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1 

The purpose of this paper is to investigate a Ramsey-like relation among 
the natural numbers which was recently introduced by L. Harrington. 
Considering a natural number n as the set of smaller natural numbers 
n = (0, l,..., n - 1) we write 

if for any f: [n]” - c, where [rile = {s C n j 1 s j = e>, there is XC n such 
that 1 X 1 > k, min(X) < / X 1, andfis constant on [Xl’. 

If we drop the assumption min(X) < 1 X ( then we get the usual Ramsey 
relation. The reason for considering this much stronger relation is the amazing 
fact that in Peano arithmetic (the usual axiom system for natural numbers) 
it is impossible to prove 

(r*) : (V k, e, cl@ n)b y @)“,I ; 

yet this sentence is true of natural numbers. In fact as Paris and Harrington 
showed the implication “(r*) + arithmetic is consistent” is provable from 
Peano axioms. A theorem of GGdel says that unless the axioms prove every- 
thing the statement “arithmetic is consistent” is unprovable from them. 
Hence the validity of r* and provability of the implication is probably the 
ultimate in the effort toward Hilbert’s First Problem. 

The work of Harrington and Paris (see [S]) was extended by Solovay, who 
gave combinatorial arguments on the growth of the function 

f(n) = least k[k ; (n -+ I):] 

and showed that it grows spectacularly (see [9]). In this context, the unprova- 
bility of (r*) may be illuminated by saying that n is so large with respect to 
k, e, c that it can’t be defined from them using addition, multiplication, and 
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induction and hence it is not forced to be in a (nonstandard) model of 
arithmetic which contains k, e, and c. 

However, given e it is possible to show that 

(v k, cP 4[n ; W:l 

is provable in arithmetic. This may seem curious to one not familiar with 
the subtleties of the provability relation. An explanation might run as follows: 
given e we have a proof but for different e’s the proofs are so different that 
it is impossible to combine their features into an inductive proof. To amplify 
a proof for e = 2 is not of much help when considering e = 3. 

Our aim in this paper is to give not only a proof of (1) when e = 2 but 
also reasonable bounds for n. We shall be concerned mostly with c = 2. To 
give a preview let us denote the least n such that n I: by r*(k). We 
shall show that 

r*(3) = 6 (= r(3)), 18 < r*(4) < 50, and r*(5) < 7092. 

In Section 2, we place the relation completely into graph theory by 
restating it so that it is independent of the ordering. The rest of the section 
shows that the statement (u”) is really true, that it follows from the infinite 
Ramsey theorem and, moreover, we introduce (R*), which is equivalent, in 
arithmetic, to an approximation of the infinite Ramsey theorem. A reader 
wishing to get a feeling of why (r*) is unprovable may find it here but the rest 
of the paper is independent of this part of Section 2. Elaborations in this 
direction in arithmetic and set theory may be found in Benda [2]. Section 3 
discusses the upper and lower bounds and related matters and is purely 
combinatorial. 

Notation. Given f: [AIt + c, a set XC A is called f-homogeneous if 
f(s) =- .f(s’) for any s, s’ E [Xl”. We let h, for a E A denote the largest size of 
anfihomogeneous set to which a belongs. An h-sequence off: [AIt + c is a 
sequence (/I,,~ , hUl ,..., 
if i <,j. 

h ,,,_ ,), where A = [ai / i < n), such that !I,,~ < 15,~ 

Remark. An h-sequence is similar to the degree sequence of a graph. 
We do not have, though, a description of those sequences which are h- 
sequences as is the case for degree sequences (see Erdos and Gallai [4]). 
The only nontrivial results in this connection we know of are due to Galvin 
and Krieger (see [7, Corollary 21). 

THEOREM 2.1. The following are equitlalent: 

(1) n -z+ W 

(2) If : A j > n and f: [AIt ---t c then for some m, k < m < n, all but 
m elements of A are in f-homogeneous sets of size am. 
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(3) For any h-sequence (h, , h, ,..., n,-,) we have m < h, for some m, 
k<m<n. 

Proof. Statements (2) and (3) are clearly equivalent. Note that (2) is a 
property which in no way depends on any ordering, i.e., is invariant under 
permutations. 

