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Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies 
in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. 
Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector 
of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on 
the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite 
temperature are calculated using the thermo field dynamics formalism.
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1. Introduction

Standard Model (SM) has been highly successful in predicting 
interaction among quarks at energy upto a few TeV. In weak inter-
actions break down of Parity [1,2] and CP symmetry [3] has been 
observed at low energies. String theory in higher dimensions is 
possible for particle physics at high energies. Such a theory may 
have violation of Lorentz and CPT symmetry. At some range of 
higher energies, can there be a break down invariance properties 
like Lorentz invariance and CPT symmetry of the SM [4]? Such 
an extension of the Standard Model (SME) has been applied to 
several processes in order to get an estimate of the break down 
of symmetries. Such violations have also been found to occur in 
loop quantum gravity [5], noncommutative theories [6], spacetimes 
with a nontrivial topology [7], among others.

The general theory of the SME [8,9] includes the known physics 
of the SM plus all possible terms that violate Lorentz and CPT sym-
metry. In addition, the SME is divided into two parts: (i) the mini-
mal version restricted to power counting renormalizable operators 
and (ii) the nonminimal version which also includes operators of 
higher dimensions. In this paper our interest is in the fermion sec-
tor that is based on a minimal extended Quantum Electrodynamics 

* Corresponding author.
E-mail addresses: alesandroferreira@fisica.ufmt.br (A.F. Santos), khannaf@uvic.ca

(F.C. Khanna).
http://dx.doi.org/10.1016/j.physletb.2016.09.049
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
(EQED) that is part of SME. This EQED involves modifications of 
the usual QED in both fermion and photon sectors. The relativistic 
lagrangian that describes fermions in SME does not imply a her-
mitian hamiltonian. In order to resolve this problem a redefinition 
of the field is needed and this has been achieved [10]. This will 
be utilized in the present development. Our aim here is to pro-
vide theoretical predictions regarding the quantum vacuum in this 
EQED. We concentrate on calculating the effects of these modifica-
tions on the Casimir force in the fermion sector.

The Casimir effect consists in the calculation of the vacuum 
energy density of a quantum field in the presence of boundary 
conditions. H. Casimir [11] was the first to analyze the vacuum 
fluctuation of the electromagnetic field confined between two con-
ducting parallel plates. The effect was an attractive force between 
the plates. Sparnaay [12] made the first experimental observation 
with correct sign and magnitude. Subsequent experiments [13,14]
have established this effect to a high degree of accuracy. This phe-
nomenon has been applied to micro- and nanotechnologies [15,
16] and superconductors at high temperatures [17,18]. The Casimir 
effect for fermions at zero and finite temperature also has been 
investigated [19–21]. This effect for fermions is interesting when 
the structure of proton in particle physics is considered, in partic-
ular for the phenomenological bag model. Quarks and gluons are 
confined in the bag. In this paper we derive the Casimir effect at 
finite temperature considering the fermion sector of the EQED of 
the SME.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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There are three different, but equivalent, formalisms to intro-
duce temperature effects in a quantum field theory. (i) The Mat-
subara formalism, the imaginary time formalism, [22] which is 
based on a substitution of time, t , by a complex time, iτ . Since 
the time variable is exchanged for temperature, this method is a 
good tool for studying systems at equilibrium. (ii) The closed time 
path formalism [23] is a real time formalism at finite tempera-
ture. This procedure can be used to describe both equilibrium and 
non-equilibrium phenomena. In addition, leads to a doubling of the 
degrees of freedom, such that the Green functions are represented 
by a two dimensional matrix structure. (iii) The Thermo Field Dy-
namics (TFD) is a real time finite temperature formalism [24–29]. 
The thermal vacuum, |0(β)〉, belongs to the Fock space ST that is 
a direct product of the original Fock space S and an independent 
identical copy of it S̃ (tilde system). In this formalism the statisti-
cal average of an observable A is expressed as a thermal vacuum 
expectation value i.e., 〈A〉 = 〈0(β)|A|0(β)〉, where β = 1

kB T , and 
T is the temperature and kB is the Boltzmann constant (we use 
kB = h̄ = c = 1). The map between the tilde Ãi and non-tilde Ai
operators is defined by the following tilde (or dual) conjugation 
rules:

(Ai A j)
∼ = Ãi Ã j,

(c Ai + A j)
∼ = c∗ Ãi + Ã j,

(A†
i )
∼ = Ãi

†
,

( Ãi)
∼ = −ξ Ai, (1)

with ξ = −1 for bosons and ξ = +1 for fermions. The temperature 
effect is implemented in the doubled Fock space by a Bogoliubov 
transformation which introduces a rotation of the tilde and non-
tilde variables. This formalism is useful for systems in equilibrium. 
For such systems the Bogoliubov transformation is unitary. Here 
we choose to use the TFD formalism.

