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Stéphane Galland∗, Nicolas Gaud, Jonathan Demange, Abderrafiaa Koukam

Multiagent Group, IRTES-SET, Université de Technologie de Belfort-Montbéliard, France - http: // www. multiagent. fr

Abstract

Multiagent-based simulations enable us to validate different use-case scenarios in a lot of application domains. The idea is to

develop a realistic virtual environment to test particular domain-specific procedures. This paper presents a multilevel model of a

physic environment for the simulation of crowd in a virtual 3D building. The major contributions of this paper is the agentification

of the model to support multilevel simulation of the environment. Finally, the application of the model inside an airport terminal is

presented.
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1. Introduction

The simulation of complex systems is currently a major issue in many scientific disciplines such as neuroscience,

biology, ecology, economy and urban management and sustainability. The simulation is an appropriate approach to

study systems that cannot be directly observed or measured. The objective of the simulation is to facilitate the un-

derstanding of the dynamics of a system and try to predict its future evolution.Urban systems are typical examples of

complex systems1,2. Structurally, an urban system can be hierarchically decomposed in streets, buildings, neighbor-

hoods, districts, etc.3,4 The second point of view is dedicated to the individual and collective activities, and is more

related to the analysis of the traffic and the mobilities of the crowd5,6. The multiagent-based simulation (MABS) is

well suited to the simulation of urban dynamics7. Indeed, it is more flexible than macroscopic approaches, which are

usually based on differential equations to simulate spatial and scalable phenomena. Moreover, multiagent systems are

able to simulate the behaviors of individuals and groups of individuals in place of statistic systems, usually used in

macroscopic simulations. Finally, multiagent systems could be precisely situated using Geographic Information Sys-

tems (GIS) to obtain virtual models close to the reality. In this context, multiagent-based simulation of urban systems

must support both the simulation of individual behaviors and the management of the environmental dynamics. The
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JaSim simulation model8 was proposed to support urban system simulation in 3D virtual environment. Two problems

may occur during the execution the environment model: (i) the computational cost may be huge, and incompati-

ble with efficient response constraints; and (ii) many times the executed algorithm is too complex and too expensive

according to the topology of the crowd and obstacles; simpler and faster algorithms could be used in place with the

same answer quality. Many works were proposed in literature to support different levels-of-details in the simulation,

such as9. However, they mainly focus on the applicative agents and not on the environment itself. The problem be-

comes: what is the best model to support the physic environment and its dynamics? In this paper, an organizational
and agent-oriented model of the environment is defined. Note that in the rest of this paper, the term “agent” refers to

the agents, which are supporting the environment model; in opposition to the “application agents,” which represent

the pedestrians. Moreover, a specific type of agent is considerer: the holon10, an agent composed of agents. The
agent-oriented model of the environment permits to adapt the overall environment’s behavior dynamically during its
execution. The use of agents allows to evaluate and to predict the computational costs of the algorithms, and to select
the one, which is fitting the constraints in time and in quality. The agent-oriented model is defined according to the

Aspecs methodology11, which focuses on the organizational and the agent points-of-view. This methodology and the

related concepts are not the purpose of this paper and may be found in the Aspecs website1.

This paper is structured as follows. Section 2 describes the general principles of the agentification of the environ-

ment. Section 3 details the dynamics of the model. Section 4 exposes simulation results and analysis. Finally, the

paper finishes with a conclusion and a short description of future works.

2. Organizational Model of the Environment

Works on environments are numerous and mainly used for performances. They require highly specialized calcula-

tions and therefore, a significant number of resources. As shown in12, the environment is often distributed according

to places. A place is a semi-closed spatial area bounded by static objects (usually walls). Each place may have con-

nections called portals, with its neighbor places. They are used to ease the interaction between two adjacent spaces.

They also permit to use structural environment models such as Potentially Visible Set12 for improving the computa-

tion of the perceptions of the synthetic individuals inside. Places are basically defined a priori by the designer of the

simulation. They generally correspond to the structural decomposition of the environment13,14,15. Entities are objects

inside the environment, and are located in a single place through a dedicated data-structure (usually a spatial tree or a

spatial grid).

To simulate large and complex worlds, it is important to support unbalanced places in terms of entities they are

containing. Indeed, the difference of population coverage by the places may cause fewer global performances to the

simulator. To overcome this problem, places are decomposed in turn into a collection of dynamically built zones. In

contrast to the statically defined decomposition, these zones are built during the simulation process.

Because organizational modelling is well-known as a mean to break-down the design complexity of a system,

we propose to model the environment as a collection of interactions. We use the organizational metamodel crio,

proposed by11. On Figure 1(a), the Multilevel Simulation organization defines the overall simulation system.