To prove (2) from (I), we take f: [AIt + c and order A by < so that 
a < b implies h,, < h,, . We then identify A with n using the order-preserving 
map and invoke (1) to obtain f-homogeneous relatively large X. If a = 
min(X) we have a < / X / < h, so (3) is true. 

To go the other way, let f: [n]” --t c. We know by (2) that for some IPZ, 
k < m < n all but m points are in f-homogeneous subsets of size >m. Let 
a be the first such point. Then a < m, so if X contains a and I X j > m, X is 
relatively large. 

We shall now show that r* is true. We give two proofs. The first proof is 
short but uses extravagant machinery. The second proof tries to prove r* by 
the most elementary means and will enable us to see the difficulty in proving r* 
in elementary arithmetic and, therefore, will show what to concentrate on in 
order to obtain the desired bounds. 

THEOREM 2.2 (Harrington). r* is true. 

TheJirst proof: Assume that we have k, t, and c and for every n E N 
we have A, and fn: [AnIt ---f c which is a counterexample to R*. Let p be a 
finitely additive measure on subsets of N with values 0 or 1 which assigns 0 
to all singletons. The existence of this measure requires an essential use of the 
Axiom of Choice. Take A = nlleN A, and identify x, y E A if p({n 1 x(n) = 
~(11))) = 1. Let A/p be the set of equivalence classes. Define 

f(xll~,...3 41-4 = i if p({n 1 f,(x,(n),..., x,(n)) = ij = 1. 

Then f: [AlpIt + c and by the infinitary Ramsey theorem, we know that 
all but finitely many points of A/p are in infinite f-homogeneous sets. If m’ is 
the number of such points let m = max(k, m’). It is easy to see from the 
construction that for some n > m all but m elements are in f,,-homogeneous 
sets of size >m, so (A, , fn) could not have been a counterexample. 

The second proof. We shall be informal but up to a certain point this proof 
could be formalized in elementary arithmetic. We again assume that we have 
k, t, c such that for any n we have n 2 (k);. Let G, be the set of counterexam- 
ples f: [n]’ + c in the sense of 2.1(2). Note that G, is finite. 

For f 6 G, , g E 6, , n < m define fRg if (n, f) can be embedded into 
(m, g); that is, for some F: n -+ m 

W(a, ,..., 4) = g(fQA.., F(4). 
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Note that if g E G,,, there is f E G,,, such that fRg which is obtained (in 
essense) by taking out an element from n + 1 which belongs to the largest 
g-homogeneous set. This shows that the relation R has arbitrarily long 
sequences fiRfiR *.a Rfn . The relation is transitive and we have a situation 
similar to the Konig’s Tree Theorem. There is, therefore, a sequence fn E G,, 
such that fi,Rfn+l for every n E N. Rearanging the natural numbers we can 
assume that the maps guaranteed by fnRf,,+l are inclusions. The union of the 
fn’s is then 8 [n]” +- c and it can be seen by inspection of the construction 
that it is definable from the counterexamples, so we are still within arithmetic. 

Now we wish to apply the infinite Ramsey theorem. Its application gives a 
speedy contradiction to the existence of the counterexamples and finishes 
the proof of Theorem 2.2. This ending is of course impossible to carry out 
within elementary arithmetic where we cannot mention infinite sets or func- 
tions unless we define them. We shall now try to see how much of the infinite 
Ramsey theorem can be formulated within arithmetic and whether the 
resulting statement may enable us to prove that r* is true. We shall see that 
even more can be achieved. 

Consider the following schema of statements of arithmetic: 
For any c, t E N, if F: [Nit + c is a (definable) function then some n E N 

belongs to arbitrarily large F-homogeneous sets. 
This schema may be formulated within arithmetic as infinitely many 

axioms. Ramsey’s theorem implies that all of them are true (in fact much 
more). However, as we shall presently see, this schema is unprovable in 
arithmetic for it implies, within arithmetic the statement r*. The reader may 
inspect his/her favorite proof of the infinite Ramsey theorem and it will be 
evident that although the proof constructs an infinite homogeneous set, it 
does not construct an element of the set. We shall elaborate on this point in 
the next section. 