This paper is organized as follows. In section 2, the energy-
momentum tensor for fermions of the SME is calculated. In sec-
tion 3, a brief introduction to TFD is presented. In section 4, some 
applications are developed. The Stefan–Boltzmann law and the 
Casimir effect at zero and finite temperature are derived. In sec-
tion 5, some concluding remarks are presented.

2. The energy momentum tensor for the Dirac field of the SME

The Lagrangian for the fermion sector of the extended quantum 
electrodynamics of the SME is

L = ψ̄

(
i�μ

↔
∂μ −M

)
ψ, (2)

where

�μ = γ μ + (cμν + dμνγ5)γν + eμ + i f μγ5

+ 1

2
gκμνσκν, (3)

M = m + (aμ + bμγ5)γμ + 1

2
Hμνσμν. (4)

The parameters in �μ are dimensionless while the ones in M have 
dimension of mass. γ μ , γ5 and σκν denote the Dirac matrices. 
The coefficients for Lorentz violation are aμ, bμ, cμν, dμν, eμ, f μ,

gκμν and Hμν .
The hamiltonian associated with the lagrangian (2) is non-

hermitian and corresponds to nonunitary time evolution. This dif-
ficulty can be resolved by a spinor redefinition ψ = Aχ in the 
lagrangian. The quantity A is chosen such that the time-derivative 
is that of the usual Dirac lagrangian [10]. This spinor redefinition 
leaves unchanged the physics. Thus the lagrangian becomes

L = χ̄

(
i Ā�μ A

↔
∂μ − ĀM A

)
χ. (5)

Using Ā = γ 0 A†γ 0 and A†γ 0�0 A = I , where I is the unit matrix, 
this lagrangian contains only time derivative as the usual term, i.e., 

iχ̄γ0

↔
∂0 χ .

The modified Dirac equation is obtained as(
i Ā�μ A∂μ − ĀM A

)
χ = 0. (6)

Using this field equation, the energy-momentum tensor for
fermions is given as

T μν = iχ̄ Ā�μ A∂νχ. (7)

In order to get the Casimir effect the energy-momentum tensor 
is written so as to avoid a product of field operators at the same 
space–time point. Then

T μν(x) = i Ā�μ A∂ν lim
x→x′ τ

[
χ̄ (x′)χ(x)

]
, (8)

where τ is the time ordering operator.
The vacuum average of the energy-momentum tensor is〈

T μν(x)
〉 = 〈

0|T μν(x)|0〉
= − lim

x→x′
{

Ā�μ A∂ν S(x − x′)
}
, (9)

where the Feynman propagator for the Dirac field [29] is

S(x − x′) = −i
〈
0|τ [

χ̄ (x′)χ(x)
] |0〉

= (iγ · ∂ + m) G0(x − x′), (10)

with

G0(x − x′) = −i

(2π)2

1

(x − x′)2 + iξ
, (11)

being the propagator of the massless scalar field. To obtain lin-
ear order in parameters for Lorentz violation the choice A = 1 −
1
2 γ 0(�0 − γ0) and Ā = 1 − 1

2 (�0 − γ0)γ
0 is considered. Thus for 

a massless fermionic field the average of the energy momentum 
tensor becomes〈
T μν(x)

〉 = −i lim
x→x′{� ∂μ∂νG0(x − x′)}, (12)

where � =
(

1 + 9
4 �iγi

)
, with i = 1, 2, 3. The Minkowski metric 

with signature (+ − −−) is used.
The parameters ei, f i and gki j in �i are not extractable directly 

from SME and are taken to be zero or suppressed due to the renor-
malizibilty and gauge invariance requirements. The parameters ci j

and dij are traceless and symmetric. For simplicity we will con-
sider the case dij = 0. Then the average of the energy-momentum 
tensor with Lorentz violating term is
〈
T μν(x)

〉 = − i

4
lim

x→x′{�c ∂μ∂νG0(x − x′)}, (13)

where �c = (31 + 9ci
i), with ci

i being the parameter that violates 
Lorentz symmetry. It is important note that the term ci

i is not the 
trace of ci j , since eq. (12) yields a term proportional to

�iγi = ci jγ jγi = c j
i γ jγ

i

= c1
1γ1γ

1 + c2
2γ2γ

2 + c3
3γ3γ

3 = ci
i, (14)

where γ1γ
1 = γ2γ

2 = γ3γ
3 = 1 is used.

