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Abstract

Identifying a suitable compromise between tight and thus expensive tolerances and wide tolerances that may negatively influence 
the product quality is a major challenge. This paper focuses on the tolerance-cost-optimization of mechanical assemblies with 
interrelated dimension chains considering dependencies between the tolerance–cost-relationships. Taking into account 
interrelated dimension chains the crux is, however, that modifications of a single tolerance can influence several dimension 
chains as well as the resulting production costs. Based on different existing approaches for the statistical tolerance-cost-
optimization, the authors will provide appropriate guidance for the product developer dealing with interrelated dimension chains.
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1. Introduction

Today’s products are usually designed in a 3D-CAD
environment that can only represent the designer’s ideal 
conception of the parts. In practice, however, these ideal 
conceptions can never be realized. The ideal product 
characteristics will never be achieved due to variations during 
manufacture and assembly as well as varying operating 
conditions (such as a varying temperature during the use)
(Figure 1). At this point, tolerances come into play to restrict 
the acceptable effects of intrinsic variations during 
production, assembly and operation.

Despite all gained success in research and development of 
tolerance engineering, the specification of tolerances of 
products, assemblies, single parts and even individual features 
is a tightrope walk because each tighter tolerance enhances 
the production cost while each wider tolerance might 
endanger significant quality features of a product [1]. Due to 

the fact that not only the costs, but also the quality of a 
product is strongly influenced by the tolerance scheme, 
tolerance design is one of the most important steps in product 
development.

Fig. 1. From the nominal model to the deviation-afflicted real parts
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To ensure quality and flawless functionality of products 
several methods on tolerance analysis have been established 
in the last decades. Besides more recent approaches on the 
representation of tolerances such as Deviation Domains [2], 
T-Maps® [3] or Skin Models [4], vector-chain-based 
approaches are widespread in academics and industrial 
practice [1]. All these approaches have in common that 
relevant quality features are described by so-called 
“Functional Key Characteristics” (FKCs) [5] which are 
influenced by varying factors.

Considering the complexity of products the designer has to 
cope with several different FKCs that are often interrelated. 
This means that the modification of a single tolerance value 
influences more than one FKC. This issue is illustrated in 
Figure 2, where the interrelation of two dimensional chains, 
each consisting of five rings, is shown. 

Fig. 2. Interrelated dimension chains

The diameter and roundness of the blue ring influence both 
FKCs as shown in the drawing

2. Related Work

Specifying a proper tolerance design for each single part of 
a product effects several departments of a company. Not only 
production and assembly departments but also the quality 
management and the rework processes etc. are directly 
affected by given tolerances. As a consequence, the initial
tolerance design of a new product is usually based on 
previous projects or general tolerances. After the specification 
of the initial tolerance design a tolerance analysis is usually 
set up to evaluate the effects of the deviations on certain 
FKCs. If the functional requirements cannot be fulfilled, the 
initial tolerance design is changed iteratively until the
required scrap rate is under a certain limit. Since tolerances 
are major cost drivers, finding the “best tolerance design” is 
essential against the backdrop of technical as well as financial 
aspects.

Early analytical approaches for tolerance synthesis [6]
have been replaced by the first computer-aided approach in 
1964 by MOY [7]. The computer-aided approaches were
further developed using different algorithms in the 1970s, 
most famously by SPOTTS and SPECKHART [8], [9]. Even 
though different tolerance-cost-relations from the 1970s were 
expanded within the following 20 years by CHASE et al. [10],

none of these approaches considers connections of more than 
one tolerance dimensions.

First, SINGH et al. classifies tolerance chains in [11] and 
highlights the importance of connections between different 
dimension chains. According to them, a dimension chain (also 
called tolerance chain or dimension loop) is an abstract model 
of an assembly taking geometric relations into account. 
Thereby, the dimension chain is a sequence of at least two 
dimensions. The simplest form of a dimension chain is an 
elementary chain that encounters every end point once. 
Dimension chains that include a dimension not more than one 
time are called “simple chains”. Apart from elementary and 
simple chains, each remaining type of dimension chain is 
called an “interrelated chain” [11].

SINGH made a first approach defining the optimal tolerance 
design by means of a Genetic Algorithm (GA) to handle the 
non-linear dependencies. However, their approach is based on 
a worst-case tolerance analysis. Consequently, this approach 
is currently not able to handle different probability
distributions of tolerances unlike the state-of-the-art Monte-
Carlo-based tolerance analysis.
The above and below mentioned approaches assume that the 
tolerances for each dimension can be allocated arbitrary 
within each corresponding tolerance zone. Unlike this 
assumption LÖÖF points out, that usually tolerances can solely 
be picked from a limited set of discrete values. Based on this 
assumption a procedure for tolerance-cost-optimization, 
coupled with commercial CAT Software, using discrete 
values is presented. Furthermore the possibility for the 
consideration of general loss functions is provided within this 
work [12].