Before we proceed to show that the Ramsey schema implies r*, we ask 
whether the converse is true. It turns out the Ramsey schema is equivalent 
(in arithmetic) to a natural strengthening of r* which we define below and 
denote by R”: 

For any c, t E N and any (definable) function f: N-t N there is y1 such 
that 

‘1 - (f ): 9 

where 12.--t (f): means: if F: [n]” -+ c then for some m < n all but m points 
belong to F-homogeneous sets of size >.f(m). 

THEOREM 2.3. R* implies R. 

Proof. Let F: [Nit + c be a definable function and assume that for every 
II E N the F-homogeneous sets containing n have size <f(n). By the finite 
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Ramsey theorem, for given k E N, we have only finitely many n juch that 
f(n) = k. Hence, by rearranging the natural numbers, we can assume that 
IZ < m implies f(n) <f(m). We now use R* for the function f(x) + 1. 
We get n such that II + (f):. Let g be the restriction of F to [n]” and m < n. 
We then have a contradiction since the points O,..., m belong to g-homogene- 
ous sets of size <f(m) + 1 and there is m + 1 of them. 

In order to prove the other implication, we need a lemma which is interest- 
ing in itself because together with Ramsey theorem, it implies R*. It is 
conceivable that some finitary version of it together with the finite Ramsey 
theorem would imply r*. We were not able to find an appropriate formula- 
tion. 

First some terminology: If S is a set of finite subsets of N, we say that 
x E N is covered by S if (s ES 1 x E s} contains sets of arbitrarily large size. 
For n, m E N we say that x is m-covered in n if for some s ES containing x 
we have j s n n 1 > m. We say S is h-dense, where h: N-+ N, if for any n E N 
and r C N / r j 3 h(n) there is s _C r, / s I > n, and s E S. 

LEMMA 2.4. Let S be an h-dense set. Then for any m E N there are infinitely 
many n such that if x < n is covered by S then it is m-covered in n. 

Proof. If no x is covered by S there is nothing to prove. Assume that 
some x is covered and the lemma is false. Then we have n, and for n 3 n, 
we have g(n) -C n which is covered by S but not m-covered in n. 

Case 1. g is bounded. Then g(n) = b for infinitely many n’s and since b 
is covered, we get s ES juch that b ES and I s I >, m. Taking n such that 
s C n we get a contradiction. 

Case 2. g is unbounded. We find a set r in the range of g, [ r / 3 h(m) 
and using the h-density of S get s ES, s C r, and I s I > m. Let b be the last 
element of s. Then for some n > b g(n) = b but b is m-covered in n. 

THEOREM 2.5. R implies R*. 

Proof. Let c, t E N and g: N + N be given such that for no n we have 
n -+ (g)“, . As in the second proof of Theorem 2.2 we average out the counter- 
examples and get f: [N]$ + c. Let S be the set of all finite f-homogeneous 
subsets. It is easy to see the Ramsey schema implies that S not only covers 
some point but that it in fact covers all but finitely many points. (Reason: 
we take the set of uncovered points U, if unbounded the function f F U is 
isomorphic to a definable g on [Nit showing the Ramsey schema false for g.) 
Let k be the number of uncovered points. Let h(x) be the least n such that 
n -+ (x): (from finite Ramsey theorem). Then S is h-dense and the assump- 
tions of Lemma 2.4 are satisfied. Let m = g(k). By Lemma 2.4, we get n 
such that some covered point is <n and every covered point <n is m- 



ON HARRINGTON’S PARTITION RELATION 343 

covered in n. That is, all but k points are inf-homogeneous subsets of n of 
size >g(k). Remembering that we rearranged N so that the restriction offto 
n would coincide with the supposed counterexample on n we see that we have 
a contradiction. 

Note that R* is much stronger than r*. The first n such that n 2 (k): is 
the first n such that n -+ (&)“, where fk(x) = max(k, x). Hence the Ramsey 
schema is unprovable in arithmetic (assuming it consistent). In fact the proof 
of this is easier than the proof of unprovability of r* and can be found in [2]. 

In this section, we shall find bounds for the least numbers satisfying 
n 2 (k): . We start by discussing the situation for small values of k; this wilI 
prepare the reader for the general bounds and will give us a feeling of how 
good the bounds are. 

