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Abstract

In this paper, we show the following theorems. Suppose 0 < al < 1 are algebraically independent num-
bers and 0 < λl � 1 for 1 � l � m. Then we have the joint t-universality for Lerch zeta functions L(λl, al, s)

for 1 � l � m. Next we generalize Lerch zeta functions, and obtain the joint t-universality for them. In
addition, we show examples of the non-existence of the joint t-universality for Lerch zeta functions and
generalized Lerch zeta functions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Definition 1.1. The Lerch zeta function L(λ,a, s), for 0 < λ � 1, 0 < a � 1 and �(s) > 1, is
defined by

L(λ,a, s) :=
∞∑

n=0

e2πiλn

(n + a)s
. (1.1)

When λ = 1, the Lerch zeta function L(λ,a, s) reduces to the Hurwitz zeta function ζ(a, s).
If λ �= 1, the function L(λ,a, s) is analytically continuable to an entire function. But the func-
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tion ζ(a, s) is analytically continuable to a meromorphic function, which has a simple pole
at s = 1.

We prepare some notation for t-universality. By meas{A} we denote the Lebesgue measure of
the set A, and, for T > 0, we use the notation

ντ
T {. . .} := 1

T
meas

{
τ ∈ [0, T ]; . . .}

where in place of dots some condition satisfied by τ is to be written. Let D := {s ∈ C; 1/2 <

�(s) < 1} and K1, . . . ,Km (m � 2) be compact subsets of the strip D with connected comple-
ments. The next theorem is proved by A. Laurinčikas and K. Matsumoto in [6, Theorem 2] (see
also [4, p. 122, Theorem 3.1] and [5, Theorem 1]).

Theorem 1.2 (Joint t-universality). (See [6, Theorem 2].) For 1 � l � m, let al be algebraically
independent numbers, bl, ql ∈ N, ql which are distinct, λl = bl/ql , (bl, ql) = 1 and bl < ql . Let
fl(s) be functions analytic in the interior of Kl and continuous on Kl . Then for every ε > 0 it
holds that

lim inf
T →∞ ντ

T

{
sup

1�l�m

sup
s∈Kl

∣∣L(λl, al, s + iτ ) − fl(s)
∣∣ < ε

}
> 0.

When all al’s are the same, this property is called the λ-joint t-universality in [8, Definition 7].
Firstly we show the next theorem, which gives the universality under the assumption weaker than
that in Theorem 1.2.

Theorem 1.3. Suppose 0 < al < 1 are algebraically independent numbers and 0 < λl � 1 for
1 � l � m. Let fl(s) be functions analytic in the interior of Kl and continuous on Kl . Then for
every ε > 0 it holds that

lim inf
T →∞ ντ

T

{
sup

1�l�m

sup
s∈Kl

∣∣L(λl, al, s + iτ ) − fl(s)
∣∣ < ε

}
> 0.

Next we introduce a generalization of Lerch zeta functions and consider their joint universal-
ity.

Definition 1.4. The generalized Lerch zeta functions L(λ, a, b, c; s), for 0 < λ � 1, 0 < a � 1,
0 < b � 1, �(s) > 1 and c ∈ C, are defined by

L(λ, a, b, c; s) :=
∞∑

n=0

e2πiλn

(n + a)s−c(n + b)c
. (1.2)

The cases of a = b or c = 0, these functions coincide with Lerch zeta functions. We remark
that for 0 < λ � 1, L(λ, a, b, c; s) is meromorphic in the half-plane σ > 0, since

L(λ, a, b, c; s) = L(λ,a, s) +
∞∑ e2πiλn

(n + a)s−c(n + b)c

(
1 − (n + b)c

(n + a)c

)
,

n=0
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and the series on the right-hand side converges in the half-plane σ > 0. For 0 < λ < 1, this series
converges uniformly on any compact subset in the half-plane σ > σ0 for any σ0 > 0. The case of
b = 1, c = −1 is

∞∑
n=0

e2πiλn(n + 1)

(n + a)s+1
=

∞∑
n1,n2=0

e2πiλ(n1+n2)

(n1 + n2 + a)s+1
.

(See for example [9, p. 85, (10)].) Hence L(λ, a, b, c; s) contain a special case of Barnes double
zeta functions. The following theorem gives a joint universality property of L(λ, a, b, c; s). This
is a partial solution of the problem of (joint) universality of multiple zeta functions presented in
[7, Section 2].

Theorem 1.5. Suppose 0 < al < 1 are algebraically independent numbers and 0 < λl � 1, 0 <

bl � 1 for 1 � l � m. Let fl(s) be functions analytic in the interior of Kl and continuous on Kl .
Then for every ε > 0 it holds that

lim inf
T →∞ ντ

T

{
sup

1�l�m

sup
s∈Kl

∣∣L(λl, al, bl, c; s + iτ ) − fl(s)
∣∣ < ε

}
> 0.

