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SUMMARY

Pluripotent stem cell lines can be derived from blasto-
cyst embryos, which yield embryonic stem cell lines
(ES cells), as well as the postimplantation epiblast,
which gives rise to epiblast stem cell lines (EpiSCs).
Remarkably, ES cells and EpiSCs display profound
differences in the combination of growth factors
that maintain their pluripotent state. Molecular and
functional differences between these two stem cell
types demonstrate that the tissue of origin and/or
the growth factor milieu may be important determi-
nants of the stem cell identity. We explored how de-
velopmental stage of the tissue of origin and culture
growth factor conditions affect the stem cell pluripo-
tent state. Our findings indicate that novel stem cell
lines, with unique functional and molecular proper-
ties, can be generated from murine blastocyst
embryos. We demonstrate that the culture growth
factor environment and cell-cell interaction play a
critical role in defining several unique and stable
stem cell ground states.

INTRODUCTION

Following fertilization, the totipotent zygote undergoes rapid

cleavage divisions to form a preimplantation blastocyst embryo,

a hollow sphere in which two different cell types can be identi-

fied. An outer layer of trophectoderm cells encloses a small

group of pluripotent cells known as the inner cell mass (ICM),

from which the embryo proper will develop. At implantation,

the ICM forms the extraembryonic endoderm and the epiblast,

consisting of pluripotent cells that give rise to all embryonic
germ layers. It was the pioneering work of Martin and Evans

that demonstrated that cells in the ICM can be propagated indef-

initely in vitro in a stable pluripotent state as embryonic stem (ES)

cells, while maintaining the ability to generate all tissues of the

adult body (Evans and Kaufman, 1981; Martin, 1981; Martin

and Evans, 1975). Like their murine counterparts, human ES cells

can be propagated indefinitely in vitro and demonstrate the abil-

ity to generate derivatives of all three germ layers (Thomson

et al., 1998). Human ES cells were long thought to be equivalent

to murine ES (mES) cells, despite clear morphological differ-

ences and different growth factor requirements between these

two ES cell types.

The recent derivation of epiblast stem cells (EpiSCs) from

postimplantation epiblasts provides a new perspective on the

nature of human ES cells (Brons et al., 2007; Tesar et al.,

2007). At the molecular level EpiSCs are much more similar to

human ES cells than mES cells. EpiSCs display a flattened

two-dimensional (2D) colony morphology, which is also charac-

teristic for human ES cells, and are maintained under similar

growth factor conditions. The close match between EpiSCs

and human ES cells suggests a functional similarity between

these cells. EpiSCs display many characteristic hallmarks of plu-

ripotent stem cells such as the expression of Oct4, Sox2, and

Nanog and the ability to generate derivatives of all three germ

layers during both in vitro differentiation and in vivo teratoma

formation. But interestingly, EpiSCs fail to contribute to chimera

formation when injected into recipient blastocysts.

The above comparisons of mES cells, human ES cells, and

EpiSCs illustrate that stem cell pluripotency is not a fixed ground

state but is strongly influenced by developmental and environ-

mental context. Distinct pluripotent stem cell lines with unique

functional characteristics can be derived from different parts of

the embryo and under different growth factor conditions. For

example, the functional differences in developmental potential

between mES cells and EpiSCs may reflect the tissue of origin
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from which the stem cell line is initially derived, inner cell mass

versus epiblast, or they may be a consequence of their different

culture conditions. After all, mES cells require a combination of

Leukemia Inhibitory Factor (LIF) and Bone Morphogenetic

Protein 4 (BMP4) to maintain their undifferentiated state (Ying

et al., 2003), while the factors that support murine EpiSC or hu-

man ES cell self-renewal are a combination of bFGF, ActivinA,

or TGFb and activation of the Wnt signaling pathway (Brons

et al., 2007; Carpenter et al., 2004; Denning et al., 2006; Mallon

et al., 2006; Rosler et al., 2004; Tesar et al., 2007; Xu et al., 2005).

To dissect the effect of the growth factor milieu and the devel-

opmental age of the tissue of origin on the stem cell pluripotent

state, we derived novel stem cell lines from murine blastocyst

embryos in culture conditions previously applied to derivation

of EpiSCs from epiblast stage embryos. We designated these

cells FAB-SCs for bFGF, Activin, and BIO-derived stem cells.

We demonstrate that FAB-SCs are molecularly and functionally

distinct from both ES cells and EpiSCs. FAB-SCs express com-

mon molecular markers of stem cell pluripotency, Oct4, Nanog,

and Sox2, but unexpectedly, the cells fail to pass hallmark tests

of pluripotent differentiation such as in vitro embryoid body

formation, teratoma formation, or contribution to embryonic

development upon blastocyst transplantation. However, brief

(transient) stimulation of FAB-SCs with LIF and BMP4 induces

the potential to generate teratomas and give germline contribu-

tion in chimeric mice. Our study provides new insights into the

role of growth factor environment in reprogramming of the

stem cell pluripotent state and identifies an unexpected role for

cell-cell adhesion in this process.

RESULTS

Derivation and Characterization of Blastocyst
Stem Cells
To analyze the role of the developmental stage of the embryo on

the developmental potential of embryo-derived stem cells, we

explored whether novel cell lines could be derived from blasto-

cysts under similar growth factor conditions as previously de-

scribed for EpiSC- and human ES cell cultures (bFGF, ActivinA,

and BIO). Initial experiments using matrigel as substrate were

unsuccessful, but when instead blastocysts were hatched on

MEFs in the presence of bFGF, ActivinA, and BIO and a blocking

antibody against murine LIF, we were able to derive stable cell

lines with novel properties, which we designated FAB-SCs, for

bFGF, Activin, and BIO-derived stem cells. If the zona pellucida

was left intact, only 10% of the blastocysts hatched and upon

trypsinization and passaging of the ICM outgrowths, a third of

the hatched blastocysts yielded stable cultures that were ho-

mogenous in appearance (n = 184). Removal of the zona pellu-

cida prior to plating of the embryos improved the derivation fre-

quency significantly, as 80% of the embryos demonstrated

robust ICM outgrowth and upon passaging 30% of the original

blastocysts yielded stable FAB-SC lines (n = 99). It is interesting

to note that under FAB-SC conditions ICM expansion was no-

ticeable within 2 days after plating. In contrast, when blastocysts

are plated under mES cell conditions, ICM expansion is delayed

and occurs several days later. The difference in ICM outgrowth is

not due to differences in cell proliferation rates since FAB-SCs
450 Cell 135, 449–461, October 31, 2008 ª2008 Elsevier Inc.
and mES cell proliferation rates are similar (not shown). Instead,

the delay in ICM outgrowth under ES cell conditions may indicate

that ES cell lines are derived from a small subpopulation of cells

within the ICM while FAB-SC conditions allow the entire ICM to

expand. Alternatively, the delayed ICM outgrowth in ES cell

conditions may reflect a pause in cell proliferation associated

with epigenetic reprogramming events that are essential for the

derivation of mES cells (Kaji et al., 2006). While speculative,

this latter option would imply that such reprogramming does

not occur under FAB-SC conditions.