GEETHA also worked in a similar field, focusing on the 
composition of manufacturing costs. Their enhanced 
tolerance-cost-model considers several additional significant 
parameters such as costs arising from machine idle times and
machine engaged times. A wheel mounting assembly is used 
to illustrate the optimization using Genetic Algorithm [13].

In Summary, existing research details on the importance of 
tolerance-cost-optimization of connected dimension chains. 
Because manufacturing processes often affect more than one 
dimension of parts, a dependence of different tolerances is 
inevitable, however currently not considered satisfyingly.

In this paper the authors provide a methodology for the 
statistical tolerance-cost-optimization for interrelated 
dimension chains considering connected tolerances. 
Therefore, the Particle Swarm Optimization (PSO) is used to 
identify the optimal tolerance design. The practical use of the 
proposed methodology is detailed for a driving pulley.

3. Tolerance-Cost-Optimization of interrelated Dimension 
Chains with connected production costs

Finding the ideal tolerance design for each single part of an 
assembly is a challenging task since even with known
tolerance-cost-models it’s often not obvious which tolerances 
should be tightened and/or widened. Therefore, a
methodology for a systematic statistical tolerance-cost-
optimization is presented in this section. Furthermore, existing 
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tolerance-cost-models are adapted to meet the requirements of 
connected production costs.

3.1. Methodology

The presented methodology for a systematic tolerance-cost-
optimization is shown in Figure 3. It is an extension of the 
existing method on tolerance allocation of mechanisms by 
WALTER et al. [1].

Fig. 3. Methodology: Tolerance-cost-optimization for 
interrelated dimension chains

Each part or process of a technical system has inherent 
deviations which can be specified and restricted with an initial 
tolerance design. In order to ensure the functionality of a 
technical system certain FKCs corresponding to functional 
requirements are defined. Commonly, minimum clearance 
between two parts is considered as a FKC and mathematically 
described using a dimension chain.

After the formulation of the required dimension chains a
tolerance analysis is performed to analyze the effects of 
geometric deviations caused by manufacturing or assembling
on the FKCs. Based on this analysis and the tolerance-cost-
relationship for each part or manufacturing process, the 
tolerance-cost-optimization problem has to be formulated. 
Usually, this optimization problem focusses on minimizing 
the resulting manufacturing costs and not violating a certain 
scrap rate.
To identify the cost-optimal tolerance design a Particle 
Swarm Optimization (PSO), a metaheuristic optimization 
algorithm, is used. PSO is not only capable to find the global 
minima of a certain objective function it can also deal with 
highly non-linear constraints such as the tolerance-cost-
models for manufacturing with alternative process selection.

Inspired by the swarming behavior of biological 
populations (such as fish flocks or bird swarms), the PSO was 
invented by KENNEDY et al. in 1995 [14].

PSO imitates the social behavior of a flock of individuals 
searching for food. A group of n random particles (each 
represents a valid solution of the optimization problem’s 
constraints) is spread over the defined search space. During 
each iteration, the particles change their position to 

approximate the best solution. Therefore, the particles follow 
the currently best so far achieved solution considering their 
velocity.
Using the results of the optimization – the tolerance design –
can be further adjusted and the results of the optimization 
process can be used in the product development process.

3.2. Adaption of tolerance-cost-relation on connected 
dimensions

When a part is produced often several manufacturing steps 
are done using the same machine and parameter settings. In 
the example (Figure 4) three shaft shoulders are dimensioned 
with reference to the end of the shaft. Since the shaft is turned 
in one manufacturing step all these dimension are connected 
in terms of accuracy of manufacturing.

Fig. 4. Connected dimensions of a shaft

Tolerance-cost-relations describe the dependencies 
between a certain tolerance Ti and the corresponding financial 
effort in manufacturing costs C(Ti). In this paper the adaption 
for CHASE‘s reciprocal model (k = 1) and SPOTTS’ reciprocal 
squared (k = 2) models, according to the following equation, 
is illustrated:

C( ) ind
fix k

B
T A

T
(1)

Both models (as well as most other models) have in 
common that the costs are split into fixed manufacturing costs 
Afix (setup, tooling, material, etc.) and individual costs Bind,
representing the production costs of a single dimension with a 
certain accuracy. Depending on the number of available 
manufacturing processes there can be several tolerance-cost-
relations, each representing a single process or machine. In 
this case, the process can be chosen depending on the required 
tolerance of the corresponding cost-model.