This paper is divided into six sections. Section 2 is a preparation for the proof of these theo-
rems. In Sections 3 and 4, we prove Theorems 1.3 and 1.5, respectively. We consider the proofs
of Theorems 1.3 and 1.5 in Section 5. We show examples of the non-existence of the joint t-
universality for Lerch zeta functions in Section 6.

2. Preliminaries

In this section, we quote definitions and theorems from [2] and [5], and we omit the proofs
of those theorems. Denote by H(D) the space of analytic on D functions equipped with the
topology of uniform convergence on compacta. Let B(S) stands for the class of Borel sets of the
space S. Define on (Hm(D),B(Hm(D))) the probability measure

P T
L (A) := ντ

T

(
L(λ1, a1, s + iτ ), . . . ,L(λm,am, s + iτ ) ∈ A

)
, A ∈ B

(
Hm(D)

)
.

What we need is a limit theorem in the sense of weak convergence of probability measures for
P T

L as T → ∞, with an explicit form of the limit measure. Denote by γ the unit circle on C,
and let

Ω :=
∞∏

n=0

γn,

where γn = γ for all n ∈ N ∪ {0}. With the product topology and pointwise multiplication the
infinite dimensional torus Ω is a compact topological Abelian group. Denoting by mHm the
probability Haar measure on (Ωm,B(Ωm)), where Ωm := Ω ×· · ·×Ω , we obtain a probability
space (Ωm,B(Ωm),mHm). Let ωl(n) be the projection of ωl ∈ Ω to the coordinate space γn, and
define on the probability space (Ωm,B(Ωm),mHm) the Hm(D)-valued random element L(s,ω)

by

L(s,ω) := (
L(λ1, a1, s,ω1), . . . ,L(λm,am, s,ωm)

)
,
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where

L(λl, al, s,ωl) :=
∞∑

n=0

e2πiλlnωl(n)

(n + al)s
, s ∈ D, ωl ∈ Ω, 1 � l � m.

The function L(λl, al, s,ωl) is an H(D)-valued random element. Let PL stand for the distribu-
tion of the random element L(s,ω), i.e.

PL(A) := mHm

(
ω ∈ Ωm; L(s,ω) ∈ A

)
, A ∈ B

(
Hm(D)

)
.

In [6, Theorem 1], the following lemma is proved in the case of 0 < λl < 1. But we can prove
the case of 0 < λl � 1 similarly.

Lemma 2.1. (See [6, Theorem 1].) Suppose 0 < al < 1 are algebraically independent numbers
and 0 < λl � 1 for 1 � l � m. The probability measure P T

L converges weakly to PL as T → ∞.

Next we consider the support of the measure P . We recall that the minimal closed set SP ⊆
Hm(D) such that P(SP ) = 1 is called the support of P . The set SP consists of all f ∈ Hm(D)

such that for every neighborhood V of f the inequality P(V ) > 0 is satisfied. The support of the
distribution of the random element X is called the support of X and is denoted by SX .

Lemma 2.2. (See [5, Lemma 2].) Let {Xn} be a sequence of independent Hm(D)-valued random
elements, and suppose that the series

∞∑
n=1

Xn

converges almost surely. Then the support of the sum of this series is the closure of the set of all
f ∈ Hm(D) which may be written as a convergent series

f :=
∞∑

n=1

f
n
, f

n
∈ SXn.

We quote some results on Hilbert spaces from [2, Chapter 6]. The subset L ⊂ X is called a
linear manifold if for all x, y ∈ L and for all α,β ∈ C the linear combination αx + βy ∈ L. Let
L be a linear manifold of X. The set of elements x ∈ X such that x ⊥ L is called the orthogonal
complement of L and is denoted by L⊥.

Lemma 2.3. (See [2, Theorem 6.1.8].) Let L be a linear manifold of X. Then L is dense in X if
and only if L⊥ = {0}.

Let X be a Hilbert space with an inner product 〈x, y〉 and a norm ‖x‖ := √〈x, x〉.

Lemma 2.4. (See [2, Theorem 6.1.11].) Let f be a continuous linear functional on a Hilbert
space X. Then there exists a unique element y ∈ X such that f (x) = 〈x, y〉 for all x ∈ X.
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Lemma 2.5. (See [2, Theorem 6.1.16].) Let {xn} be a sequence in a Hilbert space X satisfying
the following conditions:

(a)
∑∞

n=1 ‖xn‖2 < ∞;
(b)

∑∞
n=1 |〈xn, x〉| = ∞ for all 0 �= x ∈ X.

Then the set of all convergent series
∑∞

n=1 anxn, |an| = 1, n ∈ N, is dense in X.

Finally, we quote some results on Hardy spaces. Let D0 be an arbitrary simply connected
domain with at least two boundary points. A set of functions f analytic in D0 is said to belong

to the Hardy space Hm
2 (D0), if the subharmonic function

∑m
l=1 |fl(s)|2 has a harmonic majorant

in D0. We remark that Hm
2 (D0) is a Hilbert space. A proof of the following lemmas in the case

of m = 1 is given in [2, Theorems 6.3.6 and 6.3.7]. The proof of the general case is obtained in a
similar way.