In order to ease the notation, we shall call a function8 [n12 ---f 2 a colored 
graph on n; it essentially is the complete graph on vertices whose edges are 
colored by two colors, 0 and 1. We shall call an f-homogeneous set an 
f-set, and an i-set (i = 0, 1) will be anf-set X such that f is constantly i on 
[X12. Our bounds will be expressed in terms of the ordinary Ramsey numbers 
r(k, I), which is the least number n such that any colored graph on n vertices 
has a O-set of size k or it has a l-set of size 1. By r(k), we denote r(k, k) and 
r*(k) will stand for the least n satisfying n T(k):. The basic relationship for 
r(k, Z) is 

r(k, I) < r(k - 1, Z) + r(k, Z - 1) 

(k, Z > 2) and it then follows that r(k, Z) < (“&;“) (see [4, for more informa- 
tion on r(k, e). The best general bounds for r(k) are 

2k/2 < r(k) < (2y11)) ) 

the lower bound being due to Erdos. For special numbers, the lower bound 
may be improved, e.g., r(2” + 1) > 5” + I (see Abbott [l]). 

The case k = 3: Since we have r(k) < r*(k) we get 6 < r*(3) and because 
3 happens to be a half of 6, we get r*(3) = 6. 

In fact, we can do better than this. It is easy to see that any colored graph 
on 6 vertices has at least two homogeneous triangles so all but two points 
are in homogeneous sets of size 3. This leads immediately to the question of 
what happens for larger graphs. In general, we ask how many points can 
there be in a large, or simply infinite, graph which do not belong to homo- 
geneous sets of size k? Clearly their number is limited by r(k) so we may define 
a function g where g(k) (for k > 2) is the maximal number n such that some 
infinite colored graph contains n vertices none of which is in a homogeneous 
set of size k. Our first bounds were obtained using g; however, later we found 
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better bounds may be achieved with g and its variants and that these will be 
essential for considering t > 2. For this reason, we give an evaluation of g. 

THEOREM 3.1. g(k) = r(k, k - 1) - 1 (k > 2). 

Proof. First of all, we show that g(k) > r(k - 1, k) - 1. The definition 
of r(k - 1, k) implies that it is the least n such that any colored graphfon n 
vertices which does not have an f-set of size k has 0- and l-sets of size k - 1. 
Therefore, r(k - 1, k) - 1 is the largest n for which we find f: [nn]” + 2 
with say, O-sets of size k - 1 but l-sets of size tk - 1. Now extend f to 
N be defining f(~, V) = 0 for U, ~1 > n and f(u, U) = 1 for u < n < ~7. It is 
easy to see that any u < II is in anf-set of size k - 1 at most. 

To show g(k) < r(k - 1, k) assume we havef: [N12 + 2 with n = r(k - 1, k) 
vertices not inf-sets of size k. Assume that the points are the numbers <n. 
Consideringfon [n12, we see that there are i-sets of size k - 1 included in n 
fori=Oandi=l.ForSCndefine 

NotethatC.=~becauseifuEC~thentakingal-setXCnjX/=k-l 
we would get an in < n belonging to the l-set X u (u> of size k. Similarly 
C, = m.NowifOCSGnthen 

i C, 1 < r(k - 1, k - 1) 

for if not C, would include, say l-set X of size k - 1 and then taking 
X u {m}, where m < n and m $ S, we would get a l-set of size k with m in it 
As the set {C, / S C n} covers an infinite set one of them should be infinite. 

Remark. In particular, we have g(3) = r(2, 3) - 1 = 2, therefore any 
infinite colored graph has at most two points not in homogeneous triangles 
and, in fact, this is true for any graph on at least 6 points. Also g(4) = 
r(3, 4) - 1 = 9 - 1 = 8. 

The proof also gives a bound on the size of a graph which contains 
m > r(k - 1, k) vertices not in homogeneous sets of size k. The bound is 
(2” - 2)r(k - 1, k - 1). So the largest graph with vertices not in homo- 
geneous sets of size 4 has at most 6510 vertices. Actually, with a more detailed 
work, one can get a bound which is about a tenth of this. 

Inspecting the proof of g(k) > r(k - 1, k) - 1 we see that we have intro- 
duced a large homogeneous set, i.e., {u 1 u > n}. This is in fact typical, 
e.g., if we have a graph on n > 6 vertices which has two points not in komo- 
geneous triangles then it will have a homogeneous set of size >n - 3. This 
is illustrated in general below. 
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THEOREM 3.2. 19 < r*(4) < 50. 

