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Abstract

During the past century, studies of metabolic disorders have focused research efforts to improve clinical diagnosis and manage-
ment, to illuminate metabolic mechanisms, and to find effective treatments. The availability of human genome sequences and tran-
scriptomic, proteomic, and metabolomic data provides us with a challenging opportunity to develop computational approaches for
systematic analysis of metabolic disorders. In this paper, we present a strategy of bioinformatics analysis to exploit the current data
available both on genomic and metabolic levels and integrate these at novel levels of understanding of metabolic disorders. PathA-
ligner is applied to predict biomedical data based on a given disorder. A case study on urea cycle disorders is demonstrated. A Petri
net model is constructed to estimate the regulation both on genomic and metabolic levels. We also analyze the transcription factors,
signaling pathways and associated disorders to interpret the occurrence and regulation of the urea cycle.

Availability. PathAligner�s metabolic disorder analyzer is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner/
pathaligner_MDA.html. Supplementary materials are available at http://www.techfak.uni-bielefeld.de/~mchen/metabolic_disorders.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Metabolism is defined as the enzyme-catalyzed chem-
ical reactions that breakdown (catabolism) and synthe-
size (anabolism) the molecules needed for life [1].
Enzymes are important for metabolism because they
act as catalysts in making one chemical from another
[2]. Metabolic processes result in growth, produce ener-
gy, eliminate wastes, and control other body functions
which distribute nutrients in the blood after food is
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digested. Metabolism maintains homeostasis, or a
steady state, in the body. Any problem in the body that
causes loss of metabolic control of the body�s steady
state will lead to a metabolic disorder [3]. Most metabol-
ic disorders are inherited as autosomal recessive traits.
Autosomal recessive inheritance and enzyme deficiency
are features typical for an inborn error of metabolism.

Inborn errors of metabolism are characterized by a
block in a metabolic pathway, a deficiency of a transport
protein or a defect in a storage mechanism caused by a
gene defect. The defective gene leads up to an absent or
wrong production of essential proteins, especially en-
zymes. But these enzymes are important components
of the biochemical processes in cells and tissues. They
enable, disable or catalyze the biochemical reactions of
metabolic pathways. Thus, these disorders of the metab-
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olism result in a threatening deficiency or accumulation
of intermediate metabolites in human.

The field of inherited metabolic disorders has under-
gone major revolutions in the past century. In earlier
days, discoveries in physics and chemistry applied to
pathology and clinical medicine led to knowledge of
the organic chemistry of dyes, tissues staining, and im-
proved microscopy. Defects that lead to the accumula-
tion of metabolic products were identified in the mid
1960s. If a patient is suspected of having an inborn error
of metabolism, specialized biochemical laboratories ana-
lyze enzyme activities in specimen of different tissues
(skin, liver, etc.) and investigate body liquids as blood,
urine, neural tissues, etc., for unusual metabolic pattern.
The identification of the metabolites that accumulated in
a disease made possible the identification of the enzyme
whose activity was deficient. By the mid 1980s, tech-
niques largely had switched from those of the biochem-
istry of intermediates and enzymes to the identification
of mutations in genes. This was done by a large number
of techniques that make use of DNA fragments (restric-
tion fragment-length polymorphisms) so as to permit
linkage mapping and gene sequencing. As a result, we
now know many genetic defects responsible for neuro-
logical disease, but frequently we do not know much
about the resulting protein product and therefore the
pathophysiologic basis for the disease [4].

The past decade witnesses the rapid development of
the modern biomedical technology and the information
technology. Data from the Human Genome Project
surely will be useful in identifying mutations in the thou-
sands of genes that must underlie inherited diseases.
Genetic data also will be useful in identifying mutations
and polymorphisms that predispose to some of the ac-
quired diseases of the metabolic system. Now we have
more ‘‘omics,’’ such as transcripomics, proteomics,
and metabolomics, which bring together relatively
dynamic data (DNA, protein, and other molecules) to
study metabolism. The requirements to better under-
stand the complex biomedical systems involve systemat-
ically identifying how genes function and how their
products interact with other molecules, and how diseas-
es occur, within the context of metabolic processes and
their assumed roles. This places, new demands for repre-
senting and handling new forms of the complex biomed-
ical information, including enzyme retrieval, gene
expression, and disease associated metabolic pathway
representation, modeling, and simulation. As a conse-
quence of the current knowledge available in biomedical
systems, one would expect that bioinformatics tech-
niques would be ideally suited to tackle these problems.