Lemma 2.6. (See [2, Theorem 6.3.6].) Let {f
n
} be a sequence in Hm

2 (D0) such that

lim
n→∞f

n
(s) = f (s)

in the topology of Hm
2 (D0). Then this relation is true uniformly on every compact subset of D0.

Lemma 2.7. (See [2, Theorem 6.3.7].) Let g ∈ Hm
2 (D0). There exist complex Borel measures μgl

(1 � l � m) with their support contained in the boundary ∂D0 of D0 such that if f ∈ Hm
2 (D0)

has a continuous extension to D0, then the inner product can be expressed by the formula

〈f ,g〉 =
m∑

l=1

∫
∂D0

fl dμgl
.

We define the norm of f ∈ Hm
2 (D0) by

‖f ‖ :=
√

〈f ,f 〉.

Lemma 2.8. (See [2, Theorem 6.3.9].) Let the boundary of D0 be an analytic simple closed
curve. The set of polynomials is dense in the space Hm

2 (D0).

3. Joint universality I

In this section, we prove Theorems 1.3. We define the Hilbert space Xm by Xm = X×· · ·×X.
For convenience, we define the next symbols:

a · x := {a1x1, . . . , amxm}, a ∈ Cm, x ∈ Xm,

Πm := {
c = (c1, . . . , cm) ∈ Cn; |cl | = 1, 1 � l � m

}
.

The following theorem is a generalization of Lemma 2.5.
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Theorem 3.1. Let {xn} := {(x1,n, . . . , xm,n); n ∈ N} be a sequence in the Hilbert space Xm

satisfying the following conditions:

(a)
∑∞

n=1 ‖xn‖2 < ∞;
(b) There exist cn ∈ Πm, n ∈ N, such that

∑∞
n=1 |〈cn · xn, x〉| = ∞ for all 0 �= x ∈ Xm.

Then the set of all convergent series
∑∞

n=1 an · xn, an ∈ Πm, n ∈ N, is dense in Xm.

Proof. Put y
n

:= cn · xn. By using Lemma 2.5 as X = Xm, the set of all convergent series

∞∑
n=1

bnyn
, |bn| = 1, n ∈ N,

is dense in Xm. Hence by taking dn := bncn, the set of all convergent series

∞∑
n=1

dn · xn, dn ∈ Πm,

is dense in Xm. Since this set is contained in the set of all convergent series
∑∞

n=1 an · xn,
an ∈ Πm, we obtain this theorem. �

The following theorem is a generalization of [2, Theorem 6.3.10] and [5, Lemma 3].

Theorem 3.2. Let D1 be a simply connected domain in C. Let {f
n
} be a sequence in Hm(D1)

which satisfies:

(a) If μl , 1 � l � m, are complex measures on (C,B(C)) with compact supports contained in
D1 such that there exist cn ∈ Πm, n ∈ N, which satisfy

∑∞
n=1 |∑m

l=1

∫
C

cl,nfl,n dμl| < ∞,

then
∫

C
sr dμl = 0 for all r ∈ N ∪ {0}, 1 � l � m;

(b) There exist dn ∈ Πm, n ∈ N, for which the series
∑∞

n=1 dn · f
n

converges in Hm(D1);

(c) For any compact set K ⊆ D1, we have
∑∞

n=1 sup1�l�m sups∈K |fl,n(s)|2 < ∞.

Then the set of all convergent series
∑∞

n=1 an · xn, an ∈ Πm, n ∈ N, is dense in Hm(D1).

Proof. We modify the proof of [2, Theorem 6.3.10]. Let K be a compact subset of D1. We
choose a simply connected domain G such that K ⊆ G, G is a compact subset of D1 and the
boundary of G is an analytic simple closed curve. We will consider the space Hm

2 (D1). In view
of Lemma 2.7 (see [2, proof of Theorem 6.3.10]), we have

‖f
n
‖2 =

∫
∂G

m∑
l=1

fl,n dμfl,n
� sup

1�l�m

sup
s∈G

∣∣fl,n(s)
∣∣ ∫
∂G

|dμfl,n
|

� c sup
1�l�m

sup
∣∣fl,n(s)

∣∣2
.

s∈G
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Hence by assumption (c), we have

∞∑
n=1

‖f
n
‖2 < ∞. (3.1)

Suppose cn ∈ Πm, n ∈ N. Let g ∈ Hm(G) be such that

∞∑
n=1

∣∣〈cn · f
n
, g〉∣∣ < ∞. (3.2)

By Lemma 2.7 again, we have

〈cn · f
n
, g〉 =

m∑
l=1

∫
C

cl,nfl,n dμgl
, (3.3)

where μgl
, 1 � l � m, are complex Borel measures with support contained in the boundary of G.

Thus in view of (3.2), we have

∞∑
n=1

∣∣∣∣∣
m∑

l=1

∫
C

cl,nfl,n dμgl

∣∣∣∣∣ < ∞.

This and assumption (a) give that

∫
C

sr dμgl
= 0, for all r ∈ N ∪ {0}, 1 � l � m.