Proof. We know 18 is the smallest II such that n -+ (4): . An example 
that 17 ++ (4); may be obtained by taking 

f(u, 4 = 0 if u - u is a quadratic residue mod 17, 

= 1 otherwise, 

for 0 < U, v < 17. Extending f by defining f(u, 17) = 0 iff II = 0 (mod 3), 
we see that the points 0, 3, 6,9, 12, 15 are in no f-homogeneous sets of size 4 
and there are 6 of them. As there are no f-sets of size >4, we see that 
18 $r (4):. 

To find the upper bound, we take f: [n]” -+ 2 and assume that we have 
four points not inf-sets of size 4. We could assume to have five of them but 
we do not see a way of using this information. Then there will be three among 
these a, a, , and a, say, such that f(a, a,) = 0 and f(a, a,) = 1. Let 

Ai = {X < fl I X f a,f(a, x) = il. 

Note that a$ E Ai for i = 0 or 1 and define for i, ,j E {0, l}, 

Aij = {x f Ai 1 x f ai andf(ai , X) =.j). 

We then have: A,, is a l-set, Al1 is a O-set, Aol cannot contain an f-set of 
size 3 so 1 A,, 1 < 5, and similarly for A,, . We thus have twof-sets A,, and 
A,, of sizes k, and k, resp. and the rest of n has at most 13 points. Now we 
need a condition on II which would allow us to conclude that if n = 13 + 
k, + k, then either k, , k, Z 13 or if, say, k, < 13 then k, Z k, + 13. Then 
we are done for in the former case all the points of A,,,, u A,, are inf-sets 
of size 213 and in the latter case all but k, + 13 ,< kl points are in f-sets 
of size k, (i.e., in A,,). The smallest n satisfying this is 4 a 13 - 2 = 50. 

The argument has not been typical. A more typical argument, though we 
shall still use information not available in general is: 

THEOREM 3.3. r*(5) < 7 092. 

Proof. Let f: [n]2 -+ 2 be such that we have six points not in f-sets of 
size 5. We can then find a, a, , a,,, , and a, among these such that {a, a, , a,,} 
is a O-set and f(a, a,) = 1 (we use the fact that 6 - (3): here). Let 

Ai = (x 1 x # a and f(a, x) = i} 

soa,,,a,,,~A~,anda,~A~. Fori,fE(O, 1)define 

Aij ={x~A,jxfa~andf(a~,~) =j]. 

582a/28/3-9 
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Then a,, E Aoo and we define 

Ao,i = {x E A,, / x f a,, and f(a,, , x) = i}. 

It can be easily seen that A,,, is a l-set, A,, and Al, have nof-sets of size 4 
thus they have at most 17 elements and A,, has no l-set of size 3. Finally, 
A,,, has no O-set of size 3 and no l-set of size 4 so 1 A,,, / < r(3, 4) = 9. 
Consequently, 

Na, a,, aoo> u A,, u Alo u A,,, I < 44. 

The points listed in the set above are considered useless because we do not 
know whether they belong to large homogeneous sets and we intend to 
throw them out of the graph. The points in A,,, are useful but only if 1 A,,, i > 
44 because we already intend to throw out 44 points so the rest should be in 
f-sets of size at least 44. We therefore assume that 1 A,,, 1 < 43 and go to A,, 
to look for a large homogeneous set. If all points of Al1 are inf-sets of size 
43 + 44 = 87 we are done. If not, let b E AlI be a point not in an f-set of 
size 87. Define 

