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Abstract

In this paper, we show the following theorems. Suppose 0 < a; < 1 are algebraically independent num-
bersand 0 < A; < 1for 1 </ < m. Then we have the joint #-universality for Lerch zeta functions L(A;, gy, s)
for 1 <1 < m. Next we generalize Lerch zeta functions, and obtain the joint z-universality for them. In
addition, we show examples of the non-existence of the joint 7-universality for Lerch zeta functions and
generalized Lerch zeta functions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Definition 1.1. The Lerch zeta function L(A, a,s), for 0 <A < 1,0 <a <1 and NR(s) > 1, is
defined by
o eZnikn
L(h,a,s):= Z

—_— .1
Znray (1.1)

When A = 1, the Lerch zeta function L(A, a, s) reduces to the Hurwitz zeta function ¢ (a, s).
If A # 1, the function L(X, a, s) is analytically continuable to an entire function. But the func-
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tion {(a,s) is analytically continuable to a meromorphic function, which has a simple pole
ats =1.

We prepare some notation for ¢-universality. By meas{ A} we denote the Lebesgue measure of
the set A, and, for 7 > 0, we use the notation

Vil )= %meas{r el0,T];...}

where in place of dots some condition satisfied by 7 is to be written. Let D :={s € C; 1/2 <
N(s) < 1} and K1, ..., Ky, (m > 2) be compact subsets of the strip D with connected comple-
ments. The next theorem is proved by A. Laurincikas and K. Matsumoto in [6, Theorem 2] (see
also [4, p. 122, Theorem 3.1] and [5, Theorem 1]).

Theorem 1.2 (Joint t-universality). (See [6, Theorem 2].) For 1 <1 < m, let a; be algebraically
independent numbers, by, q1 € N, q; which are distinct, A\; = b;/qi, (b;,q;) =1 and b; < q;. Let
f1(s) be functions analytic in the interior of K; and continuous on K;. Then for every ¢ > 0 it
holds that

liminfu}{ sup sup|L(X1,a1,s+it)—fl(s)‘ <8} > 0.

T—oo 1<I<m sek;

When all g;’s are the same, this property is called the A-joint #-universality in [8, Definition 7].
Firstly we show the next theorem, which gives the universality under the assumption weaker than
that in Theorem 1.2.

Theorem 1.3. Suppose 0 < a; < 1 are algebraically independent numbers and 0 < A; < 1 for
1 <1< m. Let fi(s) be functions analytic in the interior of K; and continuous on K;. Then for
every € > 0 it holds that

lirninfv;{ sup sup|L(A1,al,s +it) — fl(s)| < 8} > 0.
T—oo 1<I<m sekK;

Next we introduce a generalization of Lerch zeta functions and consider their joint universal-
ity.

Definition 1.4. The generalized Lerch zeta functions £(1, a, b, c;s),forO <A <1,0<a <1,
0<b<1,N(s)>1and c € C, are defined by

00 )
ekan

L(A,a,b,c;s) ::Z — .
= (n+a).Y c(n_l_b)c

(1.2)

The cases of a = b or ¢ = 0, these functions coincide with Lerch zeta functions. We remark
that for 0 < A < 1, £(A, a, b, ¢; s) is meromorphic in the half-plane o > 0, since

© eZm')»n (l’l-{-b)c
A,a,b,c;s)=L(: 1—
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and the series on the right-hand side converges in the half-plane o > 0. For 0 < A < 1, this series
converges uniformly on any compact subset in the half-plane o > oy for any og > 0. The case of
b=1,c=—1is

o) e2nik;1(n +1) i eZni}L(nl—HzZ)
(n+ap+t (n1 +nz +a)y+1
n=0 nyi,ny=0

(See for example [9, p. 85, (10)].) Hence £(A, a, b, c; s) contain a special case of Barnes double
zeta functions. The following theorem gives a joint universality property of £(A, a, b, c; s). This
is a partial solution of the problem of (joint) universality of multiple zeta functions presented in
[7, Section 2].

