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Abstract

The donor binding energy of a hydrogenic donor impurity located in the center of a GaAs-AlxGa1-xAs circular quantum dot is 
calculated by solving analytically the Schrödinger equation. The electron wave functions and the impurity energy levels are 
determined in the standard manner through the solution of the transcendental equations obtained from the boundary conditions 
imposed at the interfaces of the quantum disk. The roots of the transcendental equations were numerically found for quantum 
disks with finite height of the confinement potential.
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1. Introduction

Quasi-zero dimensional electron systems (QZD) occurring in semiconductor quantum dots have attracted much 
attention in the last few years, due to their potential applications in the electronic and optoelectronic devices 
fabrication. In these QZD electron systems the presence of donor impurities plays an important role, because the 
effective strength of the Coulomb interaction is greatly enhanced due to the electron confinement. Also the impurity 
binding energies show a strong dependence on the geometry and dimensionality of the system.

In the present work we report a theoretical calculation of the electron energy levels of a shallow impurity located 
at the center of a GaAs-AlGaAs circular quantum dot called a quantum disk (QD). The electron wave functions are 
obtained analytically by solving the Schrödinger equation and the impurity energy levels are determined through the 
solution of the transcendental equation obtained from the boundary condition imposed in the interfaces of the QD. 
This transcendental equation includes the first and second solutions of the confluent hypergeometric functions 
(CHF) and their first derivatives. Thus for one to find the roots of this equation is a complicated task due to the 
complex behavior of the CHF mainly in the positive energy region (QD with small radius) where the arguments 
become imaginary. Frequently such numerical difficulties to find the transcendental equation roots lead authors to 
calculate the impurity energy levels through variational methods [1-5]. Here we solve the transcendental equation 
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and we calculate the impurity energies of the ground state and first excited state and the electron binding energies as 
a function of the QD radius, for different confinement potential barriers. We also show how to calculate the same 
energies for spherical quantum dots (SQD) from the QD equations.

2. Theory

Let us consider an impurity donor located in the center of a QD, with radius R, composed of GaAs surrounded by 
AlxGa1-xAs, where x is the aluminum concentration in the barrier material. Within the framework of the effective 
mass approximation and in polar coordinate system the dimensionless Schrödinger equation can be written as,
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The electron effective mass depends on the electron position and this fact is taken into account in equation (1) by 
the (r) step function, which is equal to the unity for r<R and assumes the value = m1 /m2 for r>R, where m1 and 
m2 are the electron conduction band effective mass, in GaAs and AlGaAs respectively. The electron-confinement 
potential V(r) is assumed as zero for r<R and oVrV )( for r>R, where V0 = 0.6[1047x + 470 x2] meV [6].

The wave function for the system given by equation (1) can be written as imerr )(),( , where 

...1,0m . Then the electron wave function for the bound states with negative energies values (E < 0) is given by,
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where A and B are the normalization constants, M(a,b;x) and U(a,b;x) are the first and second solutions of the CHF 
respectively.  The parameters of the CHF are given by: a=(|m|+0.5- ), a1=(|m|+0.5- 1), b=(2|m|+1). The 
parameters and 1 are calculated by solving the transcendental equation obtained from the wave function 
continuity condition and current conservation at the QD interface (r = R) given by, 
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and they are related by,
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where M’ and U’ denote the first derivative of M and U respectively. 

The electron wave function in the region of positive energy values (E > 0) that occurs for QD with small radius, 
can be obtained simply by the substitution of i and –i in equation (3). The transcendental equations for
negative and positive energy values are similar but finding the solutions in the last case is more complicated due to 
the complex arguments of the CHF. In order to calculate the binding energy we also have solved the Schrödinger 
equation without the presence of the donor impurity in the QD.
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The solutions of the problem of a donor impurity placed in the center of a spherical quantum dot (SQD) can be 
obtained from that for QD equations simply making in the previous equations the following changes in indices:
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where L=0,1,2… is an integer.

3. Results and Discussion

Our numerical calculations for the energies are for a donor impurity located in the center of a QD compound of 
GaAs surrounded by AlxGa1-xAs where x is the aluminum concentration, with x=0.1 and x=0.3 corresponding to 
confining potential barrier heights of V0 =66 meV and V0 =214 meV, respectively. Here we consider the values for 
the electron conduction band mass as m1=0.067m0 for the GaAs and m2=(0.067+0.083x)m0 for the AlGaAs, where 
m0 is the free electron mass. Other GaAs physical parameters used in the calculations were the effective Bohr radius, 
a0 = 98.69 Å, and the effective Rydberg, Ry

* = 5.85 meV.
The results for the ground state energy (m=0) for an electron confined in a QD with (dotted line) and without 

(dashed line) the presence of the center-donor impurity as a function of the QD radius for V0 =214 meV and V0 =66 
meV are plotted in Fig.1 and Fig.2 respectively. As one can note, the energy increases with decreasing disk radius 
for both QD. In these figures the impurity energy (dotted line) for QD increases from -4 Ry

*, the value of the ground 
state energy for a two-dimensional hydrogen atom [7]. The energy value is zero at the points Ro = 51 Å (Fig.1) and 
Ro = 38 Å (Fig.2) and become positive for smaller radius of the QD.

Figure 1: Ground state binding energy (solid line), impurity energy (dotted line) and electron energy (dashed line) as a function of the radius for a 
QD for V0 =214 meV.

As one can see from these figures the qualitative behavior of the binding energy as a function of the QD radius is 
the same as observed in quantum wells [8] and quantum wires [9,10]: the binding energy increases as the QD radius 
decreases, reaches a maximum value and finally decreases for smaller QD radius.  In Fig.1 and Fig. 2 the binding 
energy peaks near 15Ry* and 9Ry* respectively. In the limit of the QD radius going to zero, the binding energy 
goes to the value 5,48 Ry*, the ground state energy for a two-dimensional hydrogen atom placed in the barrier 
material (AlGaAs) [7]. As one can see when the QD radius decreases, smaller the potential confinement barrier 
height faster is the convergence of the binding energy to this value.
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Figure 2: Ground state binding energy (solid line), impurity energy (dotted line) and electron energy (dashed line) as a function of the radius for a 
QD for V0 =66 meV.

4. Conclusions

We have studied the ground-state binding energies of a donor impurity placed in the center of a GaAs/AlGaAs
quantum disk as a function of the QD radius and the confinement potential barrier height. The bound electron wave 
functions are obtained analytically by solving the Schrödinger equation and the impurity energy levels are 
determined through the solution of the transcendental equation obtained from the boundary condition imposed at the 
interfaces of the QD. The limit for large and small values of the quantum disk dimensionality is satisfied by the 
obtained energy spectra.  Our results show that the binding energy increases with decreasing QD radius and 
increasing confining potential barrier height. Unfortunately for the best of our knowledge there is no experimental 
data available to the problem of a donor impurity in a circular (cylindrical) quantum dot so we can compare with our 
theoretical results. However, when compared with the variational results of [1] our analytical results present a 
significant difference of 10%.
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