FAB-SCs Share Features with EpiSCs and mES Cells Yet
Are Distinct from Both
Unlike mES cell colonies, which have a characteristic three-

dimensional appearance of tight shiny colonies, FAB-SCs grew

as monolayer colonies reminiscent of EpiSCs (Figure 1A).

Q-PCR analysis of Oct4, Sox2, and Nanog demonstrated that

all three pluripotency transcription factors were expressed in

FAB-SC lines as well as in traditional mES cells (Figure 1B). We

further confirmed the homogeneous expression and nuclear

localization of these transcription factors using immunohisto-

chemistry (Figure 1C). In addition, we confirmed the expression

of the cell-surface marker SSEA1 on the FAB-SCs (not shown),

further demonstrating that the FAB-SC cultures homogeneously

express molecular hallmarks of pluripotent cells. Although FAB-

SCs are derived on a feeder layer of MEFs, in the presence of

a blocking antibody to LIF, we cannot formally exclude that

very low residual levels of LIF signaling are required for FAB-

SC derivation. However, established FAB-SC lines can be main-

tained on gelatin or Matrigel coated dishes in serum-free media

in the absence of LIF or BMP4, with sustained expression of

pluripotent markers, demonstrating that these growth factors

are not required for the maintenance of these cells. Finally, as

we will demonstrate below, stimulation of FAB-SCs with LIF

and BMP4 induces profound permanent phenotypic changes

in these cells, arguing that FAB-SCs do not experience these

growth factors during their derivation.

FAB-SCs are derived under culture conditions similar to those

recently reported for the derivation of murine EpiSCs (Brons

et al., 2007; Tesar et al., 2007), but FAB-SCs and EpiSCs origi-

nate from different developmental stages of the embryo. To chart

similarities and differences among FAB-SCs, ES cells, and

EpiSCs, we performed global gene and microRNA (miRNA)

expression analysis on these cells.

Using a Luminex bead platform (Lu et al., 2005), we analyzed

the expression levels of >430 miRNAs in independent ES, EpiSC,

and FAB-SC clones. Heatmap analysis of these samples re-

vealed clear differences in the global miRNA profiles of these

three cell lines (Figure 1D). Interestingly, FAB-SCs express

miRNAs recently shown to be ES cell specific, such as the

miR-290 cluster (Houbaviy et al., 2003), or enriched in self-

renewing ES cells, such as miR-18a, miR-19a, and miR- 20a

(Hayashi et al., 2008). In contrast, EpiSCs express low levels of

these miRNAs. These data demonstrate that FAB-SCs express

miRNAs typical of ES cells, reflecting the blastocyst origin of

these cells. EpiSCs, on the other hand, express several miRNAs

associated with postimplantation development including miR-1

and miR-206 (associated with muscle development) and



miR-150 and miR-142 (hematopoietic differentiation) (Chen

et al., 2004; Xiao et al., 2007). The microRNA expression profiling

of these pluripotent stem cell lines underscores the unique char-

acter of FAB-SCs and reflects their early developmental origin.

EpiSCs on the other hand demonstrate the expression of

miRNAs associated with early lineage commitment, in line with

the postimplantation epiblast origin of these cells.

To further interrogate the similarities and differences between

FAB-SCs, mES cells, and EpiSCs, we performed microarray

analysis of the transcriptional profile of these different cell lines.

FAB-SCs express several known pluripotency factors, including

Oct4, Sox2, and Nanog, at levels similar to those in mES and

EpiSCs (Figure 1E). Yet, the expression of epiblast markers is ab-

sent or low in FAB-SCs compared to EpiSCs, demonstrating that

while these cells are propagated under similar growth factor con-

ditions, they are not the same (Figure 1E). FAB-SCs distinguish

themselves from ES cells as well, as they do not express many

of the genes associated with germ cell differentiation, such as

Stella, Blimp1, or Dazl, which are commonly expressed in mES

cells (Figure 1E). The mRNA expression analysis further demon-

strates that FAB-SCs represent an alternative stable stem cell

state that is distinct from both mES cells and EpiSCs.

FAB-SCs Fail to Demonstrate Pluripotency in Assays
of Development
We next tested the ability of FAB-SCs to generate derivatives of

all three germ layers in in vitro and in vivo assays of development.

Embryoid body (EB) formation is a simple and widely used

method in which aggregates of pluripotent cells initiate a differen-

tiation program that is reminiscent of early embryonic develop-

ment (Doetschman et al., 1985; Leahy et al., 1999). In the context

of the EB, molecular interactions that drive early embryonic

development are recapitulated and cells differentiate to form

ectoderm, endoderm, and mesoderm derivatives.

Surprisingly, and in stark contrast to ES cells, EBs made

from FAB-SCs remained small and failed to expand. We next

interrogated the ability of FAB-SCs to form teratomas when

injected into immunodeficient mice. FAB-SCs failed to form

Figure 1. Novel Blastocyst-Derived Stem Cells

FAB-SCs were derived as described in the Results section.

(A) Brightfield image of FAB-SCs (top panel) and mES cells (bottom panel).

(B) Q-PCR expression analysis of Oct4, Sox2, and Nanog expression on FAB-SC and ES cell as indicated. Error bars, ± standard deviation (SD).

(C) Left panels: Immunofluorescence staining of FAB-SCs for Oct4, Sox2, and Nanog as indicated. Right panels: DAPI nuclear staining.