Hence in view of (3.3), we deduce that g is orthogonal to all polynomials. Therefore it follows
from Lemmas 2.3 and 2.8 that g is the zero element of Hm

2 (G). Consequently,

∞∑
n=1

∣∣〈cn · f
n
, g〉∣∣ = ∞, for all 0 �= g ∈ Hm

2 (G).

Whence and from (3.1), using Theorem 3.1, we obtain that the set of all convergent series

∞∑
n=1

an · f
n
, an ∈ Πm,

is dense in Hm
2 (G).

Let f ∈ Hm(D1) and ε > 0. Then by Theorem 3.1 and Lemma 2.6, there exists a series

∞∑
αn · f

n
, αn ∈ Πm,
n=1
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convergent uniformly on K and

sup
1�l�m

sup
s∈K

∣∣∣∣∣
∞∑

n=1

αl,nfl,n(s) − fl(s)

∣∣∣∣∣ <
ε

4
.

Thus we can choose a positive integer M such that

sup
1�l�m

sup
s∈K

∣∣∣∣∣
M∑

n=1

αl,nfl,n(s) − fl(s)

∣∣∣∣∣ <
ε

2
, (3.4)

and in view of (b)

sup
1�l�m

sup
s∈K

∣∣∣∣∣
∞∑

n=M+1

dl,nfl,n(s)

∣∣∣∣∣ <
ε

2
. (3.5)

Now let

an :=
{

αn if 1 � m � M,

dn if m > M.

Then we have the convergent series
∑∞

n=1 an · xn in Hm(D) and the inequalities (3.4) and (3.5)
yield the inequality

sup
1�l�m

sup
s∈K

∣∣∣∣∣
∞∑

n=1

al,nfl,n(s) − fl(s)

∣∣∣∣∣ < ε

which completes the proof of this theorem. �
Proof of Theorem 1.3. We modify the proof of [6, Theorem 10]. It follows from the definition of
Ωm that {ω(n)} is a sequence of independent random variables with respect to the measure mHm .
Hence {f

n
(s,ω(n)), n ∈ N∪{0}} is a sequence of independent Hm(D)-random elements, where

f
n

(
s,ω(n)

) :=
(

e2πiλ1nω1(n)

(n + a1)s
, . . . ,

e2πiλmnωm(n)

(n + am)s

)
.

The support of each ωl(n) (n ∈ N ∪ {0},1 � l � m) is the unit circle γ . Therefore the set
{f

n
(s,α); α ∈ Πm} is the support of the random elements f

n
(s,ω(n)). Consequently, by

Lemma 2.2 the closure of the set of all convergent series

∞∑
n=0

(
e2πiλ1nα1,n

(n + a1)s
, . . . ,

e2πiλmnαm,n

(n + am)s

)
, αl,n ∈ γ, n ∈ N ∪ {0}, 1 � l � m,

is the support of the random element L(s,ω) := (L(λ1, a1, s,ω1), . . . ,L(λm,am, s,ωm)). It
remains to check that the latter set is dense in Hm(D). First, we check assumption (c) of Theo-
rem 3.2. By the definition of D, for every compact subset K of D,
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sup
1�l�m

sup
s∈K

∞∑
n=0

∣∣∣∣ e2πiλln

(n + al)2σ

∣∣∣∣ < ∞.

Next, we verify assumptions (a) and (b) of Theorem 3.2. We put ηl := η + l/m, η ∈ R \ Q,
1 � l � m. We define cn ∈ Πm by

e2πiλlncl,n := e2πiηln, n ∈ N ∪ {0}, 1 � l � m.

By the definition of cn and Abel’s partial summation, we can check assumption (b). Therefore it
remains to confirm only assumption (a) of Theorem 3.2. Let μl , 1 � l � m, be complex measures
on (C,B(C)) with compact supports contained in D such that

∞∑
n=0

∣∣∣∣∣
∫
C

m∑
l=1

e2πiηln

(n + al)s
dμl

∣∣∣∣∣ < ∞. (3.6)

By the same argument as in the proof of [8, Theorem 4.1] (using the “positive density method”),
we deduce that ∫

C

sr dμl = 0 for all r ∈ N ∪ {0}, 1 � l � m.

Therefore we obtain that all assumptions of Theorem 3.2 are satisfied. Hence we obtain Theo-
rem 1.3 by the same argument as in the proof of [5, Theorem 1]. �
Remark 3.3. In the proof of [6, Theorem 10], the authors showed SPL0

= Hm(D) where

L0(s,ω) := (
L(λ1, a1, s,ω), . . . ,L(λm,am, s,ω)

)
, ω ∈ Ω.

Clearly SPL0
⊆ SPL

. The fact SPL
= Hm(D) is therefore an immediate consequence of SPL0

=
Hm(D) in the situation of [6]. However, if at least two of λl’s are equal, which is a special case
of the present weaker assumptions, we will show SPL0

�= Hm(D) in Proposition 5.3, hence we
have shown SPL

= Hm(D) directly in the proof of Theorem 1.3.