Two roles are defined inside. The Pedestrian role is played by the agents who are participating in the simulation,

i.e. the pedestrians. The Environment role is played by any agent or group of agents responsible for the overall

behavior of the situated environment. Interactions between them are based on the influence-reaction model16; and on

the computation of the pedestrian’s perceptions8. These two models give the ability to each agent to have joint actions

in the environment, and extract data from the environment. Each player of the Environment role must have the

capacity11 to compute the perceptions for each pedestrian. The Environment’s players must also have the capacity

to gather influences — whises of actions — from each pedestrian.

The Topological decomposition organization focuses on the structure of the situated environment itself, as

proposed by15 but with an organizational model. The organization provides the capacities required by the Environment

role in the previous organization. The Topological decomposition organization can contribute to the behavior of

this higher-level role. The Topological decomposition organization is composed of interconnected places. Each

1 http://www.aspecs.org
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Figure 1. Example of agent society, which is managing the environment.

of them is responsible for the environment’s missions in the considered space. It also manages the objects inside the

zone. To realize its behavior, a Place role must interact with the role Urban Database to obtain and to change the

information related to the objects inside the environment.

The role Enclosing zone supports the multilevel modeling of the environment (see below). The organization

Topological decomposition represents a level within the hierarchy of composition of the environment. It is

necessary that each level in this hierarchy has access to information dedicated to the multilevel dynamics. As a

boundary role, the role Enclosing zone is responsible of providing to a place the state of the enclosing zone, and

the indicators and the constraints given by this higher level. All these information will be described in more detail

later in this paper.

The organization Environment Mission, inspired by17, defines all the roles required to satisfy all the missions

of the environment for a specific area. An instance of this organization is integrated as a group in all the agents, which

are playing the role Place, which is described in the previous paragraph. This link between the two organizations is

represented by the relationship contribute to in Figure 1(a).

The next step is to identify the agents and their behaviors in order to obtain the society agents that exhibit the

expecting behavior of the organizations, and roles described above.

Figure 1(b) illustrates an instance of a society of agents, who may execute the environment behavior together. The

key point is to determine for each role if a standalone agent or a group of agents is playing it. We propose to use the

concept of holon: agent composed of holons18. In the rest of this paper, the terms agent and holons represent the same

concept. The hierarchy of holon permits to supprot the hierarchical nature of the environment, which was modelled

with the organizations. When one agent is managing an entire place, it is playing the role Place in the Environment

Model. When a place needs to be split and managed by a group of agents, one of them must play the role Place in

the Topological decomposition, and Mission scheduler in the Environment Mission organizations. The
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decision to decompose or not a place is the responsibility to the agent playing the Place role itself. It depends on

several indicators from two sources: (i) the individual indicators, which are specific to an agent playing the role

Place; and (ii) the indicators shared in the context of a group of agents, which is an instance of the organization

Topological decomposition. Each agent playing the role Place can access to these indicators by interacting

with the role Enclosing zone. The indicators are detailed in the following section.

3. Indicators of the Multilevel Simulation

At every instant of the simulation, the environment agents evaluate indicators to determine if they should change

of state: (i) being a manager of a decomposed area, or (ii) the manager of an atomic area.

In case (i), the agent can be decomposed if there are enough resources to the execution of its sub-agents. Equation 1

describes the condition triggering the change of state of the agent. A super-agent must decompose when it has

sufficient resources at its disposal, or the evaluation of the “almost-same” behaviors at the levels n and n + 1 indicates

that the super-agent does not approximate correctly any more the behaviors of its sub-agents. This evaluation is based

on the computation of energies associated to the behaviors. If the difference between these two energies is greater

than the threshold ε, then the upper behavior does not approximate the lower behavior.

[(
∃a ∈ Dz,

∣∣∣Egz − Ega

∣∣∣ > ε
)
∨

(
∀R,Rz ≥

∑
p∈Dz

gR(p) + kz

)]
∧

(
maxz < i ∨minz > iz

) ∧ (
Ez � ∅)

(1)

Dz and Ez are the sets of sub-areas of and objects in the zone z, respectively. Egα is the energy associated to the

zone α. The expression of this energy depends on the application. An example is given in Section 4. gR(z) is the

estimation of the amount of ressources R that are required to execute the environment behavior for the zone z. kz is

the computation time to take the splitting/merging decision.

In case (i), the agent is decomposed into a set of sub-agents managing the sub-areas of z, the area associated with

the super-agent. This determines whether to retain its sub-agents or destroy them. This last case corresponds to a

change of the state of the super-agent. A super-agent can destroy its members when it does not have enough resources

at its disposal to carry out the simulation and the evaluation of the consistency between the simulations at the levels n
and n + 1.