(D) Normalized expression intensity values (scaled median ratio) were obtained from Agilent whole-genome microarrays. Three biological replicates were used for

all three cell types.

(E) Hierarchy clustering of MicroRNA profiles of MEF, mES, EpiSC, and FAB-SC cell lines.
Cell 135, 449–461, October 31, 2008 ª2008 Elsevier Inc. 451



any teratomas at 3 months after injection (n = 20), whereas

teratomas formed within 1 month in all mice injected with ES

cells (n = 5).

Pluripotency is characterized by the ability of a stem cell to self-

renew indefinitely while maintaining the capacity to differentiate

into derivatives of all three germ layers. While FAB-SC cultures

display sustained expression of hallmark molecular markers of

pluripotency >30 passages (Figure 1C), the cells fail to pass stan-

dard in vitro and in vivo tests of pluripotency such as EB differen-

tiation or teratoma formation. As such, FAB-SCs are also molec-

ularly and functionally distinct from primitive epiblast-like cells

(EPL cells) that are derived when ES cells are cultured in the

presence of HEPG2 conditioned medium (Rathjen et al., 1999).

Epiblast marker genes, which are expressed in EPL cells, are

low or absent in FAB-SCs, and in contrast, FAB-SCs express

the ICM marker Gbx2 and EPL cells do not. In addition, EPL cells

are capable of forming teratomas, while FAB-SCs are not,

excluding the possibility that FAB-SCs are EPL cells.

Growth Factor Stimulation Induces FAB-SC
Pluripotency
To examine the influence of the growth factor milieu on FAB-SC

pluripotency, we explored the effect of LIF and BMP4 stimulation

on the ability of FAB-SCs to generate teratomas (Figure 2A).

To ensure a homogeneous FAB-SC population, we used flow

cytometry to sort single-cell clones of FAB-SCs containing

a GFP transgene into 96-well plates and visually confirmed the

presence of a single cell in each well. Clonal FAB-SCs were

stimulated with LIF (100 ng/ml) and BMP4 (50 ng/ml) for

1 week and injected subcutaneously into NOD-SCID mice

(1 3 106 cells, n = 7) to assess their teratoma-forming potential.

While none of the native FAB-SC clones gave rise to teratomas,

injection of LIF/BMP4-stimulated FAB-SC clones resulted in the

formation of teratomas in all recipients (3 independent clones,

n = 7 for each clone). H&E staining and immunofluorescent

detection of markers of germ layer differentiation demonstrated

that the teratomas generated by the LIF/BMP4-stimulated

Figure 2. LIF and BMP4 Stimulate FAB-SC Teratoma Formation

(A) Schematic representation of FAB-SC derivation (with bFGF/ActivinA and BIO), LIF/BMP4-stimulated FAB-SCs cultured in the presence of LIF and BMP4, and

reverted FAB-SCs, which are again maintained in bFGF/ActivinA and BIO.

(B) H&E staining of teratomas generated from a clonal FAB-SC line stimulated with LIF/BMP4 (left panels) or stimulated and subsequently cultured for 7 days in

FAB-SC conditions (right panels). Derivatives of all three germ layers are observed as indicated.

(C) Immunohistochemistry analysis of markers of ectoderm (Nestin, Tubulin b3 [Tubb3]), mesoderm (Smooth Muscle Actin, [SMA]), or endoderm (FoxA2).
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FAB-SCs displayed derivatives of all three embryonic germ-

layers (Figures 2B and 2C, left panels), demonstrating that brief

culture in LIF/BMP4 induces FAB-SC developmental potential.

Interestingly, when the LIF/BMP4-stimulated FAB-SCs were

returned back to the original FAB-SC growth factor conditions

and cultured for another week, these ‘‘reverted’’ FAB-SCs

retained the ability to generate teratomas (Figures 2B and 2C,

right panels). Thus, the FAB-SC pluripotent state, induced

by transient LIF/BMP4 stimulation, is retained even when the

LIF/BMP4 stimulus is subsequently removed.

Blastocyst Contribution by FAB-SCs
To further explore our observation that LIF/BMP4 stimulation in-

duced FAB-SC pluripotency, we examined the effect of growth

factor stimulation on the ability of FAB-SCs to form chimeras

upon transfer into recipient blastocysts. Control and LIF/BMP4-

stimulated FAB-SCs, expressing the GFP transgene de-

scribed above, were injected into blastocyst embryos and their

integration into the recipient blastocyst was monitored over

time. While the LIF/BMP4-exposed FAB-SCs integrated with

the cells of the ICM within 6 hr after injection, unstimulated

FAB-SCs remained dispersed in the blastocyst cavity, revealing

that integration of FAB-SCs into the recipient embryos was

impaired (Figure 3A).

To further analyze the developmental potential of FAB-SCs

before and after growth factor stimulation, we transferred the

embryos into pseudopregnant females and analyzed chimerism

by the expression of the GFP transgene and/or coat color. No

chimerism was observed in any of the >320 pups from blasto-

cysts injected with 10–12 FAB-SCs each. Sectioning and immu-

nohistochemistry staining of the embryos using an anti-GFP

antibody revealed no GFP contribution to the recipient embryos

at mid-gestation (E9.5–E11.5). In contrast, even brief 48 hr stim-

ulation of FAB-SCs with LIF and BMP4 induced the ability of

these cells to form chimeras. Although the chimeric frequency

was low (7 out of 254 pups), the chimeras demonstrated high

(40%–90%) FAB-SC contribution (Figure 3B, top panel). Mating

with a wild-type female showed transmission of the FAB-SC-

derived GFP transgene to the offspring, demonstrating that

LIF/BMP4-stimulated FAB-SCs are capable of germline contri-

bution as well (Figure 3B, middle panel). These embryo chime-

rism experiments were repeated with single-cell-derived clonal

Figure 3. Growth Factor Stimulation Induces FAB-SC Chimera Formation and Germline Contribution

(A) Temporal analysis of the integration of GFP-transgenic FAB-SC before and after LIF/BMP4 stimulation into recipient blastocysts. Integration of FAB-SCs and

LIF/BMP4-stimulated FAB-SCs was monitored at 1, 3, and 6 hr after injection as indicated.