The TFD formalism is used in order to introduce the finite tem-
perature effect.
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3. Brief introduction to TFD

TFD consists in the generation of thermal states by doubling the 
degrees of freedom in a Hilbert space accompanied by the temper-
ature dependent Bogoliubov transformation [29,24–26,30,31]. This 
doubling is defined by the tilde (∼) conjugation rules, associating 
each operator in S to two operators in ST , where the expanded 
space is ST = S ⊗ S̃ , with S being the standard Fock space and 
S̃ the fictitious space. For an arbitrary fermionic operator F the 
standard doublet notation is

F a =
(

F 1

F 2

)
=

(
F
F̃ †

)
, (15)

where the physical variables are described by nontilde operators. 
The tilde operators are auxiliary degrees of freedom which allow 
accommodation of the thermal properties of the system. A Bogoli-
ubov transformation which corresponds to a rotation in the tilde 
and non-tilde variables introduces thermal effects. For fermions 
and using the doublet notation we get(

b(α)

b̃†(α)

)
= B(α)

(
b(k)

b̃†(k)

)
, (16)

where (b†, ̃b†) are creation operators, (b, ̃b) are destruction opera-
tors and B(α) is the Bogoliubov transformation given as

B(α) =
(

u(α) −v(α)

v(α) u(α)

)
. (17)

The quantities u(α) and v(α) are related to the Fermi distribution 
and are given as

v2(α) = 1

1 + eαω
, u2(α) = 1

1 + e−αω
, (18)

such that v2(α) + u2(α) = 1. Here ω = ω(k) and α = β .
Using this formalism the physical α-dependent energy-momen-

tum tensor is defined as

T μν(ab)(x;α) = 〈T μν(ab)(x;α)〉
− 〈T μν(ab)(x)〉. (19)

Then

T μν(ab)(x;α) = − i

4
lim

x→x′

{
�c ∂μ∂ν ×

×
[

G(ab)
0 (x − x′;α) − G(ab)

0 (x − x′)
]}

, (20)

where a, b = 1, 2 and

G(ab)
0 (x − x′) =

∫
d4k

(2π)4
×

× e−ik(x−x′)G(ab)
0 (k), (21)

with

G(ab)
0 (k) =

(
G0(k) 0

0 G∗
0(k)

)
. (22)

The α-dependent part of the Green function is

G(ab)
0 (x − x′;α) =

∫
d4k

(2π)4
×

× e−ik(x−x′)G(ab)
0 (k;α), (23)

where G(ab)
0 (k; α) = B−1(α)G(ab)

0 (k)B(α). Explicitly, the physical 
component of G(ab)

(k; α) is
0
G(11)
0 (k;α) ≡ G0(k;α) = G0(k)

+ v2(α)[G∗
0(k) − G0(k)]. (24)

For fermions the energy-momentum tensor (20) is studied for 
some choice of the α parameter.

4. Some applications

Here three applications which depend on the choice of the α
parameter are studied.

4.1. Stefan–Boltzmann law

Let us consider the generalized Bogoliubov transformation [32]
which is written as

v2(kα;α) =
d∑

s=1

∑
{σs}

2s−1 ×

×
∞∑

lσ1 ,...,lσs =1

(−η)s+∑s
r=1 lσr ×

× exp

⎡
⎣−

s∑
j=1

ασ j lσ j k
σ j

⎤
⎦ , (25)

where d is the number of compactified dimensions, η = 1(−1) for 
fermions (bosons) and {σs} denotes the set of all combinations 
with s elements.

In this case the choice is α = (β, 0, 0, 0) and then

v2(β) =
∞∑

l=1

(−1)l+1 e−βk0l. (26)

Using eq. (23) the thermal Green function becomes

G(11)
0 (x − x′;β) = G0(x − x′) +

∞∑
l=1

(−1)l+1

× [
G∗

0(x′ − x + iβln0)

− G0(x − x′ − iβln0)
]
, (27)

where n0 = (1, 0, 0, 0). Then the energy-momentum tensor is given 
as

T μν(11)(x;α) = i

4
lim

x→x′

∞∑
l=1

(−1)l �c ∂μ∂ν ×

× [
G∗

0(x′ − x + iβln0)

− G0(x − x′ − iβln0)
]
. (28)

For μ = ν = 0 we obtain the modified Stefan–Boltzmann law

T 00(11)(β) = 7π2

60
T 4

(
a + b ci

i

)
, (29)

where ci
i is a Lorentz violating term. The constants a and b are 

defined as a = 31
16 and b = 9

16 . Thus the lowest-order prediction 
of the fermions sector of the SME modifies the Stefan–Boltzmann 
law. The field redefinition changes the Stefan–Boltzmann law by a 
multiplicative factor.
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4.2. Casimir effect at zero temperature

For parallel plates perpendicular to the z direction and sep-
arated by a distance a the α parameter is chosen as α =
(0, 0, 0, i2a). Then

v2(a) =
∞∑

l=1

(−1)l+1 e−i2ak3l, (30)

and the energy-momentum tensor becomes

T μν(11)(x;α) = i

4
lim

x→x′

∞∑
l=1

(−1)l �c ∂μ∂ν ×

× [
G∗

0(x′ − x + 2alk3)

− G0(x − x′ − 2alk3)
]
. (31)

From this equation the Casimir energy and pressure are obtained

E(a) = T 00(11)(a) = − 7π2

2880a4

(
a + b ci

i

)
,

P (a) = T 33(11)(a) = − 7π2

960a4

(
a + b ci

i

)
, (32)

where ci
i is the Lorentz violating coefficient.

