈cos(2φ − Ψ )〉 when the reaction plane angle Ψ

is not known is to calculate 〈cos(2�φ)〉 from two-particle correla-
tions. This quantity depends on 〈v2〉2, σ 2

v2
, and other correlations

not related to the reaction plane, called non-flow δ2. Since we only
consider central collisions in this study 〈v2〉 is zero. The calculation
of 〈cos(2�φ)〉 is therefore related to either non-flow correlations
or v2 fluctuations. In either case, the correlations from our model
will lead to a deviation between the second- and fourth-order cu-
mulants [13] such that v2{2}2 − v2{4}2 is non-zero. Since v2 is
zero the expected deviation between the cumulants is given by

v2{2}2 − v2{4}2 =
∫ π

0 d�φ cos(2�φ)dnpairs/d�φ∫ π
0 d�φ dnpairs/d�φ

. (7)

This quantity depends strongly on the variables explored in the
discussion above, as well as on the number of uncorrelated parti-
cles included in the analysis (misidentified mesons for example).
Larger multiplicities will dilute the correlation leading to smaller
differences between v2{2}2 and v2{4}2. The quantity NB(v2{2}2 −
v2{4}2), however, should be independent of NB if all other param-
eters are fixed because. The factor of NB cancels out the dilution of
v2{2}2 − v2{4}2 arising from the increase of the number of possi-
ble pairs when the multiplicity increases. To confirm this we kept
other parameters fixed and varied NB from 60 to 200. The result-
ing NB(v2{2}2 − v2{4}2) did not change. With T = 100 MeV and
〈β〉 = 0.55, we found that NB(v2{2}2 − v2{4}2) ≈ 5 for nB = 8 and
≈ 2.7 for nB = 4. Increasing the temperature to 180 MeV with
nB = 4 reduces NB(v2{2}2 − v2{4}2) to ≈ 0.37. The introduction
of a number M of uncorrelated background particles (pions for ex-
ample), reduces NB(v2{2}2 − v2{4}2) by a factor of M2. Putting
everything together we find v2{2}2 − v2{4}2 = C

NB M2 , where C can
be expected to be between 0.3 and 5.

Measurements of p–p and p–Λ correlations have been carried
out at energies ranging from

√
s ∼ 2 GeV to 200 GeV [15]. In

these HBT analyses correlation functions are defined as C(k∗) =
Npair,real/Npair,mixed . The variable k∗ = Q inv/2 is the relative mo-
mentum of the particles in the pair rest frame, Npair,real is the
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number of pairs in an event with relative momentum k∗ , and
Npair,mixed is the number of pairs expected from random combina-
torics and is constructed from mixed events. The region of interest
to an HBT analysis is below k∗ ∼ 100 MeV. The Npair,mixed distri-
bution is usually normalized to the Npair,real distribution at some
value of k∗ above this region. Our Monte Carlo model yields a cor-
relation C(k∗) well described by a Gaussian with an RMS width
of 750 MeV. For bubbles with nB = 8 the amplitude of the Gaus-
sian is 8%. If the Npair,mixed distribution is normalized to the region
near k∗ = 500 MeV the correlation induced by bubble formation
would show up as a smooth 1–2% variation of C(k∗) between 0
and 500 MeV. In HBT analyses, long-range non-femptoscopic cor-
relations of this kind are treated as background and ignored or
parameterized. We therefore conclude that although HBT measure-
ments performed at lower beam energies do not report signs of a
strong baryon–baryon correlation as described here, they also do
not exclude their presence.

5. Summary and conclusion

We have shown that bubble nucleation at a first or phase tran-
sition coupled with radial flow in heavy-ion collisions can lead
to detectable baryon–baryon correlations. We’ve mapped out the
shape of these correlations in rapidity and azimuthal angle and
discussed how they will manifest as non-flow or flow fluctuations
by contributing to the difference between v2{2} and v2{4}. We ex-
plored how the correlations will depend on the strength of the
radial flow, and the temperature of the system at the time when
the baryon rich regions decay. We reported the variation of the
azimuthal and longitudinal width with temperature, flow, geom-
etry, and decay time. We find that if bubble decay happens late
in the evolution, close to the freeze-out when the temperature is
lower and the flow is larger, the correlations will be narrow in ra-
pidity and azimuth. We conclude that these correlations would be
easy to detect. If the bubbles decay early in the evolution, the flow
will be weaker, the temperature will be higher, and the correlation
will be wider in both directions and therefore less pronounced in
the data. In this later scenario, there will be more hadronic rescat-
tering which may wash out the signal entirely. The effect of the
hadronic stage on these correlations is an important study which
will be the focus of future more quantitative work.

The observation of baryon–baryon correlations as described in
this work will be evidence for the existence of a first-order phase
transition. The lack of such a signal will indicate that either bubble
nucleation at a first-order phase transition did not occur, or that
the transition was sufficiently seperated from freeze-out as to ren-
der the correlations unobservable. We propose therefore, that stud-
ies of baryon–baryon correlations can be used to answer whether a
first-order phase transition is present in the vicinity of the freeze-
out curve in heavy-ion collisions. Future studies of the effect of the
hadronic rescattering stage will allow us to more precisely specify
the region within which a first-order phase transition should be
detectable. If the transition to quarkyonic matter is first-order and
close enough to hadronic freeze-out, then we conclude that it can
be detected through baryon–baryon correlations.
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