(B) Top panel: High contribution chimera derived from LIF/BMP4-stimulated FAB-SC (48 hr stimulation); arrows indicate agouti coat color chimerism. Bottom

panel: GFP+ offspring of the FAB-SC chimera, demonstrating germline transmission.

(C) Chimera from clonal FAB-SCs stimulated for 7 days with LIF/BMP4.
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FAB-SC lines. Again, no chimerism was observed upon blasto-

cyst transfer of clonal FAB-SCs (n = 160). However, LIF/BMP4

stimulation of clonal FAB-SCs for 7 days induced the ability of

these cells to contribute to recipient embryos with a frequency

similar to the parental cell line (not shown).

Finally, we analyzed whether FAB-SCs exposed to LIF/BMP4

for 1 week would contribute to chimera formation after further

culture in bFGF, ActivinA, and BIO. Clonal LIF/BMP4-stimulated

FAB-SCs were cultured for an additional 7 days in FAB-SC me-

dia containing bFGF, ActivinA, BIO, and anti-LIF antibody and

subsequently injected into recipient blastocyst embryos. GFP

contribution by the injected reverted FAB-SCs was detected

in 4 out of 123 embryos analyzed, with chimerism ranging from

20%–80% (Figure 3C), demonstrating that pluripotency is

retained even after removal of the LIF/BMP4 signal.

The above data demonstrate that LIF/BMP4 stimulation of

FAB-SCs induces their ability to contribute to chimera formation.

The relatively low number of chimeras obtained suggests

that only a fraction of the FAB-SCs undergoes full growth-fac-

tor-mediated conversion to the pluripotent state. Robust con-

tribution by cells that do successfully undergo pluripotent

conversion, including contribution to the germline, indicates

however that the induced cells are truly pluripotent. Importantly,

the ability of FAB-SCs to display this effect at the clonal level

demonstrates that the LIF/BMP4-stimulated chimera formation

is the result of an induction of FAB-SC pluripotency rather than

clonal selection of ‘‘competent’’ cells from a heterogeneous

starter population.

E-Cadherin Is Induced by Transient LIF/BMP4
Stimulation of FAB-SCs
The unique properties of FAB-SCs allowed us to further probe

the molecular mechanism behind the induction of FAB-SC pluri-

potency by growth factor stimulation. Microarray comparison of

the FAB-SC gene expression profile of three independent clonal

FAB-SC lines with the expression profile of LIF/BMP4-stimulated

FAB-SCs demonstrated profound changes in gene expression

(Figure 4A, upper panel). Comparison of FAB-SCs to cells that

were transiently stimulated with LIF/BMP4 and subsequently

reverted to the original growth conditions of bFGF, ActivinA,

and BIO enabled us to focus on gene expression changes

linked to the induction of pluripotency (Figure 4A, lower panel).

We compared the gene expression profiles of FAB-SCs, the

LIF/BMP4-stimulated FAB-SC, and the growth-factor-reversed

FAB-SCs and searched for genes that were up- or downregu-

lated at least 3-fold by LIF/BMP4 stimulation and remained

altered in the reverted FAB-SCs. Only a handful of genes dis-

played this expression profile consistently in three independent

FAB-SC clones (Figure 4B). Four ‘‘hits’’ were genes involved in

RNA translation and two were genes with unknown function.

Cdh1 (E-cadherin) displayed the most profound induction, as it

demonstrated a 4- to 6-fold upregulation on all seven features

Figure 4. E-Cadherin Is Induced by LIF/BMP4 Stimulation of FAB-SC

(A) Microarray comparison of gene expression of FAB-SC and LIF/BMP4-stimulated FAB-SC (upper panel) or FAB-SC and growth-factor-reversed FAB-SC

(lower panel).

(B) Heatmap of genes permanently upregulated by LIF/BMP4 stimulation of FAB-SC.

(C) Western blot analysis of E-cadherin expression in FAB-SC, LIF/BMP4-stimulated FAB-SC, and growth-factor-reverted FAB-SC.
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of the microarray. Western analysis of E-cadherin expression in

FAB-SCs, LIF/BMP4-stimulated FAB-SCs, and reverted FAB-

SCs demonstrated that while FAB-SCs express low levels of

E-cadherin, LIF/BMP4 stimulation results in upregulation of

E-cadherin expression to levels comparable to those observed

in mES cells; this upregulation was sustained in the reverted

FAB-SCs (Figure 4C).

E-Cadherin Is a Critical Regulator of FAB-SC
Pluripotency
To further analyze the function of E-cadherin in pluripotent stem

cells, we generated lentiviral shRNA hairpins to examine the ef-

fect of downregulation of E-cadherin expression on the ability

of FAB-SCs to generate teratomas. shRNA hairpins were tested

to functionally downregulate E-cadherin expression in mES cells

(Figure S1A available online). While E-cadherin expression was

unaffected in the control hairpin, two E-cadherin hairpins

(Cdh1-SH3 and Cdh1-SH4) demonstrated >90% downregula-

tion of E-cadherin expression and were selected for further

experiments. Functional knockdown of E-cadherin expression

was tested in a cell aggregation assay. Cadherins mediate

cell-cell adhesion through homotypic interactions. Two cell pop-

ulations expressing similar levels of the same cadherin will form

homogeneous aggregates, while dissimilarities in the nature or

level of cadherin expression will result in segregation of the two

cell types (Gibralter and Turner, 1985; Takeichi et al., 1981). While

ES cells transduced with the control shRNA hairpin formed ho-

mogeneous aggregates when mixed with wild-type ES cells, ES

cells expressing the E-cadherin hairpins did not mix with the

Figure 5. E-Cadherin Regulates FAB-SC Pluripo-

tency

(A) FAB-SCs constitutively expressing a GFP transgene

were transduced with control vector or shRNA to knock

down E-cadherin. A tdTomato reporter gene was coex-

pressed from the lentiviral shRNA vector to allow identifi-

cation of knockdown cells. Cdh1 knockdown results in

FAB-SC differentiation (middle top panel, arrowhead).