In this paper, we attempt to predict biomedical data
for a given disorder and propose a computational strat-
egy for the systems analysis of metabolic disorders. In
Section 2, we explore existing biomedical information
sources and address a strategy to integrate genomic
and metabolic data, and to perform systematic analysis
for the study of metabolic disorders. A case study is
presented in Section 3. We integrate urea cycle informa-
tion, construct a Petri net model of urea cycle network,
and analyze the transcription factors of urea cycle genes.
We also investigate related signaling pathways and asso-
ciated diseases of urea cycle disorders. Section 4 is a con-
clusion of our research findings.
2. Methods

In this section, we explore several major information
resources of metabolic disorders. Architecture of bio-
medical information retrieval system and computational
strategy of systems analysis are introduced and present-
ed. We explain how they can be organized to predict
biomedical data and to perform a systems analysis.

2.1. Exploration of biomedical data

As a result of the Human Genome Project and related
clinical efforts, tremendous amount of useful biomedical
information is accumulated. Biological and biomedical
data have been exploring and systematically storing in
hundreds of public databases. A huge number of genes,
enzymes, and metabolic pathways have already been
identified, isolated, sequenced, and collected in these dat-
abases. For example, EMBL [http://www.ebi.ac.uk/
embl/] and GenBank [http://www.ncbi.nlm.nih.gov/
Genbank/] contain DNA sequences and BioBase�s Trans-
Fac/TransPath [http://www.biobase.de/] the knowledge
about gene expression. Metabolic pathways and their sin-
gle biochemical reactions are stored in KEGG [http://
www.genome.ad.jp/kegg/] and ExPASy [http://www.
expasy.org/]. BRENDA [http://www.brenda.uni-koeln.
de/] provides the kinetics of enzymatic driven processes.
Most inborn errors of metabolism are also included in
OMIM [http://www3.ncbi.nlm.nih.gov/Omim]. OMIM
is a catalogue of medically important human traits, genes,
and disorders thought to have a genetic basis. MED-
LINEplus is a premier source of health information for
patients, families, and friends. Developed by the United
States National Library of Medicine, part of the National
Institutes of Health, MEDLINEplus contains Web links
to information on over 600 health topics. Other specific
databases on inborn errors are: Metagene [http://
www.metagene.de/] that is designed to support the diag-
nosis of inborn errors of metabolism. Ramedis/MD-Cave
[http://mdcave.genophen.de/] is a patient database of
rare metabolic diseases. It develops a bioinformatics sys-
tem for representing, modeling, and simulating genetic
effects on gene regulation and metabolic processes in hu-
man cells.

The amount of this electronically available knowl-
edge of genes, enzymes, metabolic pathways, and meta-
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bolic diseases increases rapidly. But they are highly het-
erogeneous both in structure and in semantics and give
only highly specialized views of the biological systems.
These lead up to the general task of integrating all this
knowledge and make it biotechnologically and medical-
ly applicable. Researchers are attempting to find ways to
deal with all these exponentially accumulating data and
trying to better understand the complex biological and
biomedical systems. We try to systematically study the
relationship between transcription factors, genes, en-
zymes, and metabolites involved in metabolic disorders.

We collect and integrate metabolic disorder informa-
tion mainly from OMIM. Basic metabolic reactions in-
volved in the urea cycle are extracted from KEGG,
ExPASy, and BRENDA. These databases are rich in met-
abolic and enzymatic information. Transcription factors
and signaling data are obtained from Biobase. The human
promoter sequences of urea cycle related enzymes are pro-
vided by UCSC [http://genome.ucsc.edu/]. All other
sequences were obtained by screening the GenBank.

2.2. Systems analysis strategy

Differs from traditional treatments that mainly based
on knowledge of biochemistry, systems treatments re-
quire integrative information that describes the compo-
nents of the metabolic system and how they interact (dot
box in Fig. 1).