Alli = (x E A,, / x f b andf(c, x) = i} 

Then Allo has no l-sets of size 3 (because Allo _C AlI) and no O-sets of size 86 
so ) All0 I < r(3, 86). The set Al,, is O-homogeneous. There is a bound for 
the numbers r(3, k) namely r(3, k) < (k2 + 3)/2 so / A,,, I < (862 + 3)/2 = 
3458. Thus if 1 A,,, j < 43 we throw out at most 3459 + 87 = 3546 points 
and in order to make A,,, of size 3546 we have to make n > 7092. In the 
case when / A,,, 1 > 44 we proceed as follows: we assume we have a 
point c E A,, which is not in a homogeneous set of size 44, for otherwise we 
are done. Forming the sets Alli as before, we find that I Allo / < r(3, 43) < 
924. We are now in the same situation as in Theorem 3.2. We have 925 + 44 = 
969 definitely useless points and two homogeneous sets of size k, and k, . 
In order to make sure that k, , k, > 969, or k, > 969 + k, , or k, > 969 + k, 
whenever n = 969 + k, + k, we have to take n = 4 .969 - 2 = 3874 in this 
case which is smaller than the former bound. 

This process may be applied to a general graph where, however, we shall 
not be able to use any special information and so the bounds will be much 
looser. Even in the case k = 5 the bound is probably too high because we in 
effect show that for any graph on 7092 points with 4 points as described 
above a half of it is a homogeneous set or two thirds of it consist of two 
homogeneous sets of different colors. 

We define the bound fork > 3, b, , by induction as follows: For i < k - 2, 
let ei+l = e, + 2 . r(k - i, ei - l), with e, = k. Then for 1 < i < k - 2 
let A+, =h + 2 * r(k - i,f. - 1) with fi = ekd2. The number b, is A”-2 . 
Thus b, = 3 + 2 . r(2, 2) = 7 (pretty good) but b, = 144. 
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THEOREM 3.4. r*(k) < b, . 

Proofi Assume 1 A / 3 b, andf: [A]’ --f 2 = (0, I}. We define by induc- 
tion sets A ic, iJi , and points uie where c = 0 or 1 and as far as the i’s are 
concerned, we indicate below when the induction terminates. 

We assume we have a point a E A which is not in f-sets of size 2 k. Let, 
for c < 2, 

Aoe = (X E A 1 x # a and f(x, a) = cj. 

We define U, = {a> (the elements of some Ui are to be thought of as useless) 
and let k, = k. In general ki will be max(\ Ui 1, k). Assume now that for 
i < n the sets Aie, Ui have been constructed and the points sic have been 
constructed for i < n. 

Case 1. Every point x E A,” (c = 0 or 1) is in an f-set of size >k, . In 
this case, the definition is terminated. 

Case 2. Every x E A,l is in an f-set of size >k, but some point in A,O is 
not in such set 

In this case, we let uno E A,O to be a point not in an f-set of size ak, and 
let ui = a6-1 . We let 

AZ,, = {s E A,’ / x # uno and f(a,‘, s) = Oj, 

B n+l={~~A.o~xfa,oandf(a,o,s)=l~, 

U n+l = un TV &+I u h”>. 

We define A:,, = A.l. 

Case 3. This is like Case 2 except that the roles of 0 and 1 are interchanged 
in the statement of the case as well as in the definitions. 

Case 4. Neither of the cases above. We then have for c < 2 points 
ant E A,” which do not belong to f-sets of size >k, and we define, for c < 2 

A;,, = {x E A,” 1 I # ant and f(x, uric) == c) 

X+1 = {x E A,’ / s f one and .f(s, an’) = 1 - c; 

U - BE+1 V & LJ i&, , d+,l u CT, . n+1 - 

It is clear that the definition will terminate in finitely many steps because 
we remove at every step a point from Aio or from Ai1 and A is finite. Actually, 
we now show that it will terminate in less than 2k steps. 

Let rnc = I{aic 1 i < n>i + 1. 
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Fact 1. If X C Ant, n > 0, is a c-set then j X / < k - rILc. The reason for 
this is that if X _C A,” is a c-set then so is 

X U (sic / i < n] U (a>, 

but the point a is not in any homogeneous set of size >k. Hence 1 X 1 < 
k - r,,,c. 

Now the sequences r” and r1 are nondecreasing and have the property that 
if, e.g., r,O = r,O,, then r,,l < rz,, . Second, by Fact 1, for any n rllc < k - 1. 
The longest possible number of steps can, therefore, be (k - 1) + (k - 2) = 
2k - 3. This might be realized, for example, if for the first k - 2 steps we 
were in Case 2, on the (k - 1) step in Case 4 and then in Case 3 for k - 2 
steps more. 