(B) FAB-SCs were transduced with either control vector or

Cdh1 expression vector and 1 3 106 cells were injected

subcutaneously into NOD-SCID mice. Tumors were ana-

lyzed for germlayer differentiation 1 month after injection

of the cells. Top panels: H&E staining of teratomas gener-

ated from Cdh1-FAB-SCs. (I) Keratinocyte, (II) adipocyte,

(III) gut. Lower panels: Immunohistochemistry analysis of

markers of (IV) Nestin, ectoderm, (V) Smooth Muscle Actin,

mesoderm, and (V) FoxA2, endoderm.

wild-type cells but instead aggregated in spa-

tially separate domains, demonstrating func-

tional consequences of E-cadherin knockdown

in these cell lines (Figure S1B). Next we explored

the effect of knockdown of E-cadherin expres-

sion on LIF/BMP4-stimulated FAB-SCs, but we

were unable to establish stable clones using

the E-cadherin knockdown hairpins. Transduc-

tion of LIF/BMP4-stimulated FAB-SCs with the

control vector yielded stable clones expressing

the tdTomato reporter gene present in the lenti-

viral shRNA vector (Figure 5A). Loss of E-cadherin has been

reported to induce anoikis-mediated apoptosis in certain cancer

cell lines, yet no difference in apoptosis was observed between

the control and E-cadherin knockdown samples (not shown).

When we analyzed the transduced cells by fluorescent micros-

copy, however, we observed a striking difference in the morphol-

ogy of the E-cadherin knockdown cells compared to control. In

the control sample, tdTomato-positive (lentiviral-transduced)

cells proliferated as undifferentiated colonies (Figure 5A, lower

panels). In contrast, stimulated FAB-SC cells transduced with

the E-cadherin hairpins had a fibroblast-like morphology, dem-

onstrating that downregulation of E-cadherin resulted in rapid

FAB-SC differentiation (Figure 5A, upper panels, arrows).

Induction of FAB-SC Pluripotency by Ectopic Expression
of E-Cadherin
The upregulation of E-cadherin expression in FAB-SCs following

LIF/BMP4 stimulation correlates with the induction of the ability

of these cells to form teratomas containing derivatives of all three

germ layers. We next examined whether this upregulation of E-

cadherin expression is sufficient to induce the teratoma-forming

potential of FAB-SCs. FAB-SCs transduced with a lentiviral vec-

tor expressing E-cadherin formed teratomas in immunodeficient

mice after 1 month (5 out of 7), whereas none of 7 mice injected

with control FAB-SCs developed teratomas. H&E staining and

immunofluorescent detection of markers of germ layer differen-

tiation demonstrated that the teratomas generated by the E-cad-

herin FAB-SCs displayed derivatives of all three embryonic germ

layers (Figure 5B). These data demonstrate that overexpression
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of E-cadherin alone is sufficient to induce robust teratoma-

forming potential in FAB-SCs and suggest that a key target of

LIF/BMP4 stimulation is upregulation of E-cadherin expression.

Accelerated ES Cell Differentiation in the Absence
of E-Cadherin Expression
Above data demonstrate that E-cadherin plays an important role

in regulating the FAB-SC pluripotent state. To test whether abro-

gation of E-cadherin expression would compromise the pluripo-

tency of mES cells, we generated stable mES cell lines express-

ing the control or Cdh1 knockdown hairpins. Downregulation of

E-cadherin expression in mES cells changes the morphology of

the cells from the tight, three-dimensional colony shape to more

flattened colonies of loosely connected cells, very much resem-

bling FAB-SCs (Figure S2A). ES cells stably expressing the

E-cadherin hairpins could be propagated for over 20 passages,

and the proliferation and apoptotic rates between the control

and E-cadherin knockdown ES cell lines were comparable (see

Figure 6D below), suggesting that knockdown of E-cadherin

did not impair ES self-renewal, proliferation, or apoptosis. Using

immunohistochemistry we analyzed the expression of Oct4 in

the control and E-cadherin knockdown ES cell lines (Figure S2B).

No differences in the level, localization, or percentage of Oct4

expression were observed between control and E-cadherin

knockdown ES cells. Furthermore, even cells that demonstrated

a rounded-up clustered colony morphology were expressing

Oct4 (arrowheads, Figure S2B). Thus, while knockdown of

E-cadherin expression in traditional mES cells results in a change

in morphology and loss of tight adhesion of the ES cells, loss of

E-cadherin does not impair ES cell self-renewal. Like FAB-SCs,

the E-cadherin knockdown ES cells formed small EBs (Figures

6A and 6B). Moreover, whereas E-cadherin knockdown ES cells

form teratomas upon subcutaneous injection into NOD-SCID

mice, loss of E-cadherin expression results in a profound reduc-

tion in teratoma size, as measured by the weight of the teratomas

(Figure 6C). Analysis of the teratomas revealed multilineage dif-

ferentiation, however, indicating that differentiation of the Cdh1

knockdown ES cells per se was not impaired (not shown). The

reduced size of the E-cadherin knockdown EBs was not due to

decreased proliferation or increased apoptosis of these cells

(Figure 6D). Finally we analyzed the expression of pluripotency

markers Oct4, Sox2, and Nanog before and during differentiation

of control ES cells or the E-cadherin knockdown cell lines. While

we observed no difference in the downregulation of Oct4 and

Sox2 expression, western blot analysis revealed an accelerated

loss of Nanog protein expression in the absence of E-cadherin

expression as compared to control cells (Figure 6E). The rapid

loss of Nanog expression in the E-cadherin knockdown cells

was also observed when we monitored Nanog RNA levels by

Q-PCR (Figure 6F). Oct4, Sox2, and Nanog have been shown

to bind to promoter elements of genes involved in early cell

fate decisions (Boyer et al., 2005, 2006). The concerted binding

of these transcription factors mediates the recruitment of the

polycomb silencing complex, thereby suppressing gene expres-

sion. Thus part of the role Oct4, Sox2 and Nanog play in ES cell

self-renewal is to prevent the expression of genes associated

with differentiation, such as genes in the Hox-cluster. Since

loss of E-cadherin results in early downregulation of Nanog
456 Cell 135, 449–461, October 31, 2008 ª2008 Elsevier Inc.
upon cell differentiation, we analyzed the expression of HoxA1

and HoxB1 in these cells. Upregulation of HoxA1 and HoxB1 is

a hallmark sign of cell differentiation toward the somatic lineages

and distinguishes pluripotent cells from early somatic cells in the

primitive epiblast (Saitou et al., 2002; Yabuta et al., 2006). While

we observed no upregulation of HoxA1 expression during early

differentiation of control or E-cadherin knockdown ES cells,

HoxB1 expression was upregulated prematurely in both E-cad-

herin knockdown cell lines compared to control (Figure 6F). To-

gether our data demonstrate that loss of E-cadherin expression

results in rapid differentiation of FAB-SCs, and while mES cells

can maintain their pluripotent state in the absence of E-cadherin

expression, they demonstrate an accelerated loss of Nanog

expression and premature upregulation of HoxB1 expression

upon induction of differentiation.