It is important to take a look into the genome and
proteome for the gene(s) and protein(s) responsible for
that disease and then that will suggest a way in which
the behavior of the gene(s) and protein(s) can be modi-
fied to develop a cure. The problem is that most diseases
Fig. 1. Biomedical information systems analysis architecture. To gain
a precise understanding of these systems, it is important to study the
interactions and interrelationships among genomic, metabolic and
pharmacological system variables. It differs from the traditional
treatment. Systems treatment requires a global knowledge of
biomedical system on levels of genome, proteome and metabolome.
This paper less addresses diagnosis process and practical treatment, it
mainly focuses on the analysis of metabolic disorders.
arise from the interaction between perhaps dozens of
genes as well as proteins, in ways that we do not under-
stand yet in many cases. Moreover, metabolic reactions
and signal transductions also act critically to many dis-
eases. So that it is not plausible to diagnose disease sim-
ply based on clinical appearances, or to predict what the
consequences will be of investigating a single gene. In-
stead, a list of human genes and their protein (or
RNA) products and related biological molecules is
essential for understanding pathology/pathophysiolo-
gy/physiology and explaining what goes wrong in dis-
ease. Fortunately, more and more of the disease
information are stored in widely distributed heteroge-
neous databases around the world and nowadays are
retrievable via the Internet. It requires new methods
and approaches for representing and handling the dis-
ease information, including enzyme retrieval, gene
expression, and disease associated metabolic pathway
representation, modeling, and simulation.

Execution of the strategy illustrated in Fig. 1 requires
acquisition of the following information: an inventory of
the disorders involved and related genes and their SPNs,
transcription factors, molecules, metabolic reactions,
and signaling events. These values reveal which biologi-
cal interactions are genetic/cellular relevant and how a
cellular process works. These data can provide the key
point to model such system and can predict test for
genetic/cellular function for each molecule and its role
in disease.

2.3. Biomedical information retrieval architecture

The computational architecture proposed in this pa-
per is based on integrating relevant biomedical informa-
tion sources to provide a systematic analysis of metabolic
disorders. This section describes the main characteristics
of the proposed framework, besides its general architec-
ture. Frameworks offer an adequate infrastructure to ful-
fill the requirements of retrieving the biomedical data
sources and make them available to the disease associat-
ed genomic and metabolic information diagnosis and
Petri net modeling. The basic idea of the proposed frame-
work is shown in Fig. 2. The framework may be de-
scribed through its main functionalities.

As the biomedical data sources are distributed widely
in various heterogeneous databases, information retriev-
al requires data integration and data mining expertise.
There are several previous and underlying projects that
are trying to address the challenging problem of interop-
erability among biological databases. They are based on
different data integration techniques, e.g., federated
database systems (ISYS and DiscoveryLink), multi
database systems (TAMBIS), and data warehouses
(NCBI/Entrez and SRS). Existing systems have ad-
dressed heterogeneous database integration in the
realms of molecular biology, hospital information
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Fig. 2. Framework of biomedical information retrieval and systems analysis. Solid lines indicate real workflow of this research. Dashed lines demand
users� extra manual efforts.
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systems, and application portability [5]. Mork et al. [6]
presented a general model for data integration systems
using a mediated schema to represent commonalities in
the underlying sources, focused their efforts on modeling
online genetic databases, although in principle the ap-
proach is flexible enough to accommodate other sources
of biomedical data (e.g., multiple medical record sys-
tems, multiple indexed reference sources, etc.). We use
PathAligner [7] to retrieve/predict biomedical informa-
tion based on a given disorder. The PathAligner is a
web-based biological information retrieval framework
designed for the main purpose of functional analysis
and representation of the metabolic pathways. It is built
on several major biological/biomedical database systems
such as BRENDA, KEGG, BioBase, MEDLINEplus,
ExPASy, etc., that are located in the Internet. The
web-based system allow different distributed biologi-
cal/biomedical data sources to communicate through
the same common interface and enable client clinicians,
researchers, and educators to perform efficient and effec-
tive disease online functional diagnose and information
navigation. It can handle disease-associated enzymes,
proteins, metabolites, transfactors as well as genomic
and metabolic networks. Users access PathAligner via
the web interface, while standard, platform independent
Perl applications and modules are used to connect appli-
cations to the external databases and retrieve the meta-
bolic information of the diseases.