Theorem 1.5. Suppose 0 < a; < 1 are algebraically independent numbers and 0 < A; < 1, 0 <
by <1 for 1 <1< m. Let fi(s) be functions analytic in the interior of K; and continuous on K;.
Then for every ¢ > 0 it holds that

liminfv}{ sup sup|£(k1,a1,b1,c;s+ir)—fl(s)| <s} > 0.

T—o0 1<I<m sekK;

This paper is divided into six sections. Section 2 is a preparation for the proof of these theo-
rems. In Sections 3 and 4, we prove Theorems 1.3 and 1.5, respectively. We consider the proofs
of Theorems 1.3 and 1.5 in Section 5. We show examples of the non-existence of the joint z-
universality for Lerch zeta functions in Section 6.

2. Preliminaries

In this section, we quote definitions and theorems from [2] and [5], and we omit the proofs
of those theorems. Denote by H (D) the space of analytic on D functions equipped with the
topology of uniform convergence on compacta. Let $5(S) stands for the class of Borel sets of the
space S. Define on (H™ (D), B(H™(D))) the probability measure

Pl (A):=v(L(\1,a1,s +i7), ..., L\, am. s +iT) € A), A €B(H"(D)).

What we need is a limit theorem in the sense of weak convergence of probability measures for
PLT as T — oo, with an explicit form of the limit measure. Denote by y the unit circle on C,
and let

00
2= H Vns
n=0

where y, =y for all n € N U {0}. With the product topology and pointwise multiplication the
infinite dimensional torus §2 is a compact topological Abelian group. Denoting by mp, the
probability Haar measure on (£2™, 8(£2™)), where 2™ := £2 x - - - x £2, we obtain a probability
space (£2™,B(2™), mp,,). Let w;(n) be the projection of w; € £2 to the coordinate space y;,, and
define on the probability space (2", B(£2™), mp,, ) the H™ (D)-valued random element L (s, w)
by

L(sv (L)) = (L()\,],Cl],s, a)l)v sy L()"maamvss C()m)),
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where

X 2micn
e w(n)
L, a,s,wp):= E - seD,wef, 1<I<m.
n=0 (n+a1)5 o

The function L(A;, a;, s, w;) is an H (D)-valued random element. Let Py, stand for the distribu-
tion of the random element L (s, w), i.e.

PL(A) :=mp, (w€ 2™; L(s,0) € A), AeB(H"(D)).

In [6, Theorem 1], the following lemma is proved in the case of 0 < A; < 1. But we can prove
the case of 0 < A; < 1 similarly.

Lemma 2.1. (See [6, Theorem 1].) Suppose 0 < a; < 1 are algebraically independent numbers
and 0 < A < 1 for 1 <1 < m. The probability measure PLT converges weakly to Py as T — oo.

Next we consider the support of the measure P. We recall that the minimal closed set Sp C
H™(D) such that P(Sp) =1 is called the support of P. The set Sp consists of all f € H" (D)
such that for every neighborhood V of f the inequality P(V) > 0 is satisfied. The support of the
distribution of the random element X is called the support of X and is denoted by Sx.

Lemma 2.2. (See [5, Lemma 2].) Let {X,,} be a sequence of independent H™ (D)-valued random
elements, and suppose that the series

converges almost surely. Then the support of the sum of this series is the closure of the set of all
f € H™(D) which may be written as a convergent series

00
J_C:an’ in GSX”'
n=1

We quote some results on Hilbert spaces from [2, Chapter 6]. The subset L C X is called a
linear manifold if for all x, y € L and for all «, 8 € C the linear combination ax + By € L. Let
L be a linear manifold of X. The set of elements x € X such that x L L is called the orthogonal
complement of L and is denoted by L.

Lemma 2.3. (See [2, Theorem 6.1.8].) Let L be a linear manifold of X. Then L is dense in X if
and only if L+ = {0}.

Let X be a Hilbert space with an inner product (x, y) and a norm ||x|| := +/(x, x).

Lemma 2.4. (See [2, Theorem 6.1.11].) Let f be a continuous linear functional on a Hilbert
space X. Then there exists a unique element y € X such that f(x) = (x,y) forall x € X.
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Lemma 2.5. (See [2, Theorem 6.1.16].) Let {x,} be a sequence in a Hilbert space X satisfying
the following conditions:

@) Yoo llxnl? < o0;
() Y o2y {xn, x)| =00 forall 0 # x € X.