DISCUSSION

We have derived a novel stem cell line from murine blastocyst

embryos using growth factor conditions previously reported for

murine EpiSCs and human ES cells (Brons et al., 2007; Ginis

et al., 2004; Tesar et al., 2007). Transcriptome and miRNA ex-

pression analyses demonstrate that EpiSCs, mES cells, and

now FAB-SCs represent distinctive stem cell lines derived from

early murine embryos. Our data demonstrate that stem cells

can exist in a number of distinct metastable epigenetic states,

which each display unique phenotypic properties that are deter-

mined by the growth factor environment and the developmental

stage of the embryo from which the cell line is derived (Table 1).

FAB-SCs may be trapped in a state of ‘‘partial pluripotency,’’

akin to the partially reprogrammed states identified in cultures

of induced pluripotent stem cells (iPS cells). In a seminal paper

Takahashi and Yamanaka demonstrated that introducing four

transcription factors, Oct4, Sox2, c-Myc, and Klf4, is sufficient

to reprogram fibroblasts into pluripotent stem cells (Takahashi

and Yamanaka, 2006). The authors selected successfully re-

programmed iPS cells by their re-expression of an ES cell-spe-

cific Fbx15 reporter. While these initial iPS cells displayed the

ability to generate teratomas with derivatives of all three germ

layers and contributed to somatic lineages in chimera experi-

ments, they failed to contribute to the germline, indicating that

full pluripotency was not achieved. Subsequent application of

alternative reporter genes demonstrated that the pluripotent po-

tential of the derived iPS cell lines is determined by the method of

iPS colony selection, and germline-competent iPS cells can be

obtained if cells are selected for the re-expression of Nanog or

Oct4 transcription factors (Maherali et al., 2007; Meissner

et al., 2007; Okita et al., 2007) or when selection is omitted en-

tirely (Stadtfeld et al., 2008). These data suggested that iPS cells

can exist in a stable, partially reprogrammed state. Indeed, a re-

cent report demonstrates that incomplete reprogramming of

chromatin marks associated with somatic lineages in some iPS

lines results in failure of these iPS cells to repress lineage-spec-

ifying transcription factors and hampers their pluripotent poten-

tial (Mikkelsen et al., 2008). Similarly, our FAB-SCs may be in

a stable ground-state of ‘‘near pluripotency’’ that can be reprog-

rammed to full pluripotency by altering the growth factor milieu.

The role and mechanism of growth factor signaling in the



reprogramming process has thus far not been recognized, and

our FAB-SC system uniquely allows the dissection of this

process at the molecular level.

We identified E-cadherin as a candidate gene that is induced

upon transient LIF/BMP4 stimulation of FAB-SCs. E-Cadherin

plays an essential role during preimplantation embryonic devel-

opment. In its absence, proper cell polarization is absent and

trophectoderm formation is impaired (Larue et al., 1994; Rieth-

macher et al., 1995). Remarkably, embryo compaction is unaf-

fected in E-cadherin null embryos, but the cells fail to sustain

the compacted state and do not form a blastocyst. E-Cadherin

mutant embryos fail to hatch and do not demonstrate the typical

compacted ICM morphology but instead form clusters of

rounded cells, much like bunches of grapes (Larue et al.,

1994), and shRNA knockdown of E-cadherin expression in

mES cells results in similar colony morphology. In addition,

Figure 6. Loss of E-Cadherin Expression Compromises EB and Teratoma Formation by Accelerating ES Cell Differentiation

(A) Representative images demonstrating EB differentiation of wild-type and E-cadherin knockdown ES cells. Loss of cadherin expression results in small EB size

compared to the wild-type EBs.

(B) Bar-graph analysis of the sizes of wild-type or E-cadherin knockdown EBs.

(C) The effect of loss of E-cadherin expression on teratoma formation. Plotted is the weight (in grams) of seven teratomas of wild-type and seven each of two

independent E-cadherin knockdown ES cell lines. Loss of E-cadherin results in a profound reduction in teratoma size.

(D) Analysis of apoptotic frequency in control and E-cadherin knockdown cells. Stable ES cell lines transduced with control vector or two independent E-cadherin

knockdown hairpins were analyzed by flow cytometry for AnnexinV staining. The ES cells expressed a tdTomato fluorescent reporter gene to distinguish them

from the MEF feeder cells. Top panels: AnnexinV-FITC staining of control and two E-cadherin knockdown ES cell lines. The percentage of AnnexinV-positive cells

is indicated. Bottom panels: AnnexinV staining of the same cell lines after 7 days of monolayer differentiation of the cells.

(E) E-cadherin downregulation results in early loss of Nanog expression and premature upregulation of HoxB1. Western blot analysis of Nanog protein expression

during differentiation of control ES cells (top) and two independent E-cadherin knockdown ES cell lines (middle and lower panels). Numbers indicate days of

differentiation.

(F) Left: Q-PCR analysis of the Nanog RNA levels in the same samples. Right: Q-PCR analysis of HoxB1 expression in the same samples.
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E-cadherin mutant ES cells fail to generate organized tissue

structures in teratoma assays (Larue et al., 1996). Ectopic ex-

pression of E-cadherin or N-cadherin in E-cadherin mutant ES

cells restored their ability to generate defined teratomas and

revealed an unexpected differential effect on the type of tissue

formed by the expression of these two cadherins, demonstrating

that cell-cell adhesion plays an important role in directing tissue

differentiation. Our data extend these observations by demon-

strating that E-cadherin plays an active role in regulating the

stem cell pluripotent state itself.