2.4. Biomedical data modeling and simulation

Modeling and simulation is important to explore the
biomedical information to understand physiology and
the molecular mechanisms of disease. As the biomedical
system is an information-intensive and mechanism-ori-
ented field, it is very difficult to model and simulate.
The availability of high performance computers, cou-
pled with mathematical modeling, however, has contrib-
uted to the development of increasingly accurate models
of biomedical systems, which makes it possible to iden-
tify how genes function and how their products interact
with other molecules, how diseases occur, and how
molecular function changes medical practice, within
the context of metabolic processes.

A number of attempts have been made regarding to
the modeling methodology and software. Nebot em-
ployed a qualitative modeling and simulation methodol-
ogy called Fuzzy inductive reasoning (FIR) that would
make optimal use of the limited knowledge available
to the modeler [8]. Thomaseth developed the tool
PANSYM for biomedical system modeling which had
been designed primarily for representation of kinetics,
transport, and metabolism of biological substances [9].
In this paper, the Petri net methodology is exploited.

Petri nets were developed originally by C.A.Petri in
1962. Because of their good properties in theoretical
analysis, practical modeling, and graphical visualization
of concurrent systems, Petri nets, especially high-level
Petri nets, are widely applied in various fields, and even
biological systems. A Petri net is a formal model that is
used to model concurrent systems. It is represented by a
directed, bipartite graph in which vertices are either
places or transitions, signifying conditions and process-
es, respectively. Tokens are placed on places to indicate
that those conditions are true. A Petri net can be execut-
ed in the following way. When all the places with arcs to
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a transition have a token, the transition is enabled, and
may fire, by removing a token from each input place and
adding a token to each place pointed to by the transi-
tion. High-level Petri Nets include extensions that allow
temporal and hierarchical input [10]. Readers with little
knowledge about Petri nets are suggested to refer the
‘‘Petri Nets World’’ web page at http://www.daimi.
au.dk/PetriNets/. The first application of ordinary Petri
net on modeling metabolic pathways was introduced by
Reddy et al. [11]. Nevertheless, ordinary Petri nets can
only be used to examine discrete systems. They are not
qualified for modeling systems with continuously chang-
ing state variables. Therefore, they fail on modeling
metabolism when real concentrations and kinetic effect
are concerned. During the last years some more
approaches of extended Petri nets and their application
on molecular biological systems appeared [12–17]. These
high level Petri nets can support dynamic change, task
migration, superimposition of various levels of activi-
ties, and the notion of mode of operations. Provided
with such powerful Petri nets and computer techniques,
data of metabolic pathways, gene regulation, signalling
pathways and their kinetic parameters can be converted
for Petri net destination application; a Petri net model of
the virtual cell can be implemented and the attempting
to understand the behaviors of cell activity could be
accomplished.

In the medical field, Petri net methodology has been
also applied to model neurological networks [18–20],
medicine [21], medical information system [22], medical
diagnostic system [23], human visual canal [24], and
blood coagulation cascade [25]. However, these previous
achievements are more or less unrelated to the biomed-
ical information system which not only requires simula-
tions of single metabolic pathways but also the longer
time-scale effects of processes such as gene regulation,
cell division cycle, and signal transduction, drug effect,
etc. Due to the available features of Petri nets such as
inhibitor arc, timed transition, and mathematical pre-
sentation, more new areas concerning biomedical infor-
mation may also be possibly modeled and simulated
with Petri Nets. The hybrid Petri net methodology is
used for mixed quantitative/qualitative modeling and
simulation. It allows the modeling of metabolic path-
ways using actual concentrations, and makes sense to
model the biological processes using functions, which al-
low each transition to simulate and can be realized by
using functions for specifying the arrow weight.
Fig. 3. Key enzymes in regulation of urea cycle in cells. CPS1:
Carbamyl phosphate synthetase, EC 6.3.4.16; OTC: Ornithine trans-
carbamylase, EC 2.1.3.3; ASS: Argininosuccinate synthetase, EC
6.3.4.5; ASL: Argininosuccinate lyase, EC 4.3.2.1; ARG: Arginase,
EC 3.5.3.1.
3. Case study

The following sections present a case study of systems
analysis of metabolic disorders. We choose urea cycle
disorders due to the availability of such data and the
untouchability of their systems analysis. Urea cycle dis-
orders are typical of many other metabolic diseases.
They are estimated to occur in 1 in 30,000 live birth.