Then the set of all convergent series Z:O:I apXy, lay,| =1, n €N, is dense in X.

Finally, we quote some results on Hardy spaces. Let Dy be an arbitrary simply connected
domain with at least two boundary points. A set of functions f analytic in Dy is said to belong

to the Hardy space H,"(Dy), if the subharmonic function Z;":l_| f1(s)|? has a harmonic majorant
in Dg. We remark that H}"(Dy) is a Hilbert space. A proof of the following lemmas in the case
of m =1 is given in [2, Theorems 6.3.6 and 6.3.7]. The proof of the general case is obtained in a
similar way.
Lemma 2.6. (See [2, Theorem 6.3.6].) Let {in} be a sequence in H)" (Dy) such that
lim f (s)= f(s)
n—o00 — -

in the topology of H3' (Dy). Then this relation is true uniformly on every compact subset of Dy.

Lemma 2.7. (See [2, Theorem 6.3.7].) Let g € HY'(Dy). There exist complex Borel measures jig,
(1 <1 < m) with their support contained in the boundary 9 Do of Do such that if f € H;" (Do)

has a continuous extension to Dy, then the inner product can be expressed by the formula

We define the norm of i € H' (Do) by

1£1:= Jif f)-

Lemma 2.8. (See [2, Theorem 6.3.9].) Let the boundary of Dgy be an analytic simple closed
curve. The set of polynomials is dense in the space Hy' (D).

3. Joint universality I

In this section, we prove Theorems 1.3. We define the Hilbert space X" by X" = X x--- x X.
For convenience, we define the next symbols:

a-x:={aixy,...,anxy}, acC" xeX™,
Hm ::{gz(c]"”’cm)e(c”; |C[|=1, lglgm}

The following theorem is a generalization of Lemma 2.5.
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Theorem 3.1. Let {x,} :={(X1,n,...,%Xmn); n € N} be a sequence in the Hilbert space X"
satisfying the following conditions:

(@ Y02 llx, I < oo
(b) There exist ¢, € 1™, n € N, such that Y - |(c,, - x,,, x)| = 00 for all 0 # x € X".

Then the set of all convergent series Y ooy @, - X, a, € 1™, n € N, is dense in X™.
Proof. Put Y, =Cn Xy By using Lemma 2.5 as X = X", the set of all convergent series
oo
Y buy . Ibal=1,neN,

n=1

is dense in X". Hence by taking d,, := b,c,,, the set of all convergent series

o0
Zd}’["&n’ dnenmv
n=1

is dense in X™. Since this set is contained in the set of all convergent series Y > a, - x
a, € IT", we obtain this theorem. O

ne

The following theorem is a generalization of [2, Theorem 6.3.10] and [5, Lemma 3].

Theorem 3.2. Let D1 be a simply connected domain in C. Let {in} be a sequence in H™ (D)
which satisfies:

(@) If wy, 1 <1< m, are complex measures on (C,B(C)) with compact supports contained in
D such that there exist ¢, € [1"™, n € N, which satisfy Y o |> 1, Jecinfindm| < oo,
then [s"du; =0 forallr e NU{0}, 1 <I<m;

(b) There existd, € 1", n € N, for which the series ZZOZI d, - in converges in H"(D1);

(c) For any compact set K C D1, we have ZZOZI SUP|</<m SUPsek | f1.n (s)l2 < o0.
Then the set of all convergent series Y oey a, - X, an € 1™, n €N, is dense in H™ (D).