By Theorem 1.3, we obtain the following theorem. The proof of this theorem is completely
the same as in the proof of [5, Theorem 2].

Theorem 3.4. Let λl and al (1 � l � m) be as in Theorem 1.3. Suppose Fk , 0 � k � n, are
continuous functions on CNm. Suppose

n∑
k=0

skFk

(
L(λ1, a1, s), . . . ,L(λm,am, s),L′(λ1, a1, s), . . . ,

L′(λm,am, s), . . . ,L(N−1)(λ1, a1, s), . . . ,L
(N−1)(λm, am, s)

) = 0

identically for all s ∈ C. Then Fk ≡ 0, 0 � k � n.
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4. Joint universality II

In this section, we will prove Theorem 1.5. Firstly we show the limit theorem for L(λ, a,

b, c; s). Define on (Hm(D),B(Hm(D))) the probability measure

P T
L (A) := ντ

T

((
L(λ1, a1, b1, c; s + iτ ), . . . ,L(λm,am,bm, c; s + iτ )

) ∈ A
)
, A ∈ B

(
Hm(D)

)
.

We define the Hm(D)-valued random elements L(s,ω) by

L(s,ω) := (
L(λ1, a1, b1, c; s,ω1), . . . ,L(λm,am,bm, c; s,ωm)

)
,

where

L(λl, al, bl, c; s,ωl) :=
∞∑

n=0

e2πiλlnωl(n)

(n + al)s−c(n + bl)c
, s ∈ D, ωl ∈ Ω, 1 � l � m.

Let PL be the distribution of the random element L(s,ω).

Proposition 4.1. Suppose 0 < al < 1 are algebraically independent numbers and 0 < λl � 1 for
1 � l � m. The probability measure P T

L
converges weakly to PL as T → ∞.

To prove this proposition, we prepare notations. For σ1l > 1/2, 1 � l � m, we define functions

Lr (λl, al, bl, c; s) :=
∞∑

n=0

e2πiλlnvl(n, r)

(n + al)s−c(n + bl)c
,

Lr(λl, al, s) :=
∞∑

n=0

e2πiλlnvl(n, r)

(n + al)s
, vl(n, r) := exp

{
−

(
n + al

r + al

)σ1l
}
.

Let {Ck} be a sequence of compact subsets of D such that
⋃∞

k=1 Ck , Ck ⊂ Ck+1, and if C is a
compact subset of D, then C ⊆ Ck for some k.

Lemma 4.2. We have

lim
r→∞ lim sup

T →∞
1

T

T∫
0

sup
s∈Ck

∣∣L(λl, al, bl, c; s + iτ ) − Lr (λl, al, bl, c; s + iτ )
∣∣dτ = 0. (4.1)

Proof. By the triangle inequality, we have

∣∣L(λl, al, bl, c; s + iτ ) − Lr (λl, al, bl, c; s + iτ )
∣∣

�
∣∣L(λl, al, bl, c; s + iτ ) − L(λl, al, s + iτ ) + Lr(λl, al, s + iτ ) − Lr (λl, al, bl, c; s + iτ )

∣∣
+ ∣∣L(λl, al, s + iτ ) − Lr(λl, al, s + iτ )

∣∣
:= ∣∣fr(λl, al, bl, c; s + iτ )

∣∣ + ∣∣gr(λl, al, bl, c; s + iτ )
∣∣,
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say. We have

lim
r→∞ lim sup

T →∞
1

T

T∫
0

sup
s∈Ck

∣∣gr(λl, al, bl, c; s + iτ )
∣∣dτ = 0, (4.2)

by [4, Lemma 5.2.11]. Hence we have to show

lim
r→∞ lim sup

T →∞
1

T

T∫
0

sup
s∈Ck

∣∣fr(λl, al, bl, c; s + iτ )
∣∣dτ = 0.

By the binomial theorem, we have

1 −
(

n + bl

n + al

)c

= O
(
n−1).

Hence, for some positive constant K , we have

sup
s∈Ck

∣∣fr(λl, al, bl, c; s + iτ )
∣∣

�
∞∑

n=0

1

(n + al)�(s−c)(n + bl)�(c)

∣∣∣∣1 −
(

n + bl

n + al

)c∣∣∣∣
∣∣∣∣1 − exp

{
−

(
n + al

r + al

)σ1l
}∣∣∣∣

� K

∞∑
n=0

1

(n + al)3/2

∣∣∣∣1 − exp

{
−

(
n + al

r + al

)σ1l
}∣∣∣∣ := Mr(σ1l ),

say. Therefore we obtain

lim
r→∞ lim sup

T →∞
1

T

T∫
0

sup
s∈Ck

∣∣fr(λl, al, bl, c; s + iτ )
∣∣dτ

� lim
r→∞ lim sup

T →∞
1

T

T∫
0

Mr(σ1l ) dτ = lim
r→∞Mr(σ1l ) = 0. � (4.3)