3.1. Urea cycle disorders

In human cells, excess nitrogen is removed either by
excretion of NH4

+ (of which only a little happens) or
by excretion of urea. Urea is largely made in the liver
by the urea cycle, a series of biochemical reactions that
are distributed between the mitochondrial matrix and
the cytosol. The cycle centers around the formation of
carbamoyl phosphate in hepatocyte mitochondria to
pick up NH4

+ and incorporate it into ornithine to make
citrulline which is transported to the cytosol where
aspartate is added. As urea is removed it is converted
back to ornithine that goes back into the mitochondria
to start over (Fig. 3).

Urea cycle disorders are metabolic disorders caused
by deficiency of one or more enzymes in the cycle that
is responsible for removing ammonia from the blood
stream. Any of the five enzymes may lead to: carbamoyl
phosphate synthetase (CPS) deficiency, ornithine tran-
scarbamylase (OTC) deficiency, citrullinemia, arginino-
succinic aciduria, and argininemia. In urea cycle
disorders, the nitrogen accumulates in the form of
ammonia, a highly toxic substance, and is not removed
from the body. Ammonia then reaches the brain
through the blood, where it causes irreversible brain
damage and/or death.

Although the urea cycle was discovered by Dr. Hans
A. Krebs early in 1930s, analysis of the urea cycle so far
have not been systematically explored. The following
paragraph therefore will focus on the possibility of inte-
grative analysis of the urea cycle within the scope of sys-
tems biology. We are going to build a complete network
of urea cycle and analyze its basic properties by using
the PathAlinger system. We construct an integrative
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model, analyze the genetic variations and figure out the
regulation of signaling pathways. One of the goals of the
research is to highlight at large the identification and
treatment of urea cycle disorders, so that the timely
intervention will result in saving the lives of the disor-
dered children. It also gives some information on the
systems analysis of metabolic disorders.

3.2. Urea cycle integrative information

The presence of numerous informational and pro-
gramming resources on biomedical data described in
Section 2, raises an acute problem of data integration.
Concerning urea cycle disorders, goal of such integra-
tion is to fuse all data available and to create a virtual
informational environment enabling an access to the sig-
nificant information on the basis of simultaneous explo-
ration of many databases available via the Internet.

Based on the retrieved biomedical data and a proto-
col graph of urea cycle pathways and by manual search-
ing OMIM and other drug sources, a graphical
representation of the urea cycle metabolic network using
the objects presented above for describing entities and
interactions is drawn (Fig. 4). It shows an intricate net-
Fig. 4. Integrative diagram of urea cycle. The circle shows metabolic reactio
regulated by activator and inhibitors. Effective drugs (ingredients) show effe
work that links entities and interactions. This network
includes not only the succession of biochemical reac-
tions that lead to the transformation of CO2 and
NH4

+ to urea, but also the regulation of gene expression
and enzymatic activities. It furthermore displays (e.g.,
asparate, fumarate) the links to other pathways, which
are not detailed on the graph to preserve clarity. In com-
parison with other existing urea cycle networks, such as
the one that is drawn by KEGG, our network presents a
more detailed information. The integrative network pro-
vides us a more real view on the urea cycle. There is
more information that can effect the expression of urea
cycle genes, which will give clinician more information
about the mechanism of urea cycle disorders.

While today the molecular knowledge is still rudi-
mentary, in some cases if the complete interrelationships
of the network is unclear, or only a rudimentary path-
way is provided, a prediction solution is needed. Mean-
while, methods of modeling and simulation will help to
understand many important scientific questions. It can
be interpreted as the basic step for implementing virtual
worlds that allow virtual experiments. We use PathAlig-
ner [7] to retrieve metabolic information and recon-
struct/predict the complete network.
ns of urea cycle. Enzymes are encoded by responding genes which are
cts to these targets (enzymes). Drawn by Dr. Ralf Kauert.