Proof. We modify the proof of [2, Theorem 6.3.10]. Let K be a compact subset of D;. We
choose a simply connected domain G such that K € G, G is a compact subset of D and the
boundary of G is an analytic simple closed curve. We will consider the space H;"(Dy). In view
of Lemma 2.7 (see [2, proof of Theorem 6.3.10]), we have

m
1P = [ Y findnn, < swp suplsia)] [ 1aug,)
3G 1=1 ISISm 5eG PYe

2
<c sup sup]ﬁ,n(s)| .
I<I<m 5eG
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Hence by assumption (c), we have
o
YIS, NP < oo (3.1)
n=1

Suppose ¢, € [1", n € N. Let g € H" (G) be such that

o
Z (¢, £, 8)] < 0. (3.2)
n=1
By Lemma 2.7 again, we have
m
(Qn 'ins g) :Z /Cl,nfl,ndugjv (33)
=1 C

where 11g,, 1 <1 < m, are complex Borel measures with support contained in the boundary of G.
Thus in view of (3.2), we have

o m
E < Q.

n=1

/Cl,nfl,n dﬂg;

=1 ¢

This and assumption (a) give that
fsrdugl =0, forallr eNU{0}, 1 <I<m.
C

Hence in view of (3.3), we deduce that g is orthogonal to all polynomials. Therefore it follows
from Lemmas 2.3 and 2.8 that g is the zero element of H;"(G). Consequently,

Z|(gn -f,.8)| =00, forall0#ge H'(G).

n=1

Whence and from (3.1), using Theorem 3.1, we obtain that the set of all convergent series

o

m
§ L_lninv (’_Znen )
n=1

is dense in H}"(G).
Let f € H™ (D) and & > 0. Then by Theorem 3.1 and Lemma 2.6, there exists a series

o

m
Yoo, f,. a,elm
n=1
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convergent uniformly on K and

sup sup
1<I<m sek

Zaznﬁn@ fils)| <

=1

Thus we can choose a positive integer M such that

&
sup sup arnfin(s) = fils)| < 3, (3.4)
1<I<m sek Z o 2
and in view of (b)
sup  sup Z dyn fin(s) <— (3.5)
I<i<m sek |, S

Now let
a, ifl1<m<M,
d ifm>M.

Then we have the convergent series Y ov
yield the inequality

- X, in H™ (D) and the inequalities (3.4) and (3.5)

n=1%

sup sup
1<I<m sekK

<é&

Zaznﬁnm fis)

=1

which completes the proof of this theorem. O

Proof of Theorem 1.3. We modify the proof of [6, Theorem 10]. It follows from the definition of
£2™ that {w(n)} is a sequence of independent random variables with respect to the measure my,, .
Hence {f ; (s, w(n)), n e NU{0}} is a sequence of independent H" (D)-random elements, where

2wiln 2 iAmn
e wi(n) e wm(n)
j_C(S,CL)(n)):Z( s [ mS )
n (n+ay) n+am)
The support of each w;(n) (n € NU {0}, 1 </ < m) is the unit circle y. Therefore the set

{ f (s,); «a € IT™} is the support of the random elements f (s, w(n)). Consequently, by
Lemma 2.2 the closure of the set of all convergent series

o 2wikin 2 iAmn
e o] e o
2, '"’”), a ey, neNU{0}, 1 <I<m,
(n+ay)’ (n + am)*

is the support of the random element L(s, w) := (L(A1,a1,s,w1),..., Ly, am, s, op)). It
remains to check that the latter set is dense in H"* (D). First, we check assumption (c) of Theo-
rem 3.2. By the definition of D, for every compact subset K of D,
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o]

sup sup
1<ISm sek 5

e27‘rikln

—_— <X
(n+ap)*

Next, we verify assumptions (a) and (b) of Theorem 3.2. We put n; :=n +1/m, n e R\ Q,
1 <1 <m. We define ¢, € I[1" by

e2niklncl’n = Fminn -y e NU {0}, 1<I<m.