Proof of Proposition 4.1. We modify the proof of [6, Theorem 1]. The only point which is
different from the proof of [6, Theorem 1] is to use (4.1) instead of (4.2). Therefore by Lemma 4.2
we can prove Proposition 4.1. �
Proof of Theorem 1.5. Similarly to the argument of the first part of the proof of Theorem 1.3,
we have to check that the set of all convergent series

∞∑(
e2πiλ1nα1,n

(n + a1)s−c(n + b1)c
, . . . ,

e2πiλmnαm,n

(n + al)s−c(n + bm)c

)
, αn ∈ Πm, n ∈ N ∪ {0},
n=0
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is dense in Hm(D). Hence we will confirm the assumptions of Theorem 3.2. Let μl , 1 � l � m,
be complex measures on (C,B(C)) with compact supports contained in D such that

∞∑
n=0

∣∣∣∣∣
∫
C

m∑
l=1

e2πiλln

(n + al)s−c(n + bl)c
dμl

∣∣∣∣∣ < ∞.

By the same argument as in [5, (12)], we have

(n + al)
−s = n−s + Bn−1−σ |s|eB|s|

where B is a positive constant. Hence the above formula is equivalent to

∞∑
n=1

∣∣∣∣∣
∫
C

m∑
l=1

e2πiλln

ns
dμl

∣∣∣∣∣ < ∞.

Therefore we can easily confirm all assumptions by modifying the proof of Theorem 1.3. Hence
we obtain Theorem 1.5 by the same argument as in the proof of [5, Theorem 1]. �
5. Non-denseness lemma

In this section, we reconsider the proofs of Theorems 1.3 and 1.5, especially Remark 3.3. The
next theorem is a kind of counter-proposition for Lemma 2.5.

Theorem 5.1 (Non-denseness lemma). Let {xn} be a sequence in a Hilbert space Xm satisfying
the following condition:

(a) There exists a non-zero x ∈ Xm such that
∑∞

n=1 |〈xn, x〉| < ∞.

Then the set of all convergent series

∞∑
n=1

anxn, |an| = 1, n ∈ N,

is not dense in Xm.

Proof. Firstly, we consider the case of
∑∞

n=1 |〈xn, x〉| = 0. We take an x which satisfies this
condition. By the assumption, we have

∥∥∥∥∥x −
∞∑

anxn

∥∥∥∥∥
2

= ‖x‖2 +
∥∥∥∥∥

∞∑
anxn

∥∥∥∥∥
2

� ‖x‖2.
n=1 n=1
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Hence in this case, the set of all convergent series
∑∞

n=1 anxn is not dense in Xm. Next we
consider the case of 0 �= ∑∞

n=1 |〈xn, x〉| < ∞. We take an x which satisfies this condition and
choose bn ∈ C so that |bn| = 1 and

{
bn〈xn, x〉 = −|〈xn, x〉| if 〈xn, x〉 �= 0,

bn = 1 if 〈xn, x〉 = 0.

We can assume that |〈x1, x〉| �= 0 without loss of generality. Let M be a sufficiently large integer
which satisfies

∣∣∣∣∣2�
( ∞∑

n=M+1

an〈xn, x〉
)

−
∥∥∥∥∥

∞∑
n=M+1

anxn

∥∥∥∥∥
2∣∣∣∣∣ <

|〈x1, x〉|
2

.

By the trigonometric inequality, we have

∥∥∥∥∥2
M∑

n=1

bnxn −
∞∑

n=1

anxn

∥∥∥∥∥ =
∥∥∥∥∥

M∑
n=1

2bnxn − x + x −
∞∑

n=1

anxn

∥∥∥∥∥
�

∣∣∣∣∣
∥∥∥∥∥

M∑
n=1

(2bn − an)xn − x

∥∥∥∥∥ −
∥∥∥∥∥x −

∞∑
n=M+1

anxn

∥∥∥∥∥
∣∣∣∣∣ := |A − B|,

say. Then we obtain

A2 − B2 =
∥∥∥∥∥

M∑
n=1

(2bn − an)xn

∥∥∥∥∥
2

− 2�
(

M∑
n=1

(2bn − an)〈xn, x〉
)

+ 2�
( ∞∑

n=M+1

an〈xn, x〉
)

−
∥∥∥∥∥

∞∑
n=M+1

anxn

∥∥∥∥∥
2

.

By the definition of x and bn, we have

−�
(

M∑
n=1

(2bn − an)〈xn, x〉
)

�
M∑

n=1

∣∣〈xn, x〉∣∣ �
∣∣〈x1, x〉∣∣.

Therefore we have the inequality

∥∥∥∥∥2
M∑

n=1

bnxn −
∞∑

n=1

anxn

∥∥∥∥∥ � A − B >
|〈x1, x〉|

2(A + B)
.

Hence the set of all convergent series
∑∞

n=1 anxn is not dense in Xm. �
Lemma 5.2. If {xn} is not dense in Hm(D), then {xn} is not dense in Hm(D).
2
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Proof. We show the contraposition, that is, if {xn} is dense in Hm(D), then {xn} is dense also in
the Hardy space Hm

2 (D). By Lemma 2.7, we have

‖f − g‖2 =
m∑

l=1

∫
∂D

(fl − gl) dμ(fl−gl) � c2 sup
1�l�m

sup
s∈D

|fl − gl |2.