Fig. 5. Screenshots of the example query with PathAligner.
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A PathAligner query of metabolic disorder ‘‘urea cycle
disorders’’ is to predict metabolic information (Fig. 5).
PathAligner helps to retrieve all the related EC (Enzyme
Commission) numbers and involved metabolic pathways
and more information on gene expressions. The output of
query, the screen shot, is shown in the middle window of
Fig. 4. The table lists the enzymes that are involved in the
queried disease. Clicking the corresponding hyperlinks
can retrieve additional information about the enzymatic
reactions and Km values (Michaelis constants). Further
information about these enzymes can be determined
according to the retrieved table. For example, the EC
2.1.3.3, its encoding gene is OTC and there are a number
of transcription factors are shown in the column Factor.
Moreover, the interactions between the genes and the
transcription factors are also available by clicking the
hyperlinks in the GeNetView. However, not all these data
are available due to the incomplete source data. A list of
the disease associated metabolic pathways is provided
as a blueprint for further modeling and simulation with
Petri net tools.

3.3. Modeling and simulation

PathAligner retrieves most desired data for a further
Petri net model construction. We present a Petri net
model of the integrative urea cycle network by using a
hybrid Petri net. A hybrid Petri net supports both dis-
crete model and continuous model. That is, the dynamic
behavior of the model system, such as the metabolite
fluxes, NH4

+ input and urea output are well described
with continuous elements; while control of gene expres-
sion are outlined with discrete ones due to the insuffi-
ciency of explicit expression data. Nevertheless, when
explicit knowledge about expression levels of the en-
zymes are available; it is possible to exploit our model
of gene regulatory network to handle realistic gene
expression data with the state equations. The initial val-
ues of variables were assigned and tuned so that the
model system behavior would comply maximally with
available experimental data on the dynamic characteris-
tics of the system�s behavior.

Based on the retrieved data and some complementary
data from literatures, a hybrid Petri net model of the
gene regulated urea cycle metabolic network is presented
and the dynamics of the main components on the model
are shown in Fig. 6 and in Supplementary materials pro-
vided in the Web. In this paper, we would like to focus
only on the model construction. Detailed description,
testing/simulation and discussions of the model have
been published in our previous work [15]. Petri net al-
lows easy incorporation of qualitative insights into a



Fig. 6. Petri net model of urea cycle gene regulated metabolic network and dynamic simulation results.
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pure mathematical model and adaptive identification
and optimization of key parameters to fit system behav-
iors observed in gene regulated metabolic networks. The
study of modeling and simulation can help detect genet-
ic/metabolic defects. It is useful for diagnosis and thera-
py of genetic/metabolic defects as well as drug research.

As the urea cycle operates only to eliminate excess
nitrogen. High concentration level of ammonia in the
cell results in hyperammonemia which is a typical,
coma and death ever been reported. Laboratory studies
reveal elevated arginine levels, mild hyperammonemia,
and a mild increase in urine orotic acid. The diagnosis
now can be confirmed by enzymatic analysis in the
model. On high-protein diets or under starvation state,
proteins are degraded and amino acid carbon skeletons
are used to provide energy, thus increasing the quantity
of amino nitrogen that must be excreted. To facilitate
this process, enzymes of the urea cycle are controlled
at the gene level to enhance the concentration of en-
zymes. As urea cycle takes place both in mitochondria
and cytoplasm, the effects involved also come from the
membrane transportation. Some mitochondrial mem-
brane diseases, e.g., ornithine transporter deficiency,
surely effect the transportation of ornithine into matrix
and results in high concentration of ornithine accumu-
lation in plasma, which get a feedback to the transition
of arginine into urea and finally hyperammonemia.
From the model we know the treatment for defects
in urea cycle enzymes could be either limit input of
ammonia (limit protein intake) or replace missing inter-
mediates from cycle (supplement with arginine or cit-
rulline). Patients with OTC deficiency benefit from
citrulline supplementation because citrulline can accept
ammonia to form arginine.

3.4. SNP and transcription factors

Because the basis of the urea cycle disorders is a de-
fect in a gene, research have been working on ways of
getting a working gene into cells. Researchers have
established that in the animal model, sparse fur
(spf/Y) mouse, partial correction with gene therapy
may be sufficient to normalize urea synthesis [26,27].
However, the current therapy is unsatisfactory for hu-
man. Optionally, we would like to target the working
gene to the right cells and have it regulated and ex-
pressed just as well as the normal gene would be. Single
nucleotide polymorphism (SNP) as well as transcription
factor binding sites are the two aspects that have to be
considered.