By the definition of ¢, and Abel’s partial summation, we can check assumption (b). Therefore it
remains to confirm only assumption (a) of Theorem 3.2. Let u;, 1 <1 < m, be complex measures
on (C, ®B(C)) with compact supports contained in D such that

S m e2minmn

——du| <oo. 3.6
z_: fZ(nJral)S H G0
n=0 C =1

By the same argument as in the proof of [8, Theorem 4.1] (using the “positive density method”),
we deduce that

/s’dmzo forall» e NU{0}, 1 <I<m.
C

Therefore we obtain that all assumptions of Theorem 3.2 are satisfied. Hence we obtain Theo-
rem 1.3 by the same argument as in the proof of [5, Theorem 1]. O

Remark 3.3. In the proof of [6, Theorem 10], the authors showed § Py, = H™(D) where

LO(S! C!)) = (L()"lv ala S1 (U), ] L()‘«m,am,sv w))? w € Q'
Clearly S Py, csS P The fact S p=H " (D) is therefore an immediate consequence of S P, =
H™ (D) in the situation of [6]. However, if at least two of X;’s are equal, which is a special case
of the present weaker assumptions, we will show S Py, % H™ (D) in Proposition 5.3, hence we

have shown Sp, = H" (D) directly in the proof of Theorem 1.3.

By Theorem 1.3, we obtain the following theorem. The proof of this theorem is completely
the same as in the proof of [5, Theorem 2].

Theorem 3.4. Let A and a; (1 <1 < m) be as in Theorem 1.3. Suppose Fy, 0 < k < n, are
continuous functions on CN™ . Suppose

n
Zska(L()\'laal’s)7 cet L()"m7am7s)5 L/()\']5a]as)a cer
k=0

L/()\'ma an”la s)9 MR} L(N_l)(AJ’alv S)5 ] L(N_l)()"n‘h ama s)) = 0

identically for all s € C. Then F, =0, 0< k< n.
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4. Joint universality I1

In this section, we will prove Theorem 1.5. Firstly we show the limit theorem for £(A, a,
b, c; s). Define on (H™ (D), B(H™(D))) the probability measure

P£(A) = v}((ﬂ(kl,al, bi,c;s+it), ..., L, am, b, c; s + ir)) € A), Ae %(Hm(D)).
We define the H™ (D)-valued random elements £(s, w) by
’g(s5 CL)) = (S(Alvalablac; s’wl)’ L] »S(A-m,amabm, C; S5wm))7

where

S e2m’kln
SO, ap, by, ¢ s,00) =)
n=0

w;(n)
(n4ap)*=¢(n+b)°’

seD, wef2, 1<I<m.

Let Pg be the distribution of the random element £(s, ®).

Proposition 4.1. Suppose 0 < a; < 1 are algebraically independent numbers and 0 < X; < 1 for
1 <1 < m. The probability measure Pg converges weakly to Pg as T — oo.

To prove this proposition, we prepare notations. For oy; > 1/2, 1 <[/ < m, we define functions

e27n)»1n

o
vi(n,r)
Lr(M,ar, by, e 5) = ,
' 20 (n+a)*=<(n + by

X Ddwin o1/
e vi(n,r) n+a

Lr(/\z,az,S):E _—, vz(n,r):=exP{—< ) }
= (n+ap)’ r+a

Let {Cx} be a sequence of compact subsets of D such that U,fil Ck, Cy C Ci41, and if C is a
compact subset of D, then C C Cy for some k.

Lemma 4.2. We have

T
1

lim limsup—/ sup|£(k1,a1,bl,c;s+ir)—Sr(kl,al,bl,c;s+ir)|dt=0. 4.1)

r=>00 00 T 0 seCy

Proof. By the triangle inequality, we have

|€Ou,ar, by, cis+it) — L. (M ar, by, c; s + i)

<\, ap, by, ;s +it) — Ly, ap, s +it) + L (A ar, s +it) — & (O, a, by, ¢ s +i1)|
+|LOg.ar, s +it) — Ly (A, ap, s +i1)|

= |fr()\l»al,bl, c; s +i‘l-')| + |gr()»1,a1,b1, c;s+it)

’
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say. We have

T
1
lim limsup—/ sup|g,(k1,al,b1,c;s+it)|dr:O, “4.2)

=% 1500 seCy

by [4, Lemma 5.2.11]. Hence we have to show

T
1
lim limsup—/ sup|fr(kl,a1,bl,c;s+ir)|d1::0.

r=® 1500 0 s€Cy

By the binomial theorem, we have

. <n+bl>cz o).

n—+a

Hence, for some positive constant K, we have
sup | fr (M, ar, by, ;s + i)
seCy

1
(n _}_al)ﬂ\‘(s—c) (n _|_bl).‘)'t(c)

