There was a statistically significant difference when comparing EMP levels fasting, at one hour (p = 0.0002) and three hours (p = 0.0001) after the high fat meal. When low fat meal was given, there was no statistical difference when comparing EMP levels fasting and one hour and three hours after low meal.

CONCLUSION: EMP are shed in the circulation and may represent an early marker of endothelial injury. There is a direct correlation between cholesterol and EMP levels in healthy volunteers. A single high fat meal may lead to a detectable elevation of EMP in the circulation even in subjects with normal fasting baseline total cholesterol.

1159-192

The Influence of Simvastatin on the Angiotensin AT1 Receptor Density, Oxidative Stress, and Endothelial Function in Patients With Coronary Disease

Marek Kiliszek, Maciej Maczewski, Grzegorz Szczyński, Monika Duda, Andrzej Beresewicz, Grzegorz Opolski, Medical University of Warsaw, Warsaw, Poland, Medical Centre of Postgraduate Education, Warsaw, Poland

Background: On the base of experimental studies we formulated the hypothesis on the development of the endothelial dysfunction: LDL cholesterol \rightarrow angiotensin AT1 receptors ($A_T R\rightarrow$ oxidative stress \rightarrow endothelial dysfunction. We tested this hypothesis in patients (pts) with stable angina. We tested also whether statins: (i) improves endothelial function by reducing oxidative stress and (ii) that this effect is due to the reduction in angiotensin $A_T R$ density.

Methods: Lipid profile, platelet $A_T R$ receptor density, serum F2-isoprostanes (marker of oxidative stress) and nitrate $+$ nitrite concentration, and brachial artery flow mediated dilation (FMD, index of endothelial function) were assessed in 20 pts (LDL cholesterol 75-230 mg%) with proven coronary heart disease, which were not on hypolipemic treatment. These measurements were performed at baseline and after treatment with simvas- tatin 40mg/d for 12 weeks.

Results: At baseline there was a significant linear correlation between (i) LDL cholesterol concentration and $A_T R$ density ($r=0.56; p<0.05$) and (ii) F_2-isoprostanes and FMD ($r=-0.66; p<0.05$). Simvastatin treatment caused a significant reduction in LDL cholesterol (152±39 vs. 89±27mg/dl; p=0.0001), $A_T R$ density (14.42±5.42 vs. 7.58±6.88 receptors/platelet; p<0.0001), F_2-isoprostanes (39.85±14.03 vs. 27.90±10.65pg/ml; p=0.017), a significant improvement in FMD (8.85±4.80% vs. 11.04±3.85%; p<0.001), and significant increase in nitrate $+$ nitrite concentration (17.23±3.03 vs. 20.94±7.93µmol/l; p=0.038). Among these simvastatin-induced effects, only changes in $A_T R$ receptors and F_2-isoprostanes concentrations showed strong linear correlation ($r=0.65; p<0.05$).

Conclusions: For the first time we have shown in one study that statins causes, in addition to LDL cholesterol reduction and endothelial function improvement, reduction in $A_T R$ density and oxidative stress. Baseline results suggest relationship between LDL cholesterol, $A_T R$ density, oxidative stress and endothelial dysfunction. Our results suggest that simvastatin-induced reduction in oxidative stress is due to reduction in $A_T R$ density.

1159-193

Simvastatin Combined With Ramipril Improved Endothelium-Dependent Vasodilation and Fibrinolysis Potential and Reduced Oxidative Stress and Inflammation Markers in Hypercholesterolemic Patients

Kwang K. Koh, Seung H. Han, Jeong Y. Ahn, Woong C. Kang, Wook-Jin Chung, Tae H. Ahn, Eak K. Shin, Gachon Medical School, Incheon, South Korea

Background: Because the mechanisms of the biological effects of statin and antitensin converting enzyme inhibitor therapies differ, we studied the vascular responses to these therapies in hypercholesterolemic patients.

Methods: We administered simvastatin 20 mg and placebo or ramipril 10 mg daily during 2 months with washout 2 months to 50 hypercholesterolemic patients. This study was randomized, double-blind, placebo-controlled, crossover in design. $\ast P<0.05; \ast \ast P<0.01; \ast \ast \ast P<0.001$ vs Baseline. Data= mean±SEM.

Results: Simvastatin alone did not reduce blood pressure, however, simvastatin combined with ramipril significantly reduced blood pressure after 2 months administration compared with baseline. Compared with each baseline, simvastatin alone or combined with ramipril significantly changed lipoproteins, and improved the percent flow-mediated dilator response to hyperemia by 30.5% and by 53.6%, respectively (both P<0.001) and reduced plasma levels of malondialdehyde (MDA) levels by 4×7% (P=0.026) and by 25×4% (P=0.001), respectively and MCP-1 levels by 3×3% and by 12×2%, respectively (P=0.049 and P=0.001, respectively), and C-reactive protein levels by 4×14% and by 26×5%, respectively (P=0.036 and P=0.001, respectively), and PAI-1 antigen levels by 7×7% and by 17×5%, respectively (P=0.028 and P=0.001, respectively). However, simvastatin combined with ramipril significantly changed more percent flow-mediated dilator response to hyperemia and plasma levels of MDA, MCP-1, CRP, and PAI-1 antigen than simvastatin alone independent of lowering blood pressure.

Conclusions: Compared with simvastatin alone, simvastatin combined with ramipril significantly improved endothelium-dependent vasodilation and fibrinolysis potential and reduced plasma levels of oxidative stress and inflammation markers in hypercholesterolemic patients.

Baseline1 Statin+Placebo

- Apo B (mg/dl) 131±4 99±3*** 124±5 92±3***
- FMD (%) 4.8±1.5 8.2±0.29*** 4.96±0.25 6.58±0.25***
- Nitrate (umol): 92±7 83±6 94±7 µmol**

Baseline2 Statin+Ramilpr

- Apo B (mg/dl) 131±4 99±3*** 124±5 92±3***
- FMD (%) 4.8±1.5 8.2±0.29*** 4.96±0.25 6.58±0.25***
- Nitrate (umol): 92±7 83±6 94±7 µmol**

MDA (um) 1.36±0.01 1.17±0.07* 1.45±0.09 1.01±0.07*

MCP-1 (gg/ml) 194±8 178±5* 202±8 174±6*

PAI-1 (gg/ml) 64±3 63±4 68±5 53±3*