Fig. 7. Computational prediction of transcription factor binding sites of the human ARG genes. Binding sites of other involved genes in urea cycle
are shown in the supplementary material.
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In the progress of the Human Genome Project, scien-
tists recognized that the existence of SNP in genome is
helpful to explain the rich diversity of individuals, and
the difference of susceptibility to diseases. A single base
variation may cause gene function abnormalities. There-
fore, searching and studying SNPs has become an
important objective of biomedical informatics. The sup-
plementary material shows the computationally annotat-
ed mutations of genes in the urea cycle. Further
information can be obtained by browsing the related
web-pages at http://mutdb.org/cgi-bin/Search.py?
GOCODE=0000050. However, these mutations are
meant to be used for basic research and not to make clin-
ical decisions. In this section, we focus on the discovery of
transcription factor binding sites by computational
searching the 1 kb upstream promoter region sequences.

A TransFac database search for the transcription fac-
tor binding sites, using the human promoter sequences
that are provided by UCSC [http://genome.ucsc.edu/],
are shown in Fig. 7 and in the supplementary material.
All potential binding sites of the urea cycle genes are
summarized in Table 1 The search found 23 functional
binding sites. ARG and OTC share four binding sites,
which means that the expression of ARG and OTC
might be simultaneously regulated by Cdx-2, Cdc5,
Nkx2-5, and POU1F1. Nkx2-5 also affects ASL regula-
tion. More functional events of transfactor can be re-
trieved and analyzed with the Biobase database.

3.5. Related signaling pathways

Based on the transcription factors, we obtain a list of
signaling events that effect the gene expression of urea
cycle. A graphical layout of the signaling pathways is
constructed by using the Biolayout tool [28] (Fig. 8).

The average connectivity of the network is low (2.18).
It is worthy to remark, that the out degrees are of lower
grade when compared to the in degrees. In addition, the
phenomenon of few key molecules such as NF-1 and
POU2F1 with extraordinary high connection which
work as hubs in the network is a general feature of bio-
logical molecular networks [29–35].

3.6. Associated diseases

We also investigated the associated diseases of these
signaling pathways. A list of 227 transregulable genes
related to the urea cycle signaling network were retrieved
from Transpath. By querying against biological databas-
es, such as Swiss-Prot and KEGG, all related enzymes can
be retrieved. Then, searching the BRENDA database
helps to determine the involved diseases. All diseases that
are regulated by these signaling pathways are listed in the
supplementary material. A hit is the total number of a
disease retrieved association. On the left column, we do
not consider the redundancy of enzymes that are encoded
by different genes. For example, there are 10 hits of the
enzyme protein kinase (EC 2.7.1.37) that is involved in
various diseases, such as ‘‘acromegaly,’’ ‘‘adhesions,’’
‘‘amyotrophic lateral sclerosis,’’ ‘‘anemia, sickle cell,’’
and so on. While on the right column, these 10 hits are
regarded as 1 hit. Under this treatment, some diseases
with high hits on the left column may show low hit score
on the right column. On both lists, there are some already
known diseases related to the urea cycle diseases, includ-
ing ‘‘chronic liver disease,’’ ‘‘ornithine carbamoyltrans-

http://mutdb.org/cgi-bin/Search.py?GOCODE=0000050
http://mutdb.org/cgi-bin/Search.py?GOCODE=0000050
http://genome.ucsc.edu/


Table 1
List of potential transcript factor binding site of the urea cycle genes

Fig. 8. A graphical layout of the signaling pathways involved in the urea cycle. Molecules with high degree of convergences are calculated. Colored
nodes are those molecules with intensive divergence interconnection with others. They are NF-1 (51), POU2F1 (41), NF-jB (37) and, HNF-3a (27).
Intensive convergences: Cdx2 (4), SREBP-1 (4), NF-1 (2), POU1F1(2).
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ferase deficiency,’’ ‘‘citrullinemia,’’ etc. We are more
interested in those with high hit scores. Common diseases
with association degree (hits P3) are shown in Fig. 9.
We surprisingly find that Rheumatoid arthritis is
highly related. This is consistent with a recent research
by Nissinen et al. [36]. They studied whether the en-