/AN
WK

n+al gy
1 —expy— F T

n4+a \°"
1—exp{—<r+a1) = M, (on),

n=0

— 1
<Ky ——
nX:(:) (n+a)’?

say. Therefore we obtain

T
1
lim limsup?/ sup|f,(A1,al,bl,c;s+ir)|dt

r=% 1500 seCy

r—>0o0 T—00

T
1
< lim limsup?/M,(ou)dt :rl_i)n;OMr(a”) =0. O 4.3)
0

Proof of Proposition 4.1. We modify the proof of [6, Theorem 1]. The only point which is
different from the proof of [6, Theorem 1] is to use (4.1) instead of (4.2). Therefore by Lemma 4.2
we can prove Proposition 4.1. O

Proof of Theorem 1.5. Similarly to the argument of the first part of the proof of Theorem 1.3,
we have to check that the set of all convergent series

00 . .
627”)‘1"0(1’" eZm)»,,,nam’n

r§)<(n +al)s_c(n +b])c’ e (n _{-al)f—c‘(n + bm)c

>, o, € I", neNU0},
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is dense in H™ (D). Hence we will confirm the assumptions of Theorem 3.2. Let u;, 1 <I < m,
be complex measures on (C, B(C)) with compact supports contained in D such that

00
>
n=0

m ezﬂi)\.]n
/Z du| < oo.
Jia (n+ap)*=¢(n +by)°

By the same argument as in [5, (12)], we have
n+a) =n""+ Bn~177|s|eBb!
where B is a positive constant. Hence the above formula is equivalent to

M p2mikin
[ S
C =1

>

n=1

< Q.

Therefore we can easily confirm all assumptions by modifying the proof of Theorem 1.3. Hence
we obtain Theorem 1.5 by the same argument as in the proof of [5, Theorem 1]. O

5. Non-denseness lemma

In this section, we reconsider the proofs of Theorems 1.3 and 1.5, especially Remark 3.3. The
next theorem is a kind of counter-proposition for Lemma 2.5.

Theorem 5.1 (Non-denseness lemma). Let {x,} be a sequence in a Hilbert space X" satisfying
the following condition:

(a) There exists a non-zero x € X"™ such that y .- |(x,, X)| < o0.
Then the set of all convergent series
o0
Y anx,. la=1,neN,
n=1
is not dense in X™.

Proof. Firstly, we consider the case of Z;O:1 [(x,,x)] = 0. We take an x which satisfies this
condition. By the assumption, we have

2
2
=[x/ +

2
> Jlx)?.

o0

'E - § an'&n

n=1

oo

§ a}’l‘&n

n=1
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Hence in this case, the set of all convergent series Y oo | ayx, is not dense in X™. Next we
consider the case of 0 # Zn 1 1x,,, x)| < oco. We take an x which satisfies this condition and
choose b, € C so that |b,| = 1 and

bu{x,,x)=—Nx,, x)| if (x,,x)#0,
{b,,:l if (x,,,x) =0.

We can assume that |{(x, x)| 7 0 without loss of generality. Let M be a sufficiently large integer

which satisfies
o0
29{( > an<)_cn,3_c>>_

n=M+1

2
[(x1, x)]

2

oo
§ anén

n=M+1

By the trigonometric inequality, we have

n&n_'&_i_{_ § anén

M

Z (2b, — ap)x, —

n=1

—lx = E anX,

n=M+1

say. Then we obtain

M
Z(zbn - an)-&
n=1

- 2%(2(% —an)(x >>
2

o0
§ an'ﬁn

n=M+1

+2?R< > an@n,)ﬁ)) -

n=M+1

By the definition of x and b,,, we have

M M
—fﬁ(Z(zbn—an)@n, ) D 0] =[x, x).
n=lI n=1

Therefore we have the inequality

[{(x1, X))
> — .
2(A+ B)