On the last step, call it I when we enter Case 1, the sets Ato and Al1 might 
be empty. If not then any element of A,O U A,1 is in an&set of size >k, < 
/ A 1, i.e., all but kl elements (in fact, possibly less) are inf-sets of size >k, . 
We thus have to show the procedure will not turn A into U1 . 

To do this, we need a record of which case we considered on a particular 
step. Let Z(O) = (1, 1) and z(n) = (rz,, - r,O, ri,, - r,l) for n > 0. Thus 
if z(n) = (0, 1) then we know we considered Case 3 on step n because we 
had a O = a0 n-l and an1 f ai-1 . Given z we define a sequence of numbers of 
the sa”me length by induction as follows: 

Let nz, = k, and assume mj has been defined for i < n, n < I- 1. 

(a) If z(n + 1) = (0, 1) let nz,,,, = IPI,, f r(k - r,l, k, - I). 

(b) If z(n + 1) = (1, 0) let m,<., = m, + r(k - rno, k, - 1). 

(c) If z(n + 1) = (1, 1) let m,,-, = 111, + r(k - rno, k, - 1) f 
r(k - r,l, k,, - 1). 

Fact 2. For n .<, I k,, < m,: If II = 0 then k, = k = m, . Assume the 
fact for n and, so as not to consider all cases, suppose that z(n + 1) = (1, l), 
that is on the (n + I)-step we were in Case 4. The other cases are treated 
similarly. We should estimate the size of the sets Bi,, . Because Bi,, C Ant 
then we cannot have c-set XC BFL+, of size k - rrLc as follows from Fact 1. 
If .Y E BzL+, then f(arlc, x) = 1 - c and the point ant is not in anf-set of size 
k,, , so the (1 - c)-sets C Bk+l have size < k,, - 1. Hence / Bz,, ! < r(k - rnc, 
k, - 1) and therefore, 

All we need to check now is that given any sequence z which corresponds 
to an actual construction the last number of the sequence mi connected with 
z as above is smaller than the number b, defi&d previously. It may be seen 
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that we have been more than generous, for b,, is defined from the sequence 
((1, I),..., (1, 1)) (2k - 2 times) and thus majorizes term by term any mi 
which occurs above. 

Remark and Conjecture. When we were doing preliminary estimates for 
r*(k) we supposed we were in Case 2 all the time and the construction eneded 
in k - 2 steps with AEmz homogeneous. The bound for the useless part then 
came out 

1 B, 1 < r(k - n, r(k - n + l,..., r(k - 1, k - I).*.)) 

and so the largest set thrown into the useless part has size <r(2, r(3,..., 
r(k - 1, k - 1 ..*)). This number cannot serve as a bound for small values 
of k, however, the number r(2, r(3 ,..., r(k - 1, r(k, k)) . ..)) is large enough, 
has natural combinatorial interpretation and we conjecture that it is indeed 
a bound for r*(k). 

The proof of Theorem 3.4 has the advantage that it readily generalizes 
to the relation n --f (g);, where g: N-+ N for which we assume to avoid 
trivialities that g(k) > max(k, 3). Define e, = g(0) and e,+l = ei + 2 * 
r(k - i, g(e,) - 1) for i < k - 2 and fi+l = fi + 2 * r(k - i, g(f$) - 1) 
for1 <i<k-2withf,=e,-,.Letb,=f,-,. 

THEOREM 3.5. The least n such that n + (g): is at most b, . 

Proof. The proof differs from the proof of 3.4 in the formulation of the 
cases. For example, Case 2 is modified as follows: Every x E A,l is an f-set 
of size g(k,) but some x E A,O is not in such set. The sets &, Ui , and the 
points sic are defined as before and when it comes to the bounds, we first 
notice that Fact 1 does not depend on g at all and in Fact 2 the only alteration 
to be made is to replace k, by g(k,). This, of course, applies to the definition 
of the sequence m, as well. 

Having 3.5, we can also extend the bounds to graphs colored by more 
than two colors. What is required is a further modification of the construction 
3.4 and the knowledge of the bounds b, for functions g(i) = i + bk and 
h(i) = i + b, . For three colors, i.e., f[A12 --f (0, 1, 2)$(k) < b, + b, + b, . 
The argument is not straightforward but we omit it here. 
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