The differential need for E-cadherin expression for the mainte-

nance of pluripotency in FAB-SCs and mES cells may be due to

redundant effects of N-cadherin expression in mES cells. Indeed,

a knockin ES cell line in which N-cadherin cDNA was inserted into

the E-cadherin locus demonstrated that while N-cadherin failed

to correct the trophectoderm phenotype of the E-cadherin

mutant embryos, it did rescue ES cell colony morphology (Kan

et al., 2007). Since FAB-SCs only express E-cadherin, downregu-

lation of E-cadherin expression results in rapid differentiation. In

contrast, mES cells express low levels of N-cadherin that may

act redundantly to rescue stem cell self-renewal. Upon knock-

down of E-cadherin expression, differentiating mES cells display

premature downregulation of Nanog expression concomitant

with an early upregulation of HoxB1 expression. We conclude

that E-cadherin plays a critical role in regulating the stem cell

pluripotent state and prevents premature differentiation by regu-

lating Nanog expression.

The molecular link between E-cadherin and Nanog expression

is unknown and may be founded in the close cell-cell contact

mediated by E-cadherin. For example, DE-cadherin is an impor-

tant component of the Drosophila germ cell niche, where it an-

chors germline stem cells to the somatic component of the niche

(Song and Xie, 2002). Close contact between the stem cells and

the soma assures that the stem cells receive high levels of

growth factor signals that are required for their self-renewal

(Song and Xie, 2002; Tulina and Matunis, 2001; Yamashita

et al., 2003). It is interesting to hypothesize that pluripotent

stem cells, such as FAB-SCs and ES cells, in a similar fashion

require cadherin-mediated cell-cell contacts for optimal self-

renewal, possibly by an unknown paracrine mechanism. Alterna-

tively, E-cadherin itself could provide essential downstream

signals that mediate the regulation of Nanog expression and

maintenance of pluripotency. E-Cadherin associates with b-cat-

enin, which serves dual roles as mediator of cell adhesion and

transcriptional regulator. b-catenin activation through the Wnt

signaling pathway has been implicated in ES cell self-renewal

(Sato et al., 2004). In addition, TCF binding sites were recently

found to colocalize with many Oct4 and Nanog binding sites in

the genome, indicating that the Wnt-b-catenin signaling pathway

is integral to the pluripotency circuitry mediated by these tran-

scription factors (Cole et al., 2008). E-Cadherin may fine-tune

this pathway by modulating intracellular b-catenin levels. Addi-

tional signaling pathways are known to be activated by cadherin

stimulation and dissection of the molecular associations between

the growth factor environment, The expression of E-cadherin by

epithelial cells has been postulated as a reason for why transcrip-

tion factor-induced reprogramming of epithelia is more efficient

than the generation of iPS cells from fibroblasts, which lack

Table 1. Origin, Culture Conditions, and Functional Properties of Different Pluripotent Stem Cell Lines

Cell Line Origin Growth Factor Conditions Teratoma Formation Chimera Formation Reference

Murine ES Blastocyst LIF, BMP4 All germ layers Somatic and germline

contribution

(Evans and Kaufman, 1981;

Martin and Evans, 1975)

Murine EpiSC Epiblast bFGF, Activin All germ layers No (Brons et al., 2007;

Tesar et al., 2007)

Human ES Blastocyst bFGF, Activin, (BIO),

MEF conditioned media

All germ layers Not tested (Thomson et al., 1998)

FAB-SC Blastocyst bFGF, Activin, BIO No No This report

Reverted FAB-SC Blastocyst bFGF, Activin, BIO All germ layers Somatic contribution,

germline contribution

not tested

This report

Murine IPS cells Somatic cells LIF, BMP4 All germ layers Somatic and germline

contribution

(Maherali et al., 2007;

Meissner et al., 2007; Okita

et al., 2007; Takahashi

and Yamanaka, 2006)

Human IPS cells Somatic cells bFGF, serum, MEF

conditioned media

All germ layers Not tested (Park et al., 2008;

Takahashi et al., 2007;

Yu et al., 2007)

Murine EG cells Embryonic gonad Derivation: bFGF, LIF,

and SCF

Maintenance: LIF and

fetal bovine serum

All germ layers Somatic and germline

contribution

(Matsui et al., 1992;

Resnick et al., 1992)

Human EG cells Embryonic gonad LIF, bFGF, and Forskolin All germ layers Not tested (Shamblott et al., 1998)

Murine mGS cells Postnatal testis Derivation: GDNF, LIF

Maintenance: LIF and

fetal bovine serum

All germ layers Somatic contribution (Guan et al., 2006;

Kanatsu-Shinohara et al.,

2004; Seandel et al., 2007)
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E-cadherin expression (Aoi et al., 2008). Thus, unraveling the role

of the growth factor environment and cell-cell interactions in the

induction and maintenance of FAB-SC pluripotency may serve as

a paradigm for other systems of epigenetic reprogramming.

EXPERIMENTAL PROCEDURES

Mouse Strains and ES Cells

C57BL/6-TGN(ACTbEGFP) were from Jackson Laboratories, Bar Harbor, ME,

USA (Okabe et al., 1997). 129SvEv were from Taconic, Germantown, NY, USA.

ES and FAB-SC cell lines were derived from F1 cross between C57BL/6-

TGN(ACTbEGFP)1Osb and 129SvEv. Antibodies used Oct4 (Santa Cruz),

Sox2 (Chemicon), Nanog (Abcam), and E-cadherin 1:100 (Cell Signaling

Technology).

Derivation and Maintenance of FAB-SC Cell Lines

E3.5 blastocysts were obtained from C57/BL6 female 3 129SvEv-EGFP male

mice. Briefly, blastocysts were flushed from uterus with M2 media (Chemicon)

and placed on MEFs in media that consisted of DMEM, 15% KOSR, 2 mM

L-glutamine, 1% nonessential amino acids, 100 U of penicillin, 100 mg of strep-

tomycin, 1 mM Sodium Pyruvate (all from Invitrogen), 0.1 mM b-mercaptoetha-

nol, 50 mg/ml ascorbic acid, 100 mg/ml FE-saturated transferring (all from

Sigma). For the maintenance of FAB-SCs and reverted FAB-SCs, growth

factors were added: 1 ng/ml bFGF (R&D systems), 50 ng/ml human ActivinA

(Peprotech), 0.5 mM BIO (Sigma), and 100 ng/ml LIF-blocking antibody (R&D

systems). Seven days after initiation of explant culture, blastocyst outgrowths

were dissociated with Trypsin-EDTA (Invitrogen) and transferred to new wells

containing MEFs. The established FAB-SC lines were passaged every other

day at a subculture ratio of 1:10. The LIF/BMP4-stimulated FAB-SCs were cul-

tured in the same basal media containing 100 ng/ml rmLIF and 50 ng/ml

rhBMP4 (R&D systems).

miRNA Expression Profiling

MicroRNA expression profiling was performed as described (Lu et al., 2008; Mi

et al., 2007). One microgram total RNA was used for profiling using the plate-

capture method of labeling and using the bead-based platform for detection.