(
∀a ∈ Dz,

∣∣∣Egz − Ega

∣∣∣ ≤ ε
)
∧

(
∀R,Rz <

∑
p∈Dz

gR(p) + kz

)
∧min z < i (2)

The Equations 1 and 2 are based on the following three basis indicators: (i) The mass of a zone Mz indicates the

importance of an area z of the environment for the simulation. This value depends on the scenario. For example, it

may be proportional to the density of pedestrians in the area, or depends upon the presence of an immersed human

user in this area. (ii) The structural depth describes the minimum or the maximum depth, minz and maxz, of the

decomposition of a zone. Thus, it is possible for a role Place to restrict the depth of its topological decomposition.

(iii) The resource constraint Rz describes the limits of the available resources for a place z to achieve its simulation.

This constraint allows to take into account low-level information, close the operating system, such as the computation

time. It is possible to impose a time constraint for approaching a real-time execution. A resource constraint can also

describe the limits for any type of low-level resource (memory, network bandwidth. . . ) The value of Rz depends on

the mass of the zone: Rz =
Ru.Mz∑
n∈u Mn

, where u is the enclosing area of z, and n is a subarea of u (including z).

According to19, the execution mechanism of the hierarchy follows a broad-first iteration over the agents. It means

that the parent agents are executed prior to the children. According to the two cases above, the execution of the

children is launched only in case (i).
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Figure 2. Screenshot of the airport simulation
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Figure 3. Evaluation of the Average Energy

4. Experiments

This section describes several experiments with the agent-based environment model on the simulation of an airport

halls (illustrated by Figure 2) done on the Janus platform2, with the 3D environment model JaSim. The airport terminal

is composed of two halls, which are separated by gates. Each of these gates is a check point between the public area

and the boarding area.

The behavior of the agents is decomposed on three majors activities: (i) going to check-in desk, 2/3 of the

passengers need to check in their baggages, and 1/3 have only hand-baggages; (ii) passing the check points; and

(iii) boarding. Figure 3 shows the evaluation of the energy according to different level of available computational

resources. When this resource critera is at 100%, it means that the computer has enough resources to run the simulation

at the finest level. When the resource is down at 60%, it means that only 60% percent of the micro-simulation may

be run at the finest level. As explained in the previous section, the energy evaluation depends on the application.

Equation 3 details a simple evaluation of this energy for the airport application. Intuitively, this energy assesses the

quality of generated perceptions by the environment: more objects are not included in the perception, compared with

the more precised possible perception, less is the quality of the perception. p� is the set of perceived objects that are

found when it is computed at the lowest level. p (resp. p⊕) represents the objects that are lost (resp. added) at a

higher level in the holarchy. (αpo, βpo) ∈ [0; 1]2 are calibration variables (usually, αpo = 1, βpo =
1
|E| , |E|: total number

of entities). They specify the contribution of the missed and added perceptions to the energy of the area. When value

of αpo tends to 1, the lost of perceived objects at higher level tends to be forbidden (similar for βpo but for object

discovery).

Egα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αpo|p| + βpo|p⊕|
|p�| if p� � ∅

αpo|p| + βpo|p⊕| else

(3)

The tests are performed with a set of 2,000 entities in the entry hall and 1,000 entities in the boarding area. Four

check points are assumed to be available. The average computation time for one simulation step of the flat model8,

without holarchy, at the highest level of detail is 25.9 seconds, the equivalent holonic model (proposed in this paper)

takes 41.5 seconds with a single place for the entire area, and 8.1 seconds with two places. The better performances

of the agent-oriented approach are mainly due to a better balancing of the nodes of the two spatial trees, one for each

place, than the balancing of the single spatial tree of the two first models.

2 http://www.janus-project.org
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5. Conclusion

Multiagent-based simulations enable us to validate different use-case scenarios in a lot of application domains. The

idea is to develop a realistic virtual environment to test particular domain-specific procedures.

This paper presents an agent-oriented and multilevel model of a situated environment for the simulation of a crowd

in a virtual 3D building. The major contributions in this paper are, in one hand, an accurate and efficient model

of an environment, and on the other hand, the agentification of this model to support multilevel simulation of the

environment. The model is successfully applied to the simulation of two airport halls. These experiments permits

to evaluate the impact of the multilevel simulation on the simulation results, and the gain in terms of computational

costs.

The energy formula presented within this paper may be generalized to become less application-dependent. In

this paper, we propose to use energy-based indicators. Other types of indicators may be used in place to obtain

accurate evaluations. Finally, the proposed model may be applied on large-scale systems to evaluate the approximation

introduced by our multilevel model.

References

1. N. Farenc, R. Boulic, D. Thalmann, An informed environment dedicated to the simulation of virtual humans in urban context, in: Proceedings

of EUROGRAPHICS 99, 1999, pp. 309–318.

2. G. Thomas, S. Donikian, Virtual humans animation in informed urban environments, in: CA ’00: Proceedings of the Computer Animation,

IEEE Computer Society, Washington, DC, USA, 2000, p. 112.
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