This implies the contraposition. �
Proposition 5.3. Suppose 0 < al < 1 are algebraically independent numbers and 0 < λl � 1 for
1 � l � m. If at least two of λl’s are equal, it holds that SPL0

�= Hm(D) (see Remark 3.3).

Proof. Similarly to the argument of the first part of the proof of Theorem 1.3, we have to check
that

∞∑
n=0

(
e2πiλ1nωn

(n + a1)s
, . . . ,

e2πiλmnωn

(n + am)s

)
, ωn ∈ γ, n ∈ N ∪ {0},

is not dense in Hm(D). First, we consider the case of m = 2, λ := λ1 = λ2. Let μ1 and μ2 be
complex measures on (C,B(C)) with compact supports contained in D such that

∞∑
n=0

∣∣∣∣∣
∫
C

2∑
l=1

e2πiλn

(n + al)s
dμl

∣∣∣∣∣ < ∞.

By the same argument as in [5, (12)], the above formula is equivalent to

∞∑
n=1

∣∣∣∣∣
∫
C

2∑
l=1

e2πiλn

ns
dμl

∣∣∣∣∣ < ∞. (5.1)

If 0 �= μ1 = −μ2, then we see that the left-hand side of (5.1) is equal to zero, hence the measures
satisfy condition (5.1). Applying Lemma 2.4 with x = xn = e2πiλnn−s and

f :xn �−→
∫
C

xn dμl,

we can rewrite (5.1) in terms of inner products. Because of Lemma 5.1, the set of all convergent
series

∑∞
n=0 f

n
(s,ωn) with ωn ∈ γ is not dense in the Hardy space H 2

2 (D). Therefore the set of

all convergent series is not dense in H 2(D) by Lemma 5.2. If m � 3, we can put λ := λ1 = λ2
without loss of generality. In this case, we take 0 �= μ1 = −μ2, 0 = μ3 = · · · = μm. �
6. Examples of non-existence of universality

In this section, we will show three examples which imply the non-existence of joint universal-
ity for Lerch zeta functions and generalized Lerch zeta functions. We remark that the parameters
a1, . . . , am of the next two examples are not algebraically independent.
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Proposition 6.1. If we put a1 = 1 and a2 = 1/2, then there exist an ε > 0 and analytic functions
fl(s) on Kl , for which there does not exist τ satisfying

sup
1�l�m

sup
s∈Kl

∣∣ζ(al, s + iτ ) − fl(s)
∣∣ � ε.

Proof. Let K := {s; |s − 3/4| � R}, 0 < R < 1/4. We put ε = 1/3, f1(s) ≡ 1 and f2(s) ≡ 8.
Suppose

sup
s∈K

∣∣ζ(s + iτ ) − 1
∣∣ <

1

3
. (6.1)

For every τ satisfying (6.1), by the well-known formula

ζ(1/2, s) = (
2s − 1

)
ζ(s), (6.2)

we have

sup
s∈K

∣∣ζ(1/2, s + iτ ) − 8
∣∣ = sup

s∈K

∣∣(2s+iτ − 1
)(

ζ(s + iτ ) − 1
) + 2s+iτ − 9

∣∣
� sup

s∈K

∣∣∣∣(2s+iτ − 1
)(

ζ(s + iτ ) − 1
)∣∣ − ∣∣2s+iτ − 9

∣∣∣∣
� sup

s∈K

|1 − 7| = 6. �
This proposition implies that the set of Hurwitz zeta functions does not necessarily have the

joint t-universality. Proposition 6.1 is a rather obvious example, but we can observe that the key
of the proof is the functional relation (6.2). By using another functional relation, we can show
the following result.

Proposition 6.2. Let a be a positive number and λ be a real number. If we put λn = λ + n/m,
an = ma for 0 � n � m − 1, and λm = mλ, am = a + j/m (0 � j � m − 1), then there exist an
ε > 0 and analytic functions fl(s) on Kl , for which there does not exist τ satisfying

sup
0�l�m

sup
s∈Kl

∣∣L(λl, al, s + iτ ) − fl(s)
∣∣� ε.

Proof. We define ω
j
m by

ω
j
m := exp(2πij/m), j,m ∈ N, 0 � j � m − 1.

By using the inversion formula [8, Lemma 2.1] (see also [1, Theorem 2.1])

L

(
mλ,a + j

m
, s

)
= ms−1e−2πiλj

m−1∑
n=0

ω
−jn
m L

(
λ + n

m
,ma, s

)
,

and modifying the proof of Proposition 6.1, we can show this proposition. �
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Remark 6.3. These propositions show that the existence of functional relations implies the non-
existence of joint t-universality. Therefore we can see that joint t-universality is essentially more
difficult than single t-universality (for example [2, p. 111, Theorem 1.1]) because of its con-
nection with functional relations. These facts should be compared with Theorem 3.4 concerning
functional independence, deduced by joint t-universality Theorem 1.3.