M oo
2D bux, =) ans,
n=1 n=1

Hence the set of all convergent series Y .-, a,X,, is not dense in X". O

Lemma 5.2. If {x,} is not dense in H}'(D), then {x,,} is not dense in H" (D).
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Proof. We show the contraposition, that is, if {x, } is dense in H™ (D), then {x,,} is dense also in
the Hardy space H,"(D). By Lemma 2.7, we have

m

Ilj_”—gII2=Z/(fz g di(fi—g) <c2 sup sup|fi —gil*.
=1 1<ISm geD
oD

This implies the contraposition. O

Proposition 5.3. Suppose 0 < a; < 1 are algebraically independent numbers and 0 < A; < 1 for
1 <I < m. If at least two of A;’s are equal, it holds that Spé0 #+ H™(D) (see Remark 3.3).

Proof. Similarly to the argument of the first part of the proof of Theorem 1.3, we have to check
that

(7]
(n+a)*” T (n+ap)

x e2nik1nwn eZniAmn
, wy, €y, ne NU{0},

is not dense in H" (D). First, we consider the case of m =2, A := A; = Ay. Let u; and uy be
complex measures on (C, 9B(C)) with compact supports contained in D such that

2 p2miin
fz (n+ap* dps
0l 1=

By the same argument as in [5, (12)], the above formula is equivalent to

0 2mkn
> / >

n=1 =1

< Q.

< 00. (5.1)

If 0 # w1 = — 2, then we see that the left-hand side of (5.1) is equal to zero, hence the measures
satisfy condition (5.1). Applying Lemma 2.4 with x = x,, = >~ and

s [
C

we can rewrite (5.1) in terms of inner products. Because of Lemma 5.1, the set of all convergent
series ZOO 0 f (s, wy) with w, € y is not dense in the Hardy space H 2(D) Therefore the set of

all convergent series is not dense in H%(D) by Lemma 5.2. If m >3, we can put A := A; = A»
without loss of generality. In this case, we take 0 # w1 = —u2, 0=z =---=pu,. 0O

6. Examples of non-existence of universality
In this section, we will show three examples which imply the non-existence of joint universal-

ity for Lerch zeta functions and generalized Lerch zeta functions. We remark that the parameters
ai, ..., ay of the next two examples are not algebraically independent.
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Proposition 6.1. If we put a) = 1 and ay = 1/2, then there exist an ¢ > 0 and analytic functions
f1(s) on K, for which there does not exist T satisfying

sup sup ‘{(az,s +it) — f[(s)| <e.
1<I<m sek;

Proof. Let K :={s;|s —3/4| < R},0< R < 1/4. We put ¢ = 1/3, fi(s) =1 and fo(s) =8.
Suppose

1
sup [¢(s +it) — 1| < <. (6.1)
sekK 3

For every t satisfying (6.1), by the well-known formula

(1/2,5) = (2° = 1) (s), (6.2)

we have

sup|§(1/2,s +it) — 8| = sup |(25+ir _ 1)(§(S t+it)— 1) +2s+ir _9|
sekK seK

> sup|| (27T = 1)(¢(s +it) — 1) — |27 — 9|
>sup |l —7|=6. O
This proposition implies that the set of Hurwitz zeta functions does not necessarily have the
joint ¢-universality. Proposition 6.1 is a rather obvious example, but we can observe that the key

of the proof is the functional relation (6.2). By using another functional relation, we can show
the following result.

Proposition 6.2. Let a be a positive number and ) be a real number. If we put ., = . + n/m,
ap=mafor0<n<m—1,and Ay =mh, ayy, =a+ j/m (0 < j <m — 1), then there exist an
& > 0 and analytic functions fi(s) on K, for which there does not exist T satisfying

sup  sup |L(?»1, ap,s+it) — f;(s)|< e.
0<I<m sek;

Proof. We define a),{l by

wly :=expQmij/m), jomeN, 0<j<m—1.

By using the inversion formula [8, Lemma 2.1] (see also [1, Theorem 2.1])

m—1

. N N "
L(mk, a+ L, s) =m* e 2N Z w,,ﬂ"L()\ + —,ma, s>,
m o m

and modifying the proof of Proposition 6.1, we can show this proposition. O
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Remark 6.3. These propositions show that the existence of functional relations implies the non-
existence of joint 7-universality. Therefore we can see that joint #-universality is essentially more
difficult than single 7-universality (for example [2, p. 111, Theorem 1.1]) because of its con-
nection with functional relations. These facts should be compared with Theorem 3.4 concerning
functional independence, deduced by joint 7-universality Theorem 1.3.