4.3. Casimir effect at finite temperature

In order to analyze the temperature effect in the Casimir effect 
α = (β, 0, 0, i2a) is considered, where the temperature effect and 
spatial compactification are combined. Then the Bogoliubov trans-
formation, eq. (25), becomes

v2(β,a) = v2(k0;β) + v2(k3;a)

+ 2v2(k0;β)v2(k3;a), (33)

=
∞∑

l0=1

(−1)l0+1 e−βk0l0

+
∞∑

l3=1

(−1)l3+1 e−i2ak3l3

+ 2
∞∑

l0,l3=1

(−1)l0+l3 e−βk0l0−i2ak3l3 .

The first term leads to the Stefan Boltzmann law and the second 
term to the Casimir effect at zero temperature. The Casimir effect 
at finite temperature is

T μν(11)(β,a) = − i

2
lim

x→x′

∞∑
l0,l3=1

(−1)l0+l3 ×

×�c ∂μ∂ν
[
G∗

0(x′ − x + iβl0n0 + 2alk3)

− G0(x − x′ − iβl0n0 − 2alk3)
]
. (34)

The Casimir energy, T 00(11)(β, a), and pressure, T 33(11)(β, a), re-
spectively, are given as

T 00(11)(β,a) = − 8

π2

∞∑
l0,l3=1

(−1)l0+l3 × (35)

× (2al3)2 − 3(βl0)2

[(βl0)2 + (2al3)2]3
(a + b ci

i),

and
T 33(11)(β,a) = − 8

π2

∞∑
l0,l3=1

(−1)l0+l3 × (36)

× 3(2al3)2 − (βl0)2

[(βl0)2 + (2al3)2]3
(a + b ci

i).

Thus the Casimir energy is

E(β;a) =
[ 7π2

60β4
− 7π2

2880a4
(37)

− 8

π2

∞∑
l0,l3=1

(−1)l0+l3
(2al3)2 − 3(βl0)2

[(βl0)2 + (2al3)2]3

]
(a + b ci

i).

Note that at low temperatures this energy recovers the Casimir 
energy at zero temperature, while the high temperature limit is 
dominated by the positive contribution of the Stefan–Boltzmann 
term. The Lorentz violating terms emerge at both limits.

The Casimir Pressure is

P (β;a) =
[ 7π2

180β4
− 7π2

960a4
(38)

− 8

π2

∞∑
l0,l3=1

(−1)l0+l3
3(2al3)2 − (βl0)2

[(βl0)2 + (2al3)2]3

]
(a + b ci

i).

For low temperatures the pressure is negative. When temperature 
increases, a transition to positive pressure happens. It is possible to 
determine the critical curve of the transition. The point of transi-
tion occurs when the pressure vanishes. Then analyzing our result 
we note that the Lorentz violating term does not modify this tran-
sition value.

5. Conclusion

Symmetry, symmetry breaking and physical laws are connected 
to the description of nature. In string theory it is possible to violate 
Lorentz and CPT symmetries. The extension of these ideas for SM 
leads to SME where break down of Lorentz and CPT symmetries 
is possible. In this paper we use the fermion sector of the SME to 
calculated the Casimir effect at zero and finite temperature.

The Casimir energy for the electromagnetic and fermions field 
within the SM at zero and finite temperature is considered and 
experimentally established. Here our interest is to study SME with 
Lorentz and CPT violating terms for fermions systems. The energy-
momentum tensor for the fermion sector of SME is calculated. 
Using the TFD formalism the Stefan–Boltzmann law and Casimir 
energy are obtained at finite temperature. The Casimir energy is 
found to be (a + bci

i)P , where P is the standard Casimir pressure, 
ci

i is the Lorentz violating parameter and a, b are constants. Final 
results are multiplied by a constant factor due to the field redefini-
tion. This is necessary to obtain a theory where the hamiltonian is 
hermitian. Temperature effects contribute to constrain Lorentz vi-
olation parameters. Overall the effect of Lorentz and CPT violation 
on Casimir energy is small.
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