A valid tolerance-cost-relation is necessary to formulate 
the optimization’s objective function. Consequently, each part 
and each process that is used during the production has to be 
described by a valid tolerance-cost-relation.

Assuming the production of a part with five toleranced
dimensions, several operating steps are conducted 
consecutively on the same machine. Calculating the five
corresponding tolerance-cost-relations would lead to five
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equations, whereas each includes the same fixed costs Afix for 
setup, material and tooling. As a consequence, the fixed costs 
would be overrepresented (in this case by factor 5) due to all 
five operating steps. This fact motivates the authors to extend
the tolerance-cost-relation (2) in which the individual costs,
Bind,i is divided by the tolerance to the power of the
corresponding ki, are summed up:
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This tolerance-cost-relation for connected dimensions 
should be used below to calculate the costs for an assembly
with several toleranced dimensions.

4. Case study: Driving pulley

Based on the methodology and the developed cost-model for 
connected dimensions the tolerance-cost-optimization for a 
driving pulley (Figure 5) is illustrated.

Fig. 5. Driving pulley

The driving pulley consists of a fork, a pulley with a
copper bearing, a pin with lubrication nipple, a plain washer 
and a strut pin. Furthermore two FKCs are defined to ensure 
the use as proposed:

The gap between the copper bearing of the pulley 
and the fork (S1).
The gap between plain washer and fork (S2).

To avoid jamming and to ensure assemblability both 
interrelated FKCs S1 and S2 should be between the lower 
specification limit of LSL = 0.2 mm and the upper 
specification limit of USL = 2.0 mm.

4.1. Functional relation of driving pulley

In the sectional view (Figure 6) of the driving pulley, both 
FKCs and the relevant dimensions are shown.

Fig. 6. Driving pulley with interrelated Dimension Chains

The two interrelated FKCs can be described as follows:

1 3 1 4 2S M M M M (3)

2 6 7 5 3

1

2
S M M M M (4)

The initial tolerance design, which is based on the
predecessor’s tolerance design, is detailed in Table 1. Based 
on the practical experience from the production the tolerance
values as well as the corresponding probability distributions 
are given.

Table 1. Nominal dimensions and corresponding initial tolerances

Dimension Nominal 
dimension

Type of 
distribution

Initial 
tolerance Ti

M1 20 mm normal ±0,1 mm

M2 20 mm ±0,1 mm

M3 90 mm ±0,4 mm

M4 49.5 mm uniform ±0,2 mm

M5 2 mm uniform ±0,1 mm

M6 95 mm ±0,5 mm

M7 4 mm uniform ±0,1 mm

As previously outlined, it is essential to formulate the 
relation between feasible tolerances and corresponding 
manufacturing costs. Since cost curves from industrial 
production are virtually not available, hereafter fictitious costs 
for all processes are assumed. Taking the manufacturing 
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processes into account, it is obvious that the different 
dimensions cannot be considered in isolation. Rather it is the 
case that the feasible accuracy of M1, M2 and M3 are 
connected. Since the fork is symmetrical, the according 
tolerances of M1 and M2 are identical. Furthermore, the 
tolerance M6 of the pin is also connected to the tolerance of
the diameter M7.

It is therefore appropriate to use the tolerance-cost-relation
for connected dimensions (see section 3.2). The notional fixed 
and individual costs for all parts are listed in Table 2. The 
majority of the components can be machined using different 
machines or processes. Hence, there are different fixed and 
individual costs listed for those parts.

Table 2. Fixed and individual costs for the parts of the driving pulley

Nominal 
dimension

Afix Bind,1 k1 Bind,2 k2

M1 (process A) 0.40 €*mm 1

M2 (process A) 5.20 € 0.10 €*mm 1

M3 (process A) 0.70 €*mm 1

M1 (process B) 0.20 €*mm 1

M2 (process B) 6.80 € 0.20 €*mm 1

M3 (process B) 0.30 €*mm 1

M4 (process A) 3.60 € 1.20 €*mm2 2

M4 (process B) 5.40 € 0.80 €*mm 1

M5 0.13 € 0.01 €*mm2 2

M6 (process A)
4.20 €

0.40 €*mm 1

M7 (process B) 1.20 €*mm 1

M6 (process B)
5.40 €

0.12 €*mm 1

M7 (process B) 0.16 €*mm 1

As previously detailed, the overall costs of connected and
non-connected dimensions can be calculated with (2). To 
evaluate the consequences of the optimization on the scrap 
rate, a statistical tolerance analysis of the initial tolerance 
design is performed. Therefore, the probability distributions
of each dimension (Table 1) are used for a Monte-Carlo-based 
tolerance analysis with n = 100,000 samples.