MicroRNAs were captured using plates coupled with oligonucleotides anti-

sense to microRNAs, ligated with adaptors, reverse-transcribed and amplified

through PCR, incorporating biotin as a label. Labeled microRNAs were hybrid-

ized to detecting oligonucleotides on colored beads before detection using

flow cytometry on a Luminex 100IS machine. Median fluorescence intensity

was used for each microRNA as a measure of expression. Data were prepro-

cessed as described (Lu et al., 2005). Briefly, samples were normalized

assuming the same total fluorescence intensity. Data were then log2-trans-

formed and thresholded at 5. Hierarchical clustering was performed in matlab

after filtering out microRNAs that were detected in the noise range (with

maximum expression in any sample of less than 7.25).

Culture of ES-EpiSC Cells

Cells were maintained on GFR-matrigel (BD Biosciences) or Laminin (Sigma)

as indicated in FAB-SC medium (DME, 15% KOSR [Invitrogen], 0.1 mM

nonessential amino acids [Invitrogen], 2 mM glutamine, penicillin/streptomycin

[Invitrogen], 0.1 mM b-mercaptoethanol, 200 mg/ml iron-saturated transferrin

(Sigma), and 50 mg/ml ascorbic acid [Sigma]), supplemented with growth

factors: for ES cells 100 ng/ml LIF and 50 ng/ml BMP4 (R&D Systems), for

ES-EpiSC and FAB-SC cells 50 ng/ml recombinant human ActivinA (Pepro-

tech), 1 ng/ml bFGF (R&D Systems), 0.5 mM BIO (Sigma), and 500 ng/ml noggin

(R&D Systems). For EB differentiation, cells were trypsinized, collected in EB

medium (IMDM/15% IFS, 200 mg/ml iron-saturated transferrin [Sigma],

4.5 mM monothiolglycerol [Sigma], 50 mg/ml ascorbic acid [Sigma], and

2 mM glutamine). Cells were collected and plated in hanging drops at 300 cells

per 25 ml droplet in an inverted bacterial petri dish. EBs were collected from the

hanging drops at day 3 and transferred into 10 ml EB medium in slowly rotating

10 cm Petri dishes. At day 3, EBs were fed by exchanging half of their spent

medium. Cells were harvested by lysis in Trizol (Invitrogen), followed by RNA

extraction and cDNA synthesis for Q-PCR analysis of gene expression.
Blastocyst Injection

Blastocysts were collected from the uterine horns of superovulated C57BL/6

females that were mated with C57BL/6 males. Ten to twelve cells were

injected per recipient blastocyst. Upon injection, blastocysts were transferred

into the uterus of pseudopregnant recipient CD-1 females who were plugged

2.5 days earlier by vasectomized CD-1 males.

Microarray Analysis

For genome-wide expression analysis we compared the expression profile of

three independent clonal FAB-SC lines as well as the LIF/BMP4-stimulated

FAB-SCs and reverted FAB-SCs from these lines. Total RNA was extracted

using Trizol reagent (Invitrogen) and labeled and hybridized to Agilent Whole

Mouse Genome Oligo 4X44K Microarrays (one-color platform) according to

the manufacturer’s protocols. mES and EpiSC expression data were from

the geo omnibus (Tesar et al., 2007). The gene expression results were

analyzed using GeneSifter and/or Genespring microarray analysis software.

Single-Cell Cloning of FAB-SCs

FAB-SCs were dissociated by 0.05% Trypsin-EDTA at 37�C. Cell suspension

was filtered through 40 mm cell strainer (BD bioscience) and single cells were

FACS (FACS Aria, BD Bioscience) sorted individually into 96 wells with

feeders. Presence of single cell in each well was confirmed visually. The

subclones were subsequently propagated using standard FAB-SC culture

conditions.

FACS Analysis

Cells were collected by trypsinization and resuspended in ice-cold RPMI +

0.5% FBS. Cells were incubated with the antibodies against the indicated sur-

face antigens for 30 min at 4�C. Anti-SSEA1 and anti-SSEA2 were from the Hy-

bridoma bank at the University of Iowa; TRA-1-60 and TRA-1-81 anti-human

ES cell antibodies were from Chemicon. The cells were washed twice with

RPMI/0.5% FBS and incubated with PE-conjugated rat anti-mouse IgM for

30 min at 4�C. Cells were washed twice with RPMI/0.5% FBS, resuspended

in RPMI/0.5% FBS, and analyzed on a Becton Dickinson FACSCalibur

analyzer or sorted using a Becton Dickinson FACSAria cell sorter.

Lentiviral shRNA Knockdown

The target sequences for murine E-cadherin RNAi knockdown were selected

and the DNA oligos were designed using the pSicoligomaker 1.5 program

(http://web.mit.edu/jacks-lab/protocols/pSico.html). The target sequences

were GGAGATGCAGAATAATTAT (Cdh1 sh3) and GAAGAGAACATTCTA

(Cdh1 sh4). For the lentiviral vector, we used a modified version of pLentiLox

3.7, in which the GFP is replaced by a tdtomato selection marker (gift from

Dr. L. Daheron). The DNA oligos for the small hairpins were cloned into the

XhoI and HpaI sites in the pLentiLox-tdtomato vector as described in http://

web.mit.edu/jacks-lab/protocols/pll37cloning.htm. Lentivirus was produced

in 293-FT cells (Invitrogen) according to the manufacturer’s protocol and

concentrated by centrifugation at 18000 rpm for 2 hr.
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Microarray data have been deposited in the GEO Database with the following

accession numbers: GSM314554, GSM314555, and GSM314556.
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