Fig. 9. Diseases related to the list of signaling pathways. Redundant hits are all counts of a retrieved association; a moderate hit is defined as the
presence of one or more hits in a single enzyme query.
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zyme peptidylarginine deiminase (PAD; EC 3.5.3.15),
responsible for the post-translational modification of
peptide-bound arginine residues to citrulline, consti-
tutes an antigen for patients with rheumatoid arthritis
(RA). The study shows that the arginine–citrulline
converting enzyme PAD was recognized as a new anti-
gen against which patients with inflammatory rheu-
matic diseases frequently show IgG class antibodies.
From Fig. 9, we can see that systemic lupus erythe-
matosus (SLE) also shows a significant involvement.
Both RA and SLE are due to disorders of the muscu-
loskeletal system and connective tissue, which is inten-
sively related to immune systems. It is interesting that
three decades ago researches have observed the altered
immunoglobulin metabolism between SLE and RA
[37]. Later, the prevalence clinical and laboratory asso-
ciations of SLE and RA were determined by many
researches [38–40]. Other latest observations of the
association between RA and urea cycle relevance were
achieved by Yonekura et al. [41] and Iwashige et al.
[42].

Currently, the main urea cycle disorders� manage-
ment is dietary manipulation by reducing in protein in-
take. It is possible to increase residual enzyme activity
by supplying cofactor. The alternative pathway therapy
[43] by intaking chemicals to remove NH3 via other
pathways are practiced, but having limited effectiveness
in preventing hyperammonemia and must be combined
with effective dietary management [44]. The future ther-
apy will focus on gene repair, or genetic counseling. This
needs more knowledge about cellular function. We hope
our approach can give a highlight on this direction. The
bioinformatics analysis approach will also represent the
backbone of the concept of disorders management in the
post-genomic era.
4. Conclusion

Genetic/metabolic defects often lead to metabolic
blockades and result in metabolic disorders. Regarding
the development of methods and concepts of bioinfor-
matics to analyze metabolic disorders, it is necessary
to first understand the reaction pathways that are affect-
ed by the encoded genes, directly and indirectly and to
know the effect of modification of reaction steps and
depletion of metabolites on overall reaction networks.
Biomedical information retrieval and systems modeling
and simulation are some major tasks in this field. We
presented a general framework of systems biomedical
information analysis. The web-based PathAligner was
implemented to enable users easily navigate disease
related genomic and metabolic information. The Petri
net methodology was exploited to model and simulate
the biomedical system. We have presented an analysis
of urea cycle in a systematic way. By exploiting the exist-
ing huge amounts of data available in the various dat-
abases, we described metabolic mechanisms and
pathways, patterns of regulatory regions; transcripto-
mics, and metabolomics data of urea cycle. The con-
struction and analysis of signaling networks in general
allowed us to examine the integrity of the accumulated
data. This basic network is useful for further modeling,
prediction and comparison of different cell systems. The
graphical representation and dynamic simulation results
give us an intuitional understanding about the logics of
the cellular metabolism. The bioinformatics analysis can
be a safe method to look insight and simulate the func-
tion of a gene network. We suggest the urea cycle signal-
ing network related list of genes be considered for
further investigations related with Rheumatoid arthritis
and the other mentioned diseases.
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By integrating multiple levels of metabolic data, we
can gain a global perspective of how a biomedical sys-
tem works, the mechanism by which the variant gene(s)
or an error in a metabolic pathway produces clinical
manifestation, and the role of gene therapy, nutrition,
and life style modification as strategies to treat or pre-
vent disease development. Implementation of it will en-
able us to apply the advanced data integration and Petri
net modeling procedures to (a) integration of biological
and biomedical data; (b) systems functional structure
model construction; (c) predictions of genetic predispo-
sitions, disease discovery, diagnostics, drug develop-
ment, and toxicology; (d) alternative metabolic
pathways identification by altering the disrupted meta-
bolic pathway(s) and/or compensating for them; and
(e) systematic experimental design to provide the right
set of facts that permit accurate analysis; and so on.
As a result, for example, scientists can use the systems
model to predict metabolic diseases and test drugs com-
prehensively before testing them in the laboratory or
clinic.
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