Fig. 7. Resulting Distribution of S1 (left) and S2 (right) based on initial 
tolerance design

As shown in Figure 7, the initial tolerance design is not
suitable due to a reject rate of 2.51 % for S1 and resulting 
costs of 26.96 €.

4.2. Tolerance-Cost-Optimization of driving pulley

The optimization process aims to minimize the 
manufacturing costs while not exceeding a permitted number 
of defects per million. Since the product has two connected 
dimension chains their individual costs are summed up:

1 2
min C ( ) C ( )S i S iT T (5)

Whenever the lower (LSL) or upper specification limit 
(USL) for one FKC is violated, this leads to rejects and thus 
increases the scrap rate. In this case study 63 defects per 
million (c = 99.9937 %) which corresponds to a sigma level 
of [15] is acceptable. To calculate the scrap rate the 
density functions for both FKCs S1 and S2 are integrated 
considering the upper and lower specification limits for each 
FKC:

1 2

1 2
1 1 2 2[ ] [ ]

USL USL

LSL LSL
S dx S dx c (6)

To calculate the probability of an event to occur, the 
probability function has to be integrated. The area enclosed by 
the probability function [ ]iS and the abscissa which is 
limited by the specification limits represents the propability of 
a FKC falling within the specification.

The parameter settings for the tolerance-cost-optimization 
(done in Matlab R2014a using the PSO toolbox of [16]) are 
listed in Table 3.

4.3. Results and discussion

The optimization completed successfully using the 
parameter settings listed in Table 3. Besides the population 
size of the swarm, the definition of the termination criteria is 
necessary: Hence, 500 iterations can be performed by the 
algorithm before the algorithm stops without finding a valid 
solution. Furthermore, the algorithm interrupts, if particles 
exceed the search space or the cost function is violated. It may 
occur that no improvement between different generations of 
the swarm can be achieved. In this case, it’s appropriate to 
define the maximum number of following generations which 
are nearly identical.

Table 3. Parameter settings in the PSO Toolbox 

Parameter Value

Population size 20

Tolerance on the objective function violation in € 1e-3

Termination tolerance on the constraint violation in - 1e-6

Maximum number of (nearly) identical generations 100

Maximum number of iterations 500

The performed tolerance-cost-optimization of the driving 
pulley finally successfully finished after 100 generations. the 
identified optimal tolerance design (detailed in Table 4) goes 
hand in hand with decreasing manufacturing costs by ~17 %
from 26.96 € to 22.43 €. Moreover, the required scrap rate for 
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both FKCs of 0.0063 % can be guaranteed with this optimal 
tolerance design.

Table 4. Initial and optimal tolerances

Dimension Kind of 
Distribution

Initial 
Tolerance

Optimized
Tolerances

M1 ±0,1 mm ±0,43 mm

M2 ±0,1 mm ±0,43 mm

M3 ±0,4 mm ±0,27 mm

M4 uniform ±0,2 mm ±0,53 mm

M5 uniform ±0,1 mm ±0,20 mm

M6 ±0,5 mm ±0,99 mm

M7 uniform ±0,1 mm ±0,20 mm

The case study illustrates that connected dimensions are 
relatively common on machined parts. Furthermore, it was 
shown that the tolerance-cost-relation for connected 
dimensions can be adapted in an appropriate way and 
integrated in statistical tolerance-cost-optimization of 
assemblies.

5. Summary and Conclusion

The determination of tolerances requires knowledge not 
only about the feasible accuracy of every manufacturing 
process, but also about the tolerance-related costs for each 
part and process. In this paper an enhanced tolerance-cost-
model for connected tolerances was presented. Furthermore, 
these models were integrated into the tolerance allocation. Its 
use was illustrated for an exemplary tolerance-cost-
optimization on a driving pulley with interrelated dimension 
chains. Besides this specific application, a general 
methodology for tolerance-cost-optimization was presented
and discussed. In contrast to existing approaches this general 
methodology provides the possibility to optimize systems 
with or without connected dimension chains whereas 
connected tolerances are considered in a new way.

Nevertheless there are future challenges arising. Two 
potential fields of research should be highlighted: 

There is no up-to-date information on tolerance-cost-
relations for different processes. Although it can be assumed 
that the methodology is suitable for tolerance-cost-functions
from industrial practice, it would be crucial to validate the 
methodology with real data.

Furthermore, it is attractive to consider more (different) 
adjustment possibilities for the optimization. In the presented 
case study, only the tolerance values are considered. Desired 
mean shifts for each dimension as well as restrictions of the 
distributions are currently not taken into account. 

In conclusion, the utility of the presented methodology for 
the optimization of connected tolerances with interrelated 
dimension chains was shown and could therefore be extended 
and adapted to more complex problems in future activities.
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