In the case of a1 = · · · = am, we have the following non-existence of joint t-universality for
L(λl, a, b, c; s).

Proposition 6.4. If at least two of λl’s are equal, then there exist an ε > 0 and analytic functions
fl(s) on Kl , for which there does not exist τ satisfying

sup
1�l�m

sup
s∈Kl

∣∣L(λl, a, bl, c; s + iτ ) − fl(s)
∣∣ � ε. (6.3)

Proof. We assume m = 2 and λ := λ1 = λ2 without loss of generality. For some positive con-
stants C1 and C2, we have

∣∣L(λ, a, b1, c; s + iτ ) − L(λ, a, b2, c; s + iτ )
∣∣

=
∣∣∣∣∣

∞∑
n=0

e2πiλn

(n + a)s+iτ−c(n + b1)c

(
1 − (n + b1)

c

(n + b2)c

)∣∣∣∣∣
� C1

∞∑
n=0

1

n(n + a)�(s)
� C2. (6.4)

Let K1 = K2 = K := {s: |s − 3/4| � 1/5}. We put ε = 1/3, f1(s) ≡ 1 and f1(s) ≡ C2 + 1.
Suppose

sup
s∈K

∣∣L(λl, a, b1, c; s + iτ ) − 1
∣∣ � 1/3.

For every τ satisfying the above formula, we have

sup
s∈K

∣∣L(λl, a1, b2, c; s + iτ ) − (C2 + 1)
∣∣ > 1/3.

Hence we have (6.3) in this case. �
In the case when a is transcendental, we obtain another proof of Proposition 6.4 by using The-

orem 5.1. Firstly we show the limit theorem for L(λ, a, b, c; s). Denote on (Hm(D),B(Hm(D)))

the probability measure

P T
L0

(A) := ντ
T

((
L(λ1, a, b1, c; s + iτ ), . . . ,L(λm,a, bm, c; s + iτ )

) ∈ A
)
, A ∈ B

(
Hm(D)

)
.

We define the Hm(D)-valued random element L0(s,ω) by

L0(s,ω) := (
L(λ1, a, b1, c; s,ω1), . . . ,L(λm,a, bm, c; s,ωm)

)
,
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where

L0(λl, a, bl, c; s,ωl) :=
∞∑

n=0

e2πiλlnωl(n)

(n + a)s−c(n + bl)c
, s ∈ D, ωl ∈ Ω, 1 � l � m.

Let PL0
stand for the distribution of the random element L0(s,ω).

Proposition 6.5. Suppose 0 < a < 1 is a transcendental number and 0 < λl � 1 for 1 � l � m.
The probability measure P T

L0
converges weakly to PL0

as T → ∞.

Proof. We can prove this theorem by modifying [3, Theorem 3] and using Lemma 4.2. �
Similarly to the argument of Proposition 5.3, we can check

∞∑
n=0

(
e2πiλ1nαn

(n + a)s−c(n + b1)c
, . . . ,

e2πiλmnαn

(n + a)s−c(n + bm)c

)
, αn ∈ γ, n ∈ N ∪ {0},

is not dense in Hm(D), since

∞∑
n=0

∣∣∣∣∣
∫
C

2∑
l=1

e2πiλn

(n + a)s−c(n + bl)c
dμl

∣∣∣∣∣ < ∞

is equivalent to (5.1).
Suppose that functions Fl(s) for 1 � l � m can be continued analytically to the whole D.

Denote by Vk the set of g ∈ Hm(D) such that

sup
1�l�m

sup
s∈Kl

∣∣gl(s) − Fl(s)
∣∣ < (k + 1)ε, k = 1,2.

We recall that the support SP consists of all f ∈ Hm(D) such that for every neighborhood V of
f the inequality P(V ) > 0 is satisfied. Since the support of the random element L0(s,ω) is not
whole Hm(D), there exist a set of analytic functions fl(s) and its neighborhood V2 satisfying
PL0

(V2) = 0. Since V1 ⊂ V2, we have PL0
(V1) = 0. Let Pn and P be probability measures

defined on (S,B(S)). It is well known that Pn converges weakly to P as n → ∞ if and only if

lim sup
n→∞

Pn(C) � P(C)

for all closed sets C. The set of V1 is closed, hence by Lemma 2.1, we obtain

lim sup
T →∞

ντ
T

{
sup

1�l�m

sup
s∈Kl

∣∣L(λl, a, bl, c; s + iτ ) − fl(s)
∣∣ � 2ε

}
� PL0

(V1) = 0.

This formula yields the assertion of non-existence of joint t-universality.



T. Nakamura / Journal of Number Theory 125 (2007) 424–441 441
Acknowledgments

I greatly thank Professors Kohji Matsumoto and Hidehiko Mishou for very useful advice.

References

[1] Ching-Hua Chang, Chung-Wei Ha, A multiplication theorem for the Lerch zeta function and explicit representations
of the Bernoulli and Euler polynomials, J. Math. Anal. Appl. 315 (2) (2006) 758–767.
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