In the case of a; = - - - = a,,, we have the following non-existence of joint 7-universality for
LA, a,b,c;s).

Proposition 6.4. If at least two of \;’s are equal, then there exist an ¢ > 0 and analytic functions
fi1(s) on K, for which there does not exist T satisfying

sup sup |[£(A,a, by ;s +it) — fi(s)| <e. (6.3)
1<I<m sek;

Proof. We assume m =2 and A := A| = X, without loss of generality. For some positive con-
stants C1 and C», we have

|S(A,a,b1,c;s+it) —E(A,a,ln,c;s—i—ir)}

B i e2m‘)~n - (n—i—bl)"
S mtapt T+ b)) (- bo)e
> 1
<C ——— < (). 6.4
1’;) n(n + a)h® 2 (6.4)

Let K1 =Ky =K :={s: |s —3/4| < 1/5}. We put e =1/3, fi(s) =1 and fi(s) =Cy + 1.
Suppose

sup| (A, a, by, ;s +it) — 1| < 1/3.
sekK

For every 7 satisfying the above formula, we have

sup|L(As, a1, by, c;s +it) — (C2+ 1| > 1/3.
sekK

Hence we have (6.3) in this case. O
In the case when a is transcendental, we obtain another proof of Proposition 6.4 by using The-
orem 5.1. Firstly we show the limit theorem for £(A, a, b, ¢; s). Denote on (H™ (D), B(H™(D)))
the probability measure
PgTo(A) = v}((ﬂ(kl, a,bi,c;s+it),..., L(Am,a, by, c; s+ i‘L’)) € A), Ae sB(H’”(D)).

We define the H" (D)-valued random element £, (s, @) by

Lo(s, @) = (L1, a,b1,¢;5,01), ..., £Om, @, b, €3 5, 0m)),
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where

S eZni)\.ln
Lo(h.a. by c;s, o)=Y
n=0

wy(n)
(n+a)=¢(n+ by’

seD, wjef2, 1<I<m.

Let Pg, stand for the distribution of the random element £ (s, @).

Proposition 6.5. Suppose 0 < a < 1 is a transcendental number and 0 < X; < 1 for 1 <1 < m.
The probability measure Pgo converges weakly to Pg as T — oo.

Proof. We can prove this theorem by modifying [3, Theorem 3] and using Lemma 4.2. O

Similarly to the argument of Proposition 5.3, we can check

& eZniklnan e2niAmnan
Z N R ERRE] S - ’ anEV’HENU{O}a
o\ +a)y=c(n+br)e (n+a)*=(n+bn)°

is not dense in H™ (D), since

>

n=0

<0

eZﬂi)Ln
[ D=
(n+a)=<(n+b)°
C =1
is equivalent to (5.1).

Suppose that functions Fj(s) for 1 </ < m can be continued analytically to the whole D.
Denote by Vi the set of g € H™ (D) such that

sup sup|gi(s) — Fi(s)| < (k+ De, k=12,
1<I<m sek;

We recall that the support Sp consists of all f € H” (D) such that for every neighborhood V of
f the inequality P(V) > 0 is satisfied. Since the support of the random element £o(s, w) is not
whole H (D), there exist a set of analytic functions f;(s) and its neighborhood V5 satisfying
P;O(Vz) = 0. Since V| C V>, we have PQO(W) = 0. Let P, and P be probability measures
defined on (S, B(S)). It is well known that P, converges weakly to P as n — oo if and only if

limsup P, (C) < P(C)

n—o00

for all closed sets C. The set of V] is closed, hence by Lemma 2.1, we obtain

limsupv}{ sup sup|£(k1,a,bl,c;s+ir) —fl(s)| <28} < P;O(V])zo.

T—o0 1<I<m sek;

This formula yields the assertion of non-existence of